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Abstract: Due to its ideal physical properties, fluorine-18 turns out to be a key radionuclide for
positron emission tomography (PET) imaging, for both preclinical and clinical applications. However,
usual biomolecules radiofluorination procedures require the formation of covalent bonds with
fluorinated prosthetic groups. This drawback makes radiofluorination impractical for routine
radiolabeling, gallium-68 appearing to be much more convenient for the labeling of chelator-bearing
PET probes. In response to this limitation, a recent expansion of the 18F chemical toolbox gave
aluminum [18F]fluoride chemistry a real prominence since the late 2000s. This approach is based
on the formation of an [18F][AlF]2+ cation, complexed with a 9-membered cyclic chelator such as
NOTA, NODA or their analogs. Allowing a one-step radiofluorination in an aqueous medium, this
technique combines fluorine-18 and non-covalent radiolabeling with the advantage of being very
easy to implement. Since its first reports, [18F]AlF radiolabeling approach has been applied to a wide
variety of potential PET imaging vectors, whether of peptidic, proteic, or small molecule structure.
Most of these [18F]AlF-labeled tracers showed promising preclinical results and have reached the
clinical evaluation stage for some of them. The aim of this report is to provide a comprehensive
overview of [18F]AlF labeling applications through a description of the various [18F]AlF-labeled
conjugates, from their radiosynthesis to their evaluation as PET imaging agents.

Keywords: radiofluorination; aluminum fluoride; coordination chemistry; bifunctional chelating
agent; NOTA; PET; molecular imaging
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1. Introduction

1.1. 68Ga in PET Imaging and Radiolabeling: Pros and Cons

Positron emission tomography (PET) is currently an essential medical imaging technique in
the diagnosis of cancer diseases, therapeutic efficacy monitoring, preclinical research and general
molecular imaging [1]. The most widely used PET imaging radiopharmaceutical in current clinical
practice is 2-deoxy-2-[18F]fluoro-d-glucose or [18F]fluorodeoxyglucose ([18F]FDG), a glucose analog
whose hydroxyl group at position 2 is replaced by a [18F]fluorine atom. In recent years, the chemistry of
another β+ emitting radioelement, gallium-68, has also acquired a renewed interest by its application
in PET imaging [2,3]. 68Ga can be obtained from a long life 68Ge/68Ga generator (68Ge half-life = 271
days) which makes it readily available [4,5], relatively inexpensive and independent of a cyclotron or a
reactor production. Thus, like 99mTc in single-photon emission computed tomography (SPECT), the use
of 68Ga in PET imaging is made possible in every hospital [6]. 68Ga has a rather short half-life (68 min),
consistent with the relatively fast mechanism of distribution, metabolism and elimination from the
blood compartment of small bioconjugated peptides, such as somatostatin analogs (Figure 1). Thereby,
compared to 111In, 68Ga allows the realization of imaging examinations in 1–3 h and reduces irradiation
of patients by a factor of 2 to 3 [7]. Significant progress in 68Ga coordination chemistry has been
made in recent years, motivated by the success and promising nature of the first radiopharmaceuticals
using this radiometal, in particular [68Ga]Ga-DOTA-TOC, first 68Ga-labeled somatostatin analog [8,9],
68Ga radiolabeling of DOTA-TATE quickly followed [10].
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68Ga can form stable complexes with many chelators, especially polyaminocarboxylates such as
DOTA, NOTA, and their derivatives [11]. NOTA effectively complexes 68Ga under relatively mild
labeling conditions, while forming a [68Ga]Ga-DOTA complex requires a ~100 ◦C heating step that
may be incompatible with some vector molecule.

However, despite the advantages of 68Ga like its obtaining from a generator or its metallic character
that allows labeling of very diverse molecules by coordination chemistry [4,12], fluorine-18 still occupies
a privileged place among the radionuclides used in PET imaging [13]. This is particularly related to its
better dosimetry profile and almost ideal physical properties for this type of application (Table 1) [14].
Although the most used 18F-labeled radiopharmaceutical in Nuclear Medicine is [18F]FDG, a growing
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number of new imaging agents containing this radioelement have recently been licensed or are
currently in clinical trials [15]. Whereas 18F is not the most suitable radioisotope for imaging all types
of cancer or molecular targets [16,17], several peptide receptors such as integrins, somatostatin, or
bombesin would be ideal targets for a fluorinated radiotracer [18]. Compared to 18F, the proportion of
positrons emitted by 68Ga is lower (around 88% decay for 68Ga versus 97% for 18F), in favor of more
electronic capture transformation. Furthermore, the mean free path of gallium-68 positrons in tissues is
relatively significant because of their high maximum energy. These factors inherent to the radionuclide,
associated with different physical properties related to PET technology [19], cause so-called partial
volume effects [20,21], designating effects of blur and spurious signals appearing on PET images and
related to a lack of spatial resolution.

Table 1. Physical properties of 18F and 68Ga.

Characteristics Fluorine-18 Gallium-68

Formation 18O (p,n) 18F 68Ge→ 68Ga

Half-life (h) 1.83 1.13

Maximal β+ energy (keV) 633.5 1899.1

Mean β+ energy (keV) 249.3 836.0

Positron emission rate (%) 96.9 89.1

Gamma photons emission: energy
(keV) and rate (%) None 578.5 (0.034); 805.8 (0.094);

1077.4 (3.22); 1261.1 (0.094); 1883.2 (0.137)

These disadvantages are particularly encountered in small animal imaging by 68Ga-labeled
tracers [22,23]. Indeed, because of the high maximum energy of gallium-68 positrons, the spatial
location of the annihilation point is generally quite distant from the emission point. Before annihilation,
positron travels a random path, deviated from its initial trajectory by inelastic diffusions. As a result,
68Ga PET imaging has a lower sensitivity and a lower spatial resolution than 18F PET, with suboptimal
quantification properties [24]. Nevertheless, these drawbacks can somehow be compensated by
the high contrast achieved with several 68Ga-radiotracers that display a significant target specificity
compared to [18F]FDG, in the absence of resulting background noise.

1.2. The Place of 18F in Routine Radiolabeling

In contrast, fluorine-18 PET imaging provides very good spatial resolution and sensitivity, partially
offsetting the loss of contrast due to non-specific tissue uptake.

Regarding the radiolabeling step, the non-metallic nature of fluorine makes it incompatible
with coordination chemistry approaches used with gallium and requires covalent radiolabeling [25].
In small molecules, 18F is generally bonded to a carbon atom of the original structure. To radiolabel
peptides or proteins, 18F is brought within a prosthetic group, which is then coupled to the
vector molecule. Isotope exchange methods using silyl [26,27], phosphorous or boron-containing
derivatives [28–30] also represent attractive alternatives [31–33]. Covalent 18F-radiolabeling of a
molecule is a multi-step process [34] that may involve quite drastic reaction conditions (use of
anhydrous organic solvents, heating at high temperatures). This type of protocol usually starts with
trapping 18F on an anion-exchange cartridge, then elution of pure concentrated [18F]fluoride. It is then
dried by heating under inert atmosphere and solubilized in the reaction solvent [35]. [18F]fluoride
species is finally used to substitute a leaving group present on the precursor via nucleophilic substitution.
The radiolabeled intermediate is then purified, most often by high-performance liquid chromatography
(HPLC) and in the case of a prosthetic group, it can finally be bonded to the vector of interest though a
reaction depending on its structure [25]: acylation, alkylation, nucleophilic addition or click chemistry,
for example (Figure 2).
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After this covalent radiolabeling step, the fluorinated molecule has also to undergo a purification
step. The entire process usually lasts 1–3 h, making it too long, restrictive, and not reliable enough
for use in everyday practice. Therefore, the development of a simple and rapid radiolabeling
method for 18F-fluorination of imaging vectors would be of great interest in the development of
new radiopharmaceutical candidates. Non-covalent radiofluorination by complexation of aluminum
[18F]fluoride (Al[18F]F), deriving from isotopic exchange techniques, seems to meet this need [36].

1.3. Non-Covalent Radiofluorination Using Aluminum [18F]fluoride

In view of the constraints related to covalent radiofluorination methods [37,38], a new 18F-labeling
strategy for molecules conjugated to a bifunctional chelating agent has recently been described. Its
principle is based on the strength of the bond between fluoride anion ([18F]F−) and aluminum cation
(Al3+). The resulting salt tends to form thermodynamically stable and kinetically inert metal chelates
with polyaminocarboxylate ligands.

Within the periodic table of elements, aluminum belongs to group 13 (atoms with a ns2 np1

valence electron shell that can easily lose three electrons to form trivalent cations). It is the third
chemical element and the most abundant metal in Earth’s crust (about 9%) [39]. As a hard metal
ion [40], the most stable oxidation state of aluminum, Al3+, strongly interacts with hard bases [41]
and, thus, easily complexes with O2− and F− to form very stable structures like alumina (Al2O3) or
cryolite (Na3AlF6). Indeed, its small effective ionic radius (~50 pm) makes the aluminum ion highly
electropositive and not easily polarizable. In aqueous solution, Al3+ ions also tend to form mono- then
polyhydroxylated species which precipitate at pH 5–9. In a very basic solution, Al(OH)3 precipitates
resolubilize to form aluminates (like AlO2

−, for example).
The binding of aluminum to its ligands is partially covalent and essentially involves ionic or even

electrostatic interactions. The most stable aluminum complexes are obtained with multidentate ligands
with negatively charged oxygen donor sites (alkoxides or carboxylates, for example). The affinity of
these ligands increases linearly with the basicity of their donor sites [42,43], supporting the essentially
ionic character of their interaction with Al3+.
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Aluminum forms more stable complexes with fluorine than with other halogens, with
aluminum-fluorine bond strength of approximately 670 kJ/mol [44,45] (compared to the C-F bond
of fluoromethane, having a force of 485 kJ/mol [46]). Among all the metallic species, Al3+ is only
surpassed by the scandium cation Sc3+, which forms with fluorides even stronger bonds [47]. Al-F bond
is, moreover, very stable in vivo, making small amounts of aluminum fluoride complex compatible
with biological systems [48,49]. With a maximum coordination number of 6, the Al3+ ion can be
complexed by a suitable chelator and form, in the presence of fluoride ions, a ternary complex [fluorine-
aluminum-chelator]. It preferentially adopts an octahedral geometry if the valency of the ligand allows it.

One of the most essential points in the formation of complexes with aluminum fluoride is the
choice of a suitable chelator, with the ability to remain stable for several hours in biological media.
Since aluminum preferentially forms octahedral complexes, a pentadentate ligand would be needed,
leaving a free binding site for the fluoride ion. Nevertheless, beyond these considerations, the first
chelation studies of [18F]AlF began with the use of DTPA [50], a heptadentate linear chelator known
to form stable complexes with other group 13 atoms such as indium [51]. In these experiments, pH
appeared as a critical parameter for the formation of aluminum monofluoride (AlF)2+. If the pH is
too basic, metal tends to bond with a hydroxyl anion instead of fluoride and precipitates [43]. If the
pH is too acidic, the favored fluorinated species would be hydrogen fluoride (HF) [52]. Therefore,
a pH close to 4 would favor the formation of aluminum monofluoride while also being adapted to
the complexation of this salt with a polyaminocarboxylate chelating agent [53]. A ternary complex of
DTPA-conjugated peptide, [18F]F- and Al3+ could have thus been obtained in more than 90% yield, by
mixing these three species in a heated pH 4 buffer solution. This complex has, however, not shown
sufficient stability in water and serum [50]. NOTA, known to form stable complexes with Al3+ was
then tried: [18F]AlF-labeled NOTA-peptide isolated yields were quite low (5–20% yield), but the
complex was stable in serum during 4 h at 37 ◦C. Attempts to form [18F]AlF complexes with larger
macrocyclic chelators like DOTA have also been undertaken but final coupling yields were rather
disappointing [54]. It has finally been demonstrated that a better labeling efficiency was obtained,
for example, with NODA-MPAA, Bz-NODA, or pentavalent NOTA analogs (written NOTA(5)). This
is correlated to the « 3N, 2O » configuration adopted by the donor atoms of the ligand. It facilitates
the formation of stable octahedral aluminum complexes while a unique metallic coordination site is
kept free for fluoride fixation [55]. To the contrary, the « 3N, 3O » configuration of hexavalent NOTA
derivatives (written NOTA(6)) creates a favorable environment for the formation of stable chelates with
aluminum alone. Indeed, the presence of a third carboxylate group in NOTA(6) interferes with the
coordination of fluoride with aluminum [56]. A stable binding of aluminum fluoride to a chelator is
therefore greatly influenced by the structure of the latter. To date, most [18F]AlF -labeled molecules
contain a triazacyclononane-derived chelator (Figure 3).
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The purpose of this review is to provide a comprehensive overview of the use of the [18F]AlF
methodology to radiolabel different type of compounds such as peptides, proteins or small molecules.
The radiolabeling, purification and analytical conditions will be discussed, as well as the preclinical
study of the radiofluorinated conjugates. Lastly, the [18F]AlF-labeled molecules already evaluated in
humans will be reported.

2. Overview of [18F]AlF-Labeled Molecules Conjugated to Chelating Agents

Non-covalent radiofluorination using [18F]AlF, published for the first time by W. J. McBride in
2009 [50], has taken a substantial and rapid extent since the bases of this radiochemistry concept
were presented, leading today to first clinical PET imaging applications. Several types of vectors
have been used as substrates of this radiolabeling technique: peptides, proteins such as antibodies
and related, or even small molecules. For this review, articles were searched using the databases
PubMed Central and Scifinder® with the latest search date of February 2019. The keywords “Al18F”,
“[18F]AlF” and “aluminum fluoride” were entered in the search engines. The titles of the articles were
reviewed to determine if the work described radioconjugates labeled with [18F]AlF. Based on this, more
than a hundred articles were chosen, then articles displaying exclusively clinical evaluations were
discarded at first. Eighty-four articles about [18F]AlF-radioconjugates that did not go beyond preclinical
evaluation were retained and read in depth, corresponding to a total of 71 single radioconjugates.
These 84 articles were classified depending on the nature of the conjugate (peptide, protein or small
molecule, see Figure 4). An electronic standardized data collection table has then been used to gather
(when informed) several data concerning each article: nature of the radiolabeled compound and
chelator, molecular target of the radioconjugate, animal model used, radiolabeling, purification and
analysis conditions, preparation time, radiolabeling yield, molar activity obtained, and in vitro stability
of the final compound (see Supplementary material).
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2.1. [18F]AlF-Labeled Peptide Conjugates

2.1.1. Development of the [18F]AlF-Labeling Methodology

As previously stated, peptide bioconjugates are particularly suitable for [18F]AlF radiolabeling,
the rather rapid in vivo pharmacokinetics of these compounds being compatible with fluorine-18
half-life. The first peptide studied in this context is a hapten, IMP449, used in pretargeting approaches of
carcinoembryonic antigen (CEA) with a bispecific antibody [50]. This peptide was initially conjugated
to NOTA(6), its DTPA-conjugated analogs (IMP272 and IMP375) showing insufficient stability both in
water and in human serum. Radiolabeling attempt involved a large excess of a peptide (522 nmol IMP449
for 6 nmol AlCl3, thus 87 equiv.). To demonstrate the versatility of this new radiolabeling approach,
NOTA(6) has first been replaced by C-NETA (IMP467) with promising results [55]. This experiment
also highlighted the interest of a moderated peptide excess (only 2 equiv.) for labeling efficiency. Good
labeling yields, reaching 74%, have also been achieved using a NODA-MPAA-conjugate (IMP485)
(Figure 5), a pentavalent chelator better suited to [18F]AlF [57]. Subsequently, the same research team
verified the possibility of transposing this method to other vectors by successfully applying it to a
NOTA(5)-octreotide derivative [58]. The biodistribution study of [18F]AlF-labeled NOTA(5)-octreotide
showed an identical profile to that of its 68Ga-labeled analog, confirming that this fluorination protocol
did not affect the in vivo biological properties of the conjugate. Optimization of NOTA(5)-octreotide
radiofluorination with [18F]AlF was the first work to show the favorable influence of the ionic strength
on the labeling efficiency through the addition of a hydrophilic organic co-solvent (like acetonitrile or
ethanol) to the reaction buffer [59]. Peptide concentration also appeared as an essential parameter for a
high yielded labeling, the best results obtained with approximately 200 µM of NOTA(5)-octreotide in a
~300 µL total reaction volume.
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With the identification of NODA and NOTA(5) analogs as preferential chelators for an easy and
high-yielded radiolabeling, efforts were then concentrated on the development of a labeling protocol
applicable to a NOTA(5)-peptide lyophilisate formulated in a kit [60]. In the example of IMP485,
the formulation contained peptide (20 nmol, nearly 2 equiv.), AlCl3 (12 nmol, 1 equiv.), ascorbic
acid and potassium hydrogen phthalate as buffers and α,α-trehalose dehydrate as a filling agent.
[18F]F- was added in a mixture of NaCl 0.9% and ethanol (1:1; 400 µL total volume). After heating
at 110 ◦C for 15 min, the radioconjugate was purified on hydrophilic-lipophilic balance (HLB) or
alumina cartridge. The [18F]F− quality seemed to significantly influence the labeling effectiveness:
indeed, fluorine-18 solution directly recovered from the cyclotron outlet contains different contaminants
(essentially metallic traces [61]) and therefore needs to be purified before being used to form [18F]AlF.
The use of radiopharmaceutical grade sodium [18F]fluoride ([18F]NaF), indicated for bone imaging,



Molecules 2019, 24, 2866 8 of 41

can also be an alternative, although expensive. Contrary to the [18F]fluoride directly isolated from
the cyclotron, this product already passed through a cation exchange separation step and an anion
exchange cartridge purification.

These preliminary studies, having shown the good biodistribution profile of [18F]AlF-IMP467 [57]
and the in vivo stability of [18F]AlF-IMP485 [60], confirmed both the feasibility of biomolecules
radiolabeling by [18F]AlF, the potential of these compounds as specific imaging agents, and the
possibility of their formulation as a kit in the perspective of a clinical use. The interest of fluorine-18
over gallium-68 was also quickly supported by a study comparing preclinical imaging properties
of [18F]AlF-IMP449 and [68Ga]Ga-IMP228 (its DOTA-conjugated analog). Pretargeted immunoPET
images showed the same intensity in the tumor for the two radiotracers, but the resolution of 18F
images was better than the 68Ga images [62].

Many other target-specific biomolecules have subsequently been radiolabeled with [18F]AlF and
studied at a preclinical stage. The most frequently performed tests include the evaluation of in vitro
target binding, plasma stability, in vivo biodistribution, and PET imaging in murine xenograft models.
Global data from these preclinical studies suggest that most of these radiolabeled biomolecules remain
intact during their uptake, distribution, and elimination.

2.1.2. [18F]AlF-Labeled Peptides for Integrins Receptors Imaging

The αVβ3 integrin receptor plays a key role in the regulation of angiogenesis, an essential function
in the growth and metastasis of many types of cancer [63,64]. To target integrin αVβ3 receptor and
image tumor angiogenesis, several probes based on the arginine-glycine-aspartic acid (RGD) amino
acid motif were developed, some having been evaluated through clinical trials [65].

Dimeric cyclic RGD peptides have been particularly studied as potential PET imaging agents.
Due to the laborious radiofluorination procedures used to label these vectors, the [18F]AlF-fluorination
strategy appeared as a very appealing way to simplify this critical step. Liu et al. first described in
2011 the synthesis of an [18F]AlF-NOTA(5)-RGD2 radioconjugate that showed a good in vitro serum
and in vivo stability [66]. Compared to [18F]F-FP-RGD2, its analog labeled with a 18F-fluorinated
prosthetic group (four-steps, two-pot radiosynthesis, 2 h reaction time), [18F]AlF-NOTA(5)-RGD2

production was more efficient (one step radiosynthesis, 40 min total time) for similar biodistribution
and imaging properties.

The addition of a PEG3 chain between p-SCN-Bn-NOTA(6) and the glutamic acid motif that links
the two RGD monomers led to NOTA-PRGD2, also called alfatide I when radiolabeled with [18F]AlF
(Figure 6). PET imaging properties of this compound were compared to those of its 68Ga-labelled
analog in U87MG-xenografted mice, only showing a slightly higher tumor uptake for alfatide I [67].
In the same publication, Lang et al. interestingly specify that whether [18F]F− was purified and
concentrated on an exchange ions column or used directly from the cyclotron target, the final labeling
yields were not affected, contrary to the statement of McBride [57].

On the same U87MG human glioblastoma tumor model, Guo et al. quantitatively compared the
pharmacokinetic parameters of alfatide I, its covalently-radiofluorinated analog [18F]FPPRGD2 and
[68Ga]Ga-NOTA-PRGD2 [68]. No significant difference was found among those three RGD peptide
radiotracers, though alfatide I showed a slightly higher binding potential and specific distribution
volume in the tumor.

Other applications for [18F]AlF-NOTA(6)-PRGD2 were investigated with convincing results, like
the longitudinal visualization of ischemia/reperfusion-induced myocardial angiogenesis in rats [69],
or the tumor angiogenesis detection associated with the early therapeutic efficacy monitoring of
antiangiogenic therapy in a human nasopharyngeal carcinoma xenograft model [70].

The type of chelator used for RDG dimers functionalization has also been modulated: Dijkgraff et al.
synthesized a NODAGA-RGD2 derivative that could be labeled with [18F]AlF, 68Ga or 111In [71]. Due
to its « 3N, 3O » configuration can saturate aluminum coordination sphere, NODAGA is not the
most suitable chelator for [18F]AlF, resulting in only modest labeling efficacy (20% yield). However,
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the hexadentate geometry of NODAGA fits very well with gallium and indium (82% and 91% labeling
yield respectively). The use of multiple isotopes allows images comparison from SPECT and PET,
biodistribution study of these three radioconjugates showing comparable results for each.
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Lang et al. explored the stability of the glutamic acid link between the two RGD monomers [72]
and stated that the existence of a free α-amine is at risk of increasing the dimer hydrolysis. Formation
of a thiourea linkage with this α-amine is also an instability factor (particularly in acidic conditions and
at high temperature), justifying the role of the PEG motif in alfatide I. However, thiourea still showed
sensitivity to radiolysis, especially in the absence of ethanol.

Imaging properties of alfatide I were also studied on epidermoid lung carcinoma [73], alveolar
adenocarcinoma and prostate cancer animal models [74], concomitantly with its most recent evaluations
in human (see Section 3).

Influence of the PEG chain on the labeling process and pharmacokinetics of RGD2 probes was
studied as well and was found to have no significant impact on the labeling yield [75]. In the three
compounds evaluated by Guo et al., NOTA(5) was linked to the dimer by a carboxamide bond (to
avoid oxidation of thiourea motif) and tyrosine of the cyclic RGD part was replaced by a phenylalanine
that could not be oxidized when heating (Figure 6). [18F]AlF-labeled NOTA(5)-E(PEG4-cRDGfK)2 (later
called alfatide II) showed the highest in vitro receptor binding affinity, along with the lower liver
uptake and higher tumor accumulation. The two PEG4 linkers between each RGD and the central
glutamic acid may provide a proper distance between the two cyclic motifs that could enable their
simultaneous integrin binding.

After its identification as a promising alternative for PET imaging of αVβ3 integrin receptor
expression, alfatide II was compared to [18F]FDG for parametric monitoring of tumor therapy response
to doxorubicin and abraxane through a dual tracer imaging approach [76]. With a more significant
variation of the alfatide II binding potential values than that of [18F]FDG, either doxorubicin or
abraxane treatments seemed to imply more changes in tumor angiogenesis than metabolism. Besides,
quantitative kinetic parameters calculated from dynamic data of the dual-tracer single-scan imaging
were more sensitive than static imaging.

Alfatide II was also evaluated on muscular inflammation [77], epidermoid lung carcinoma [78]
and glioblastoma mouse models [79], in parallel with first administrations in man.

In addition to dimeric cyclic RGD peptides, a simple monomeric NODA-SCN-RGD conjugate
was synthesized by Shetty et al. [80] and labeled with [18F]AlF. Although not directly compared in this
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study, biodistribution profile and PET imaging results for this monomer were very similar to those of
18F-labeled RGD dimers [66,67]. It’s worth mentioning that the automated radiolabeling procedure of
a similar NOTA(5)-RGD molecule has been described on two different platforms (GE TRACERlab FXFN

and Trasis AllInOne) and is suitable for accessing radioconjugates with high radiochemical purity [81].
In addition to integrin αVβ3, neuropilin-1 (NRP-1) is a functional regulator that interacts with the

vascular endothelial growth factor (VEGF) receptor and is particularly expressed in tumor angiogenic
vessels [82]. The ATWLPPR heptapeptide showed high binding specificity to NRP-1 but a relatively low
tumor accumulation [83,84]. Hence, Wu et al. designed an [18F]AlF-labeled NOTA(5)-RGD-ATWLPPR
heterodimeric radioconjugate that was studied in vivo on U87MG tumor-bearing mice [85]. Due to the
shortness of the lysine linker between the two peptidic motifs (Figure 7), this heterodimer did not display
enhanced binding affinity, only a better tumor targeting efficacy. Tumor uptake and tumor-to-organ
ratios of [18F]AlF-RGD-ATWLPPR were higher than those of its monomeric [18F]AlF-labeled analogs.
Interestingly, blocking studies showed that the RGD motif of the heterodimer could still bind to its
target when NRP-1 was blocked and likewise for the ATWLPPR part after αVβ3 was blocked. However,
PET imaging of [18F]AlF-NOTA(5)-RGD-ATWLPPR highlighted a bone uptake, suggesting a lack of
in vivo metabolic stability for this tracer.Molecules 2019, 24, x 10 of 39 
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Different integrins than αVβ3 can be targeted by specific peptide probes for cancer-related
imaging. It’s the case of integrin αVβ6, for which Hausner et al. have synthesized
[18F]AlF-NOTA(5)-PEG28-A20FMDV2 as an 18F-fluorinated radiotracer [86]. Despite its rather
long linear amino acid sequence (20 residues) and its PEG28 chain, the radiotracer did not show
sensitivity to the relatively harsh reaction conditions (100 ◦C, 15 min). Interestingly, the organic
co-solvent used for the radiolabeling step is dimethylsulfoxide (DMSO) and not ethanol or acetonitrile
as in most of the other protocols. Compared to its covalently radiofluorinated analog [87],
[18F]AlF-NOTA(5)-PEG28-A20FMDV2 showed an increased renal uptake and retention, probably
due to its functionalization with NOTA(5) [88]. Thus, the pharmacokinetic profile of this radiotracer
needs to be improved and emphasized the potential influence of a polyanionic metal chelator on
physicochemical properties of a bioconjugate.

2.1.3. [18F]AlF-Labeled Peptides for PSMA Imaging

Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein with a glutamate
carboxypeptidase activity and is significantly overexpressed in nearly all prostate cancers [89].
This malignancy being the most common worldwide in men [90], efficient radiotracers for accurate
staging in primary prostate cancer and localization of early recurrences are needed. PSMA
radioconjugates are currently intensively investigated in the clinical field, both as diagnostic and
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therapeutic agents [91]. For PET imaging, several radiofluorinated PSMA ligands obtained via [18F]AlF
chelation were described, with a particular interest in the nature of the chelating part.

Malik et al. were the first to synthesize a glutamate-urea conjugate bearing a NOTA(5) ring to be
labeled with [18F]AlF [92]. This PSMA radioligand, called [18F]AlF-NOTA(5)-DUPA-Pep (Figure 8),
was obtained in good radiochemical yields (83 ± 1.1%). In the same way as most of the previously
commented protocols, these radiochemical yields (RCY) were reached when the molar ratio of Al3+

to peptide was 0.15. However, neither in vitro stability data nor in vivo studies were available for
this compound.
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Due to its high stability constant for the Ga3+ cation [93], acyclic chelator
N′N-bis(2-hydroxybenzyl)ethylendiamin-N,N′-diacetic acid (HBED) was used in replacement of
nine-membered cyclic chelators to complex [18F]AlF. Malik et al. described the radiofluorination of a
PSMA-HBED conjugate, later called PSMA-11 (Figure 8) [94]. Labeling conditions involved 26 nmol of
peptide and 30 nmol of AlCl3. Interestingly, the authors highlighted the significant decomposition of
the radiocomplex at high temperatures and the very good radiochemical yields that could be achieved
by lowering the reaction heating (79% RCY within 1 min at 30 ◦C), thanks to HBED kinetics properties.
Moreover, [18F]AlF-PSMA-HBED displayed excellent serum stability for 4 h and a promising binding
coefficient to its target (KD = 10.3 nM versus 12.58 nM for [68Ga]Ga-PSMA-HBED).

Afterward, a first preclinical evaluation of [18F]AlF-PSMA-11 has been proposed [95]. In addition
to a fast-renal clearance associated with high kidney and bladder uptake, biodistribution study
of [18F]AlF-PSMA-11 by microPET imaging of non-grafted C57BL/6 mice showed a slight bone
uptake, probably related to a limited in vivo defluorination. Dosimetric calculations extrapolated
absorbed doses for [18F]AlF-PSMA-11 in human from mouse PET biodistribution data and pointed
out kidneys as the dose-limiting organ, the most conservative calculations predicting the maximum
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administered human activity limit to be 564 MBq. These results remain encouraging for the feasibility
of [18F]AlF-PSMA-11 clinical translation.

In this perspective, improved radiofluorination methods of [18F]AlF-PSMA-11 were described,
applicable for clinical routine use in compliance with GMP conditions. Al-Momani et al. validated a
manual preparation process of [18F]AlF-PSMA-11 under classical reaction conditions (radiolabeling
in sodium acetate buffer 0.5 M pH 4.2 containing [18F]F- with 50% v/v ethanol, 22 nmol PSMA-11
and 30 nmol AlCl3, heated at 50 ◦C for 15 min), ended by a purification on HLB cartridge and a
filtration through a 0.22 µm sterile filter. The final [18F]AlF-PSMA-11 solution in 1% ethanol/saline
remained of high radiochemical purity (RCP) after 4 h (>98%). The pH of this solution was 6.5 and
its sterility was confirmed, along with the absence of bacterial endotoxins (< 5 EU/mL), making
this [18F]AlF-PSMA-11 solution injectable according to the European Pharmacopoeia criteria. This
radiotracer was also compared in vitro with four of its 68Ga-labeled analogs on LNCaP and 22RV1
cell lines: [18F]AlF-PSMA-11 displayed higher cell uptake than three of its analogs and showed no
degradation in human serum.

Automated radiosynthesis methods for [18F]AlF-labeling of PSMA-11 are another important
argument in favor of the clinical translation of this tracer. Kersemans et al. proposed the optimization
of a SynthraFCHOL module to obtain [18F]AlF-PSMA-11 within 35 min in relatively modest yields
(21± 3%) but with a high molar activity (120± 28 GBq/µmol, superior to that of [68Ga]Ga-PSMA-11 [96])
and quality controls in accordance with the European Pharmacopeia guidelines, allowing large scale
applications of this tracer, e.g., clinical trials [97]. The authors emphasized the importance of the
sequence in which the reagents are added, with the need of [18F]F− incubation with Al3+ prior to
addition of PSMA-11 to maintain reproducible and sufficient yields. They also point out the fluoride
purification step by quaternary methylamine (QMA) cartridge and the use of metallic sharps in the
automated system as factors limiting higher labeling yields.

Giglio et al. optimized the synthesis of [18F]AlF-PSMA-11 on a Tracerlab FXFN® (GE) platform
and obtained USP-grade radiotracer in about 18% yield, with a molar activity up to 544 GBq/µmol [98].
The optimized labeling conditions involved only 60 µg peptide, compared to 200 µg used in Kersemans
protocol [97]. The final product was stable in its formulation vial for 4 h (radiochemical purity >90%)
whereas its stability in human plasma was maintained only during 1 h, forcing a short PET images
acquisition time after IV administration.

Eventually, Cleeren et al. reported the design of an original aliphatic chelator called L3, that
displayed high complexation yields with [18F]AlF (up to 95%) at moderate temperature (40 ◦C
heating, versus 100–120 ◦C for NOTA and NODA bioconjugates) and demonstrated high in vivo
stability with no significant bone uptake [99]. As a proof of concept, L3 was conjugated with the
Glu-Urea-Lys pattern then radiolabeled with [18F]AlF (Figure 8). Like the radiolabeled chelator alone,
[18F]AlF-Glu-urea-Lys-(Ahx)L3 was highly stable in vivo in healthy mice, despite a fast clearance
from plasma. The main interest of the L3 complexing agent is its chelation with [18F]AlF at ambient
temperature and thus its compatibility with heat-sensitive biomolecules; this will be discussed in detail
in the [18F]AlF-labeled protein conjugates section.

A comparative study between two PSMA-11 derivatives has recently been conducted
by Lütje et al. [100]. In contrast to [68Ga]Ga-PSMA-11, [18F]AlF-PSMA-11 appeared to be
unstable in water (64.5% radiochemical purity immediately after purification and 52.7% at 2 h
post-purification) but remained relatively stable in 25 mM NH4OAc pH 6.9 (94.7% radiochemical
purity at 2 h post-purification). In vivo, a significant signal after injection of [18F]AlF-PSMA-11 in
LS174T-PSMA-xenografted mice was observed in the bones, which is in line with the in vitro stability
results. Although only minor interferences originate from this bone accumulation on microPET/CT
imaging, this localization could hamper the visualization of small metastatic lesions in patients. Besides,
biodistribution also demonstrated fast renal uptake of both compounds. However, [18F]AlF-PSMA-11
uptake was significantly lower compared to that of [68Ga]Ga-PSMA-11 (43.5% ID/g and 105.8% ID/g at
2 h p.i., respectively). Both on visual non-quantitative analysis and quantitative analysis of PET/CT
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images acquired at 1 h p.i., clearest visualization of PSMA-expressing tumors was obtained with
[18F]AlF-PSMA-11.

Recently, Liu et al. reported a novel [18F]AlF-labeled PSMA ligand, [18F]AlF-PSMA-BCH (Figure 8),
evaluated through a preclinical study and a pilot clinical study on 11 newly diagnosed prostate cancer
patients [101]. [18F]AlF-PSMA-BCH was synthesized in modest RCY (32.2 ± 4.5%), with moderate
molar activity (13.2 to 18.9 GBq/µmol, that could probably be increased by automated synthesis) but
with a high radiochemical purity (>99%). The radioconjugate is highly hydrophilic (logP =−2.76± 0.01),
PSMA-specific and stable both in vitro and in vivo. With a usual accumulation profile in LNCaP tumor
bearing mice, [18F]AlF-PSMA-BCH did not cause any signs of radiotoxicity in animals. In patients, this
radiotracer showed a good tolerance profile, associated with an intense accumulation in the kidney as
well as submandibular, parotid and lacrimal glands. Considering organ radiation dosimetry, kidneys
were the most critical organs (0.135 ± 0.003 mGy/MBq), followed by salivary glands, spleen and liver.
Each of the 11 patients had at least one observable tumor lesion, for a total of 37 tumor lesions observed.
As all lesions visualized at 1 h p.i. were also visible at 2 h p.i. with a SUVmax and contrast higher on
the late images of most patients, imaging at a later timepoint may be a better option. This pilot study
of [18F]AlF-PSMA-BCH demonstrated its good imaging properties for prostate cancer and allows to
consider this radiotracer for further extended clinical studies.

2.1.4. [18F]AlF-Labeled Peptides for Gastrin-Releasing Peptide Receptor Imaging

In a similar way to PSMA, gastrin-releasing peptide receptor (GRPR) is also overexpressed in
prostatic tumor cells while only low levels of receptors are found in normal prostate tissue [102,103].
Due to the poor in vivo stability of the 27-mer mammalian gastrin-releasing peptide (GRP), known to
be a GRPR-binding ligand, its stable 14-amino acid amphibian peptide analog bombesin (BBN) has
generated many efforts in the development of original bioconjugates for GRPR targeting [104,105].
Currently, several BBN-like peptides have been bioconjugated and labeled with photon-emitting
radionuclides (for SPECT or PET imaging) or particle-emitting radioisotopes in a targeted radionuclide
therapy perspective.

The first attempt to radiolabel a BBN analog with [18F]AlF was reported by Dijkgraaf et al.
in collaboration with the team of W. J. McBride [106]. In this study, [18F]AlF and 68Ga radiolabeling of
NOTA(5)-8-Aoc-BBN(7-14)NH2 (8-Aoc = 8-aminooctanoic acid) (Figure 9) are compared, along with the
in vitro and in vivo properties of the two radiopeptidoconjugates. The 18F-labeled peptide showed a
slightly higher lipophilicity than its 68Ga-labeled analog (logP = −1.47 and −1.98, respectively), the two
radiotracers being rapidly cleared from the blood (< 0.07%ID/g at 1 h post-injection in PC-3-xenografted
mice). [18F]AlF-NOTA(5)-8-Aoc-BBN(7-14)NH2 displayed a moderately higher uptake in PC-3 tumors
than its 68Ga-labeled equivalent (2.15 and 1.24%ID/g at 1 h p.i., respectively), the same profile also being
more pronounced for pancreas uptake (27.09 and 5.93%ID/g, respectively). Overall, the biodistribution
of these two radiopeptides was not statistically different, indicating that the labeling technique did
not affect the in vivo fate of the BBN derivative. This work therefore presented [18F]AlF-labeled BBN
analogs as suitable tracers for in vivo GRPR imaging.

With the same perspective, Liu et al. compared two [18F]AlF-labeled BBN-related conjugates,
NODAGA-RM1 (Figure 9) and NODAGA-AMBA, to their 64Cu-labeled analogs [107]. Although
the 64Cu-labeled radioconjugates could be synthesized in high yields (>85%), the « 3N, 3O »
configuration of NODAGA is not optimal for [18F]AlF chelation. The fluorinated NODAGA-RM1
and NODAGA-AMBA derivatives were therefore obtained in quite poor yields (5.6% and 4.9%,
respectively). However, a purification step by semi-preparative HPLC allowed the final radiopeptides
to reach high radiochemical purity (>95%) and sufficient molar activities (>1.85 GBq/µmol). In further
studies, [18F]AlF- and [64Cu]Cu-NODAGA-RM1 tended to be more stable in mouse serum (>90% after
1 h), with a more favorable in vivo retention in PC-3 tumors and imaging quality. They were also
considered better than [18F]AlF-NOTA(5)-8-Aoc-BBN(7-14)NH2.
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Due to the favorable properties this vector displayed for GRPR expression imaging [108],
Varasteh et al. studied the [18F]AlF-labeling of NOTA(5)-PEG2-RM26 (Figure 9), an antagonist analog of
bombesin containing a diethylene glycol (PEG2) spacer [109]. Obtained in good labeling yields (60–65%)
and with high molar activity (55 GBq/µmol), this radioconjugate remained stable both in vitro and
in vivo. In an in vitro cellular uptake assay, [18F]AlF-NOTA(5)-PEG2-RM26 incubated with PC-3 cells
showed a slow internalization with only 14% of the cell-associated radioactivity after 4 h of incubation
corresponding to the internalized activity. This could be explained by the antagonistic function of
RM26. However, GRPR antagonists tend to be considered superior to agonists for tumor imaging,
with favorable in vivo characteristics [110]. The NOTA(5)-PEG2-RM26 vector demonstrated a specific
uptake in PSMA-positive organs (e.g., pancreas, stomach and small intestine), more pronounced for
the [18F]AlF-labeled molecule than its 68Ga-labeled analog. Unfortunately, no comparison was made
with non-PEGylated derivatives. These global findings suggest that [18F]AlF-NOTA(5)-PEG2-RM26
could be a suitable alternative to its 68Ga-labeled analog for clinical application.

An alternative linker modulation is proposed by Pan et al. through the study of
[18F]AlF-NOTA(6)-MATBBN (Figure 9), a BBN antagonist analog with a hydrophilic peptidic linker
(GGGRDN) [111]. Despite the non-optimal valency of the chelator (« 3N, 3O » configuration) for
aluminum fluoride, radiolabeling of this conjugate was completed within only 30 min, with good
yields (62.5 ± 2.1%). LogP value for this [18F]AlF-labeled BBN analog was −2.40 ± 0.07, slightly
lower than that of [18F]AlF-NOTA(5)-8-Aoc-BBN(7-14)NH2 (−1.47 ± 0.05), probably because of the
peptide spacer. Hence, modified in vivo pharmacokinetics could be attributed to this parameter.
For example, in vivo PET quantification experiments revealed a good tumor uptake at 1 h p.i. for
[18F]AlF-NOTA(6)-MATBBN, higher than that of other [18F]AlF-labeled BBN analogs [106]. This vector
also showed significant in vivo superiority over [18F]FDG in terms of specific tumor uptake in PC-3
tumor-bearing mice and tumor-to-blood or tumor-to-muscles uptake ratios. Moreover, the PC-3 tumor
uptake of [18F]AlF-NOTA(6)-MATBBN was significantly higher than that of its covalently fluorinated
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analog [18F]FP-MATBBN, positioning the [18F]AlF-labeled derivative as a compatible PET tracer
candidate for clinical evaluations in prostate cancer cells PET imaging.

In a comparative approach, Chatalic et al. opposed [18F]AlF-labeled NODA conjugate GRPR
antagonist JMV5132 (Figure 9) to both its 68Ga-labeled NODA and DOTA-conjugated analogs [112].
[18F]AlF-JMV5132 could be obtained in very good yield (88%) in only 20 min, with a quite good
molar activity (40 ± 4 GBq/µmol) and without the need for purification by solid phase extraction.
Considering [18F]AlF- and [68Ga]Ga-JMV5132, these two radiopeptidoconjugates displayed comparable
logP values (−1.56 and −1.40, respectively), in vivo biodistribution and pharmacokinetic characteristics
and PC-3 tumor uptake values (4.96 and 4.73%ID/g at 1 h p.i., respectively). PET images obtained with
[18F]AlF-JMV5132 showed higher spatial resolution than those obtained with the 68Ga-labeled tracers,
most likely because of the longer positron range of gallium-68 compared to fluorine-18. Overall, with a
favorable tumor and organs uptake profile, [18F]AlF-JMV5132 showed improved imaging properties,
compared with the previously reported [18F]AlF-NOTA(5)-8-Aoc-BBN(7-14)NH2 GRPR agonist [106].

Carlucci et al. studied the [18F]AlF-labeling along with usual in vitro and in vivo properties of
two lanthionine-stabilized BBN analogs [113]. These peptidoconjugates contain thioether cross-linked
amino acids that confer resistance to peptidases through the high stability of this bond [114,115].
Bearing a NODAGA-like chelator, the two conjugates considered here were radiolabeled within 1 h in
modest to good yields (around 60%), using a large amount of acetonitrile in the reaction medium (about
80% of the final reaction volume). [18F]AlF-labeled 4,7-lanthionine-BBN and its 2,6-derivative are both
highly hydrophilic (logD = −2.14 and −2.34, respectively) and displayed an improved affinity for their
molecular target compared to the same non-conjugated peptides. Similar findings were also observed
by Varasteh et al. with the NOTA(5)-PEG2-RM26 ligand [108]. In vitro, stability of both tracers is quite
good in NaCl 0.9% (>90% after 4 h) but considerably lower in human plasma (>75% after 4 h). In vivo,
the average fraction of intact tracer in the tumor area was around 88% at 1 h p.i., suggesting a positive
influence of the lanthionine stabilization on the biological half-life of these tracers.

2.1.5. [18F]AlF-Labeled Peptides for Other Molecular Targets Imaging in Oncology

Many pathologically upregulated physiological processes can differentiate a tumor from normal
tissue, thus providing a wide range of prospective molecular targets for imaging probes. Since they
mostly display proper in vivo kinetics, metabolic stability, and especially a good tolerance towards
bulky modifications, peptides offer a maximum degree of freedom and flexibility. They can easily
be conjugated to a chelating agent (with or without a spacer) and radiolabeled without losing their
targeting properties. Consequently, and because of the convenience offered by [18F]AlF-labeling
protocols, several other peptidic tracers were labeled with this method and reported as potential
radiotracers for cancer PET imaging.

Targeting follicle-stimulating hormone receptor (FSHr)-overexpressing tumors [116,117], Xu et al.
proposed an [18F]AlF-labeled NOTA(5)-maleimide conjugate of FSH1 [118], a linear 21-mer peptide
(Figure 10) [119]. Obtained within 30 min in moderate RCY (48.6 ± 2.1%) but with a sufficient
molar activity (>30 GBq/µmol), [18F]AlF-NOTA(5)-MAL-FSH1 displayed a favorable in vitro retention
in PC-3 cells, along with a persistent in vivo tumor accumulation in PC-3-xenografted mice.
However, suboptimal pharmacokinetics (especially high abdominal uptake) could hamper its potential
clinical applications.

To overcome this drawback, the same research team introduced a hydrophilic linker
(GGGRDN) to the FSH1 peptide, now called FSH2 (Figure 10) [120]. Indeed, this peptide
sequence has been confirmed to efficiently improve the in vivo imaging properties of other
radiopeptidoconjugates [111,121]. [18F]AlF-NOTA(5)-MAL-FSH2 were obtained in similar labeling
yields than its FSH1 analog (41.46 ± 10.36% versus 48.6 ± 2.1%, respectively) and displayed a better
anti-FSHr IC50 value (103 ± 1.12 nM versus 252 ± 1.12 nM, respectively). Although the in vitro PC-3
cell uptake of [18F]AlF-NOTA(5)-MAL-FSH2 showed quite lower values than that of its FSH1 analog,
a comparable PC-3 tumor uptake and a lower background were confirmed from both in vivo microPET
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images and ex vivo biodistribution studies. Compared with FSH1 derivative, liver and intestine uptake
of [18F]AlF-NOTA(5)-MAL-FSH2 was significantly lower, but kidney uptake increased as a result of its
functionalization by the GGGRDN linker. Considering its improved in vivo performances, evaluation
of this vector in other tumor models, as well as its use in tumor-targeted therapy [122], could offer
interesting perspectives.
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Other membrane receptors like urokinase-type plasminogen activator receptor (uPAR) can
be overexpressed and targeted in human prostate cancer [123]. Thus, Persson et al. described
the [18F]AlF-labeling of a NOTA(5)-conjugated high-affinity uPAR-binding 9-mer peptide denoted
AE105 [124]. Despite the very brief reaction time (5 min, 95 ◦C), the radiolabeling step reached quite
high overall yields (>92.7%), probably due to the presence of 25% (v/v) ethanol in the reaction medium.
The crude mixture required HPLC purification, nonetheless. In vitro stability of the radioconjugate
was only determined in PBS after 30 min incubation and in vivo biodistribution studies in PC-3 tumor
bearing mice showed a moderate bone uptake (3.54 ± 0.32%ID/g at 2.5 h p.i.), suggesting a slight
in vivo degradation of [18F]AlF-NOTA(5)-AE105. This tracer remains of high interest since the ongoing
of several large-scale clinical trials involving [68Ga]Ga-NOTA(5)-AE105 [125].

Glucagon-like peptide type 1 receptor (GLP-1r) is present on pancreatic beta-cells and is
overexpressed in insulinoma, a neuroendocrine tumor of the pancreas [126]. Kiessewetter et al. have
been interested in the development of peptide-based PET imaging agents for GLP-1r, notably through
the design of [18F]AlF-labeled NOTA-MAL-extendin-4 analogs [127]. Both cys0 and cys40 isomers of
extendin-4 were conjugated with NOTA(5)-monoethylmaleimide amide and labeled with aluminum
[18F]fluoride, but only the Cys40 derivative was further evaluated. Despite a modest post-purification
RCY for the radiolabeling step (23.6 ± 2.4% yield, which could have maybe been optimized by [18F]F−

concentration using a ion exchange cartridge and/or adding an organic co-solvent like ethanol or
acetonitrile to the reaction medium), [18F]AlF-NOTA(5)-MAL-Cys40-extendin-4 proved to be stable in
human plasma for up to 1 h, which is a critical parameter for GLP-1 analogs [128]. PET imaging of
this radiotracer in insulinoma INS-1 xenografted mice showed good tumor uptake (15.7 ± 1.4%ID/g at
30 min p.i.) along with high radioactivity accumulation in the kidneys (79.25 ± 3.67%ID/g at 30 min p.i.,
which remains lower than that of [111In]In-DTPA- and [68Ga]Ga-DOTA-extendin-4 derivatives [129,130])
and very fast blood clearance.
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Similarly, Xu et al. investigated the imaging properties of [18F]AlF-NOTA(5)-MAL-cys39-extendin-4,
corresponding to Cys40 analog minus its Ser39 amino acid [131]. Radiochemical yields of
the labeling step were once again quite modest (17.5 ± 3.2%, under almost identical reaction
conditions to Kiessewetter et al.). However, the tracer displayed sufficient stability in human
plasma (up to 180 min at 37 ◦C). Compared with the previous report, the tumor uptake of
[18F]AlF-NOTA(5)-MAL-cys39-extendin-4 (9.15 ± 1.6%ID/g at 30 min p.i.) was slightly lower than that
of the Cys40 derivative, with a comparable kidney uptake. However, the high tumor-to-background
ratio is benefit for PET imaging of GLP-1r expression.

Wang et al. were interested in the development of a neurotensin receptor (NTR) PET probe
starting from an octapeptide neurotensin analog Lys-NT20.3 [132]. Imaging of NTR, highly expressed
in ductal pancreatic adenocarcinoma, could have significant benefits from both a prognostic and
therapeutic perspective in NTR-positive cancers [133,134]. Since Lys-NT20.3 was conjugated with
p-SCN-Bn-NOTA(6), only moderate [18F]AlF-labeling yields were reached (30%), possibly because of
the extra sixth valence offered by NOTA(6). Fractions of the purified product were analyzed on HPLC
at several time points, showing >90% radiochemical purity up to 4 h post-purification. However,
no defluorination was detected at all time points, the major impurity being an isomer of the product.
This interconvertible isomerization was also observed in other [18F]AlF-NOTA complexes and was
confirmed by HPLC-mass spectroscopy [57,58,135]. [18F]AlF-NOTA(6)-Lys-NT20.3 was evaluated
in vivo in AsPC-1 and Panc-1 tumor-bearing mice, displaying a relatively high tumor accumulation
and good tumor-to-background contrast on both models, despite an apparently poor in vivo stability.

Matrix metalloproteinases (MMPs) form a group of enzymes that can be associated with the
metastatic potential of many neoplasias [136]. Liu et al. investigated PET imaging potential of a
NOTA(5)-conjugated cyclic nonapeptide (C6) and selective MMP inhibitor [137]. [18F]AlF-labeling
of this bioconjugate used conventional reaction conditions to obtain the expected product in fair to
good yield (46.2–64.2%) and with a quite high molar activity (up to 48.3 GBq/µmol). Interestingly,
[18F]AlF-NOTA(5)-C6 was highly stable in vitro (>95% after 4 h incubation, both in NaCl 0.9% and
in human serum). Absence of radioactive degradation products may be partly due to the improved
stability of the peptide, achieved via its particular cyclization mode (Figure 11) [138]. In vivo PET
imaging study on SK-OV-3 and PC-3 tumor-bearing mice displayed favorable tumor radioactivity
uptake and fast renal clearance of the tracer.Molecules 2019, 24, x 17 of 39 
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Li et al. evaluated [18F]AlF-NOTA(5)-G-TMTP1 as a PET probe in four different human
hepatocellular carcinoma xenograft models [139]. Indeed, this linear hexapeptide displayed an
important affinity for a series of highly metastatic tumor cells, though its binding mechanism is
still unclear [140]. With a good in vitro serum stability (>95% after 2 h) and a high hydrophilicity
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(logP = −3.166 ± 0.022), microPET imaging study of this radiotracer showed an important accumulation
in high metastatic potential xenografts (SMCC-7721 and HCCLM3). Meanwhile, tumor-to-muscle
ratios in low metastatic potential hepatocellular carcinoma models (HepG2 and HCC97L) were almost
three times lower. Furthermore, quite low activity in the liver and intestines was found in all models,
confirming the potential of NOTA(5)-G-TMTP1 to target highly metastatic hepatocellular carcinoma,
in both a diagnosis and therapy perspective.

WH701, a linear octapeptide identified by a phage-displayed library, is a specific ligand of
TNFR1, a subtype of death receptor which is overexpressed in several varieties of carcinoma such
as breast cancer [141]. Fu et al. conjugated the amino terminus of WH701 with NOTA(5)-NHS
ester and labeled the expected bioconjugate with [18F]AlF [142]. Like [18F]AlF-NOTA(5)-G-TMTP1,
[18F]AlF-NOTA(5)-WH701 appeared to be highly hydrophilic (logP =−3.07± 0.10) and was radiolabeled
within 25 min in 38.1 ± 4.8% RCY. Tumor targeting properties of this tracer were evaluated in vivo
in MCF-7 xenografts, after verification of the TNFR1 overexpression by this cell line via western
blot. In addition to the tumor uptake, an evident uptake in inflammatory tissue could be observed,
although lower (tumor/inflammation ratio = 1.34 ± 0.15). As expected from its high hydrophilicity,
[18F]AlF-NOTA(5)-WH701 is characterized by predominant renal elimination and rapid blood clearance.
As a perspective to improve its pharmacokinetic parameters, the authors suggest the conjugation of
WH701 with PEG to improve its in vivo circulation time and tumor uptake.

Gu et al. synthesized a NOTA(6)-conjugate of a 7-mer peptide (IF7) targeting annexin 1, a highly
specific surface marker of tumor vasculature [143]. NOTA(6)-IF7 was then radiolabeled with [18F]AlF.
Purification protocol of this radioconjugate did not involve HPLC but only a C18 cartridge, allowing a
short preparation time (20 min) along with a high RCY post-purification (92%). After the confirmation
of its in vitro stability both in PBS and in mouse serum (>94% and 90.7% after 2 h, respectively),
biodistribution studies of [18F]AlF-NOTA(6)-IF7 were performed in nude mice bearing A431 xenografts.
The uptake of the stomach and small intestine were high at 30 min p.i. (22.09± 6.30 and 25.47± 9.16%ID/g,
respectively) but decreased significantly by 60 min p.i., indicating that radiometabolites were excreted
through the intestinal tract. It would have been interesting to determine logP of this compound to
make a comparison with that of other [18F]AlF-labeled conjugates that are highly excreted through the
kidneys. On microPET images after injection of [18F]AlF-NOTA(6)-IF7, tumors were clearly visible,
with high contrast compared to the contralateral background and despite high radioactivity levels in
the intestinal tract.

Several imaging probes have been developed to target the chemokine receptor CXCR4, which
plays an important role in tumor aggressiveness, invasiveness and metastasis formation. Among
these probes, pentixather is an original cyclic pentapeptide that displayed promising PET imaging
properties when radiolabeled with 68Ga [144,145]. Poschenrieder et al. performed the [18F]AlF labeling
of NOTA(5)-Pentixather (Figure 12), then studied its biodistribution and PET imaging properties in
Daudi lymphoma-bearing mice [146]. Interestingly, labeling reaction conditions involved neither
ethanol nor acetonitrile as a co-solvent, but dimethylsulfoxide (DMSO, 70% v/v). A sufficient RCY
was therefore reached (45.6 ± 13.3%), then a C8 cartridge was used to purify the radiopeptide and
remove DMSO. Compared to reference [68Ga]Ga-Pentixafor, [18F]AlF-NOTA(5)-Pentixather displayed
a delayed in vivo blood clearance and higher uptake in non-target organs at 1 h post-injection. Due to
the increased lipophilicity of [18F]AlF-NOTA(5)-Pentixather (logP = −1.4 vs −2.9 for its 68Ga-labeled
analog), hepatobiliary excretion and non-specific accumulation in the liver were observed. Moreover,
noticeable bone radioactivity levels may suggest a potential in vivo defluorination of the metal complex
or the fixation on CXCR4-expressing hematopoietic cells. Tumor accumulation was almost identical for
the two tracers, despite the improved in vitro CXCR4 affinity and the 3-fold increased internalization
of [18F]AlF-NOTA(5)-Pentixather.

In the same way, Yan et al. described [18F]AlF radiolabeling of NOTA(5)-T140, a bioconjugate
based on a 14-residues peptide that was found to possess potent CXCR4 antagonistic properties
and high binding affinity [147]. Like [18F]AlF-NOTA(5)-Pentixather, this radiotracer demonstrated
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significant uptake in the bone and high uptake in the liver and kidney, which was probably not due
to the CXCR4 expression but probably to the presence of metal chelators undergoing transchelation
under physiological conditions [148]. Modulation of this tracer to optimize its biodistribution could be
of high interest for purposes of its further evaluation.
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2.1.6. [18F]AlF-Labeled Peptides for Non-Oncological Applications

Clinical applications of PET imaging spread beyond the field of oncology and can be of interest in
various areas, depending on the vector part of a radiotracer. Thus, several [18F]AlF-labeled probes
were evaluated in non-oncological applications.

For PET imaging of thrombus formation, a process playing a prominent role in many cardiovascular
disorders, Blasi et al. synthesized NODAGA- and NOTA(5)- bis-conjugated fibrin-targeting cyclic
peptides (Figure 13) [149]. After being labeled with 64Cu or [18F]AlF in average to excellent yield, these
tracers were investigated in a rat model of arterial thrombosis. The four probes were able to clearly
detect thrombus from the background with minimal non-target uptake, 30- and 90-min post-injection.
[18F]AlF radioconjugates, however, displayed lower target-to-background ratios and evident off-target
signal in the bone. For most of the probes, liver uptake was approximately 50% lower than the thrombus
while kidney uptake was about 10-times higher. Overall, these tracers demonstrated, along with a
preserved affinity for fibrin, an improved metabolic stability (except for the [18F]AlF-NODAGA-peptide)
in comparison with previously reported fibrin-specific radiopeptides [150]. This highlight points out
the crucial influence that a suitable chelator can have on the in vivo fate of a radiotracer.Molecules 2019, 24, x 19 of 39 
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As a potential tracer for pulmonary circulation and pulmonary embolism imaging,
Alonso Martinez et al. described the conjugation with NOTA(5) and the formation of an
[18F]AlF-complex with DFH17, a 31-amino acids PEGylated adrenomedullin analog [151]. In an
extended study and optimization of the reaction conditions, the authors established that a low
[18F]AlF-to-NOTA molar ratio (1:1 to 1:3) allowed the highest complexation yields. Addition of 50%
ethanol (v/v) also greatly increased RCY of the crude labeling reaction, while high fluorine-18 activities
(1110 to 2405 MBq) resulted in lower yields. A 6 mM AlCl3 concentration reduced RCY and optimal
conditions were found for 2–3 mM AlCl3. [18F]AlF -DFH17 was finally obtained in moderate overall
RCY (22–38%) in a rather long total preparation time of 63 min. PET imaging of [18F]AlF-DFH17 in
normal Sprague-Dawley rats showed high tracer accumulation in the lungs up to 1 h p.i., along with
rapid accumulation in kidneys. The absence of radioactivity in the bones suggested sufficient in vivo
stability of the tracer.

Vascular adhesion protein 1 (VAP-1) is an endothelial glycoprotein involved in the transfer of
circulatory leukocytes into tissues undergoing inflammatory responses. To bind this target and image
inflammatory conditions, Moisio et al. used a fragment of sialic acid-binding immunoglobulin-like
lectin 9 (Siglec-9), forming a 17-amino acids PEGylated cyclic peptide conjugated with NOTA(5) [152].
[68Ga]Ga- and [18F]AlF-NOTA(5)-Siglec-9 radiocomplexes were thus synthesized and compared in vivo
in inflammation-induced Sprague-Dawley rats. The [18F]AlF-labeled derivative was obtained in quite
lower RCY than its 68Ga-labeled analog (39 ± 1% vs 64 ± 1%) in a two-times longer total synthesis time
(60 min vs 30 min). With both tracers, dynamic PET imaging showed clear radioactivity accumulation
in the inflamed tissues. According to the authors, the image quality of 68Ga- and [18F]AlF-labeled
tracers was comparable, although radioactivity concentration in target tissues seemed slightly higher
for [18F]AlF-NOTA(5)-Siglec-9.

Beard et al. were interested in the design of an [18F]AlF-labeled oxytocin receptor (OTR) tracer in
order to objectify the nose-to-brain uptake following intranasal (i.n.) administration of oxytocin [153].
Thus, after a brief structure-activity relationships study based on a small library of peptide derivatives,
an OTR-selective oxytocin analog (dLVT) was selected for conjugation with NODA and radiolabeling.
Interestingly, the authors noticed that when the reaction mixture contained 50% v/v NaCl 20% (total
reaction volume = 200 µL), used to enhance 18F elution from ion exchange cartridge, an increase in
RCY was observed. This improvement was comparable to that obtained when organic co-solvent is
added to the medium. When evaluated in vivo, [18F]AlF-NODA-dLVT showed an increased uptake in
brain parenchyma after intranasal administration compared to i.v., though exposure remained low
(0.11 ± 0.03%ID/g i.n. vs 0.05 ± 0.03%ID/g i.v.). Moreover, the tracer was unable to penetrate deeper
regions of brain tissue during the timescale studied, suggesting that the i.n. route is not significantly
more efficient than the i.v. route for this OTR-targeting tracer.

In order to examine the influence of age on GLP-1R expression in healthy rat brain, Wang et al.
used the already described [18F]AlF-NOTA(5)-MAL-Cys39-Extendin-4 radiopeptidoconjugate as a
possible imaging agent of neurological diseases [154]. Radiolabeling reaction conditions were strictly
identical to those described by Xu [131], leading to [18F]AlF-NOTA(5)-MAL-Cys39-Extendin-4 in 20%
RCY within 30 min. In vivo microPET imaging showed a slightly slower radioactivity accumulation in
the brain of aged rats than in normal rats. Variations in the uptake of the tracer in different regions of
the brain indicated that distribution of GLP-1R differs, depending on both on the region and on the age
of rats. Like most of the peptidic PET probes, [18F]AlF-NOTA(5)-MAL-Cys39-Extendin-4 displayed
important radioactivity uptake in kidneys that could harm its usefulness as a PET tracer.

2.2. [18F]AlF-Labeled Protein Conjugates

Many proteins of clinical interest are currently in use or subject to preclinical and clinical evaluation.
This is particularly the case for monoclonal antibodies (MAbs) and MAb-derived macromolecules,
including fragments, nanobodies and affibodies. In nuclear imaging, pharmacokinetic properties
of the latter three types of biomolecules are better adapted than those of MAbs for short-lived
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elements radiolabeling. Indeed, the average molecular weight of these derivatives (around 6 kDa
for affibodies, around 15 kDa for nanobodies and around 50 kDa for Fab and Fab’ fragments) allows
quick biodistribution and attachment to their molecular target, along with a rapid clearance. On the
other hand, MAbs are characterized by a delayed recognition of their target and, especially for human
MAbs, a rather slow clearance. Hence, MAbs used in clinical nuclear imaging will be more likely to be
labeled with long half-life radioelements, such as 89Zr (t1/2 = 78.4 h) or 64Cu (t1/2 = 12.7 h). Moreover,
unlike most affibodies or nanobodies, entire MABs and fragments are heat-sensitive compounds and
are thus unsuitable with [18F]AlF-labeling reaction conditions, systematically requiring a heating step
to ~100 ◦C. Different solutions can be considered to address this disadvantage, such as the design
of ligands allowing [18F]AlF chelation at room temperature or the chelator radiolabeling prior to its
conjugation with the protein.

This second approach was first proposed by McBride et al. in 2012 [155]. A NODA-MPAA
chelator, extended by a N-(2-aminoethyl)maleimide spacer (NODA-MPAEM, Figure 14), was first
radiolabeled with [18F]AlF in classical reaction conditions (20 nmol ligand in 2 mM AcONa pH 4 buffer,
0.5 equiv. AlCl3, 730 MBq [18F]F- in NaCl 0.9%, ~50% v/v acetonitrile, 415 µl total reaction volume), then
conjugated to the Fab’ fragment of a humanized MN-14 anti-CEACAM5 IgG (Figure 14). Radiolabeled
chelator was obtained in 82% RCY and the final radioconjugate was produced in 74% RCY after
a 50 min total process. Biodistribution of the [18F]AlF-NODA-Fab’ radioconjugate was studied in
Capan-1-xenografted mice and showed expected parameters for this type of tracer, like an elevated
kidney uptake, low concentrations in blood and a favorable tumor-to-blood ratio (5.9 ± 1.3 at 3 h p.i.).
Moreover, minimal bone uptake suggested that the [18F]AlF-NODA complex was very stable in vivo.
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Following this proof of concept, Lütje et al. extended the previously described technique to
the conjugation of the same radiocomplex ([18F]AlF-NODA-MPAEM) with other anti-CEA antibody
derivatives such as a diabody or a dimeric fragment [156]. [18F]AlF radiocomplexes could be obtained
in a quite higher labeling efficacy (94% ± 2%) and very good RCY for each radioconjugate (70% for
reference [18F]AlF-NODA-Fab’ and 77% for both [18F]AlF-NODA-Diabody and dimeric fragment)
within a <60 min total reaction time. Immunoreactivity of each radioconjugate was verified in vitro and
was systematically conserved (>60%). In vivo, preferential localization of all [18F]AlF-radiofluorinated
derivatives in CEA-expressing LS174T xenografts was observed, with a clearer visualization of CEA+

tumors with the Fab’ fragment and the dimeric fragment (tumor-to-blood ratio at 4 h p.i. = 5.87 ± 0.93
and 6.15 ± 1.58, respectively, vs 2.75 ± 0.18 for the diabody). Fab’ and dimeric fragment displayed a
significant renal accumulation, contrary to the diabody, which was partly cleared via hepatobiliary route.

[18F]AlF-radiolabeled anti-HER2 affibodies have been particularly studied since the early years
of this radiofluorination technique. Heskamp et al. reported in 2011 the 1-step [18F]AlF-labeling
of NOTA(5)-ZHER2:2395 and its in vivo evaluation in SK-OV-3-xenografted mice [157]. This approach
implied heating the NOTA(5)-conjugated affibody (90 ◦C, 15 min) to achieve modest radiolabeling
yields (21.0% ± 5.7%). However, the final radioconjugate was isolated in >95% RCP and conserved its
HER2-binding affinity. Imaging properties of [18F]AlF-NOTA(5)-ZHER2:2395 were compared to those of
68Ga- and 111In-labeled anti-HER2 affibody analogs, showing rapid clearance and high tumor-to-blood
ratios for the PET derivatives. Low bone uptake indicated that this 1-step labeling protocol led to a stable
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complexation of [18F]AlF with the bioconjugate. According to the authors, [18F]AlF-NOTA(5)-ZHER2:2395

was preferred over its 68Ga-labeled analog for the longer half-life of 18F that allowed imaging several
hours after injection, and therefore higher tumor-to-normal tissues ratios.

Glaser et al. also described the 1-step radiofluorination of another anti-HER2 affibody (ZHER2:2891)
following different approaches (Figure 15) such as silicon-fluoride acceptor, covalent link with
4-[18F]fluorobenzaldehyde and [18F]AlF complexation in NOTA(5) or NODAGA [158]. The highest
isolated RCY was reached with the Si[18F]FA-labeling technique (38%± 2%), in a mixed aqueous/organic
solvent medium heated at 95◦C during 15 min. Covalently 18F-fluorinated affibody was obtained in
13% ± 3% within a longer reaction time (60–65 min vs 30–35 min for [18F]SiFA-labeling). NODAGA
did not allow good [18F]AlF chelation (8% RCY, 72% radiochemical purity, 0.02 GBq/µmol molar
activity) and was not studied further. NOTA(5) was, as expected, a more suitable chelator, leading
to 49% [18F]AlF incorporation but quite low isolated RCY (11% ± 4%). In vivo biodistribution and
PET imaging in A431- and NCI-N87-xenografted mice (high and low HER2 expression, respectively)
demonstrated the preferred pharmacokinetic profile of [18F]SiF- and covalently-labeled affibodies,
whereas [18F]AlF-NOTA(5)-ZHER2:2891 displayed minimal differentiation between the two tumor types,
higher kidney retention and increased bone uptake in time. Overall, this study suggests the potential
interest to compare different radiofluorination methods for the same vector, in order to determine the
influence of this parameter on the tracer pharmacokinetics.
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With the same purpose of tumoral HER2 levels monitoring, Xu et al. used an anti-HER2 affibody
(ZHER2:342) bearing a NOTA(5) chelator at the end of a hydrophilic peptidic linker (GGGRDN, also
used by Pan [111] and Zhu [120]) [159]. [18F]AlF radiolabeling reaction conditions, involving high
[18F]fluoride activity (~3.7 GBq), around 0.3 equiv. AlCl3 and no organic co-solvent, allowed to obtain
the expected radiocomplex within 30 min in 9.3% ± 1.5% RCY and >95% purity. The radiotracer was
evaluated in vivo in high, medium and low HER2-expressing xenografted mouse models (SK-OV-3,
JMT-1 and MCF-7, respectively). Interestingly, a significant linear correlation (R2 = 0.99, p < 0.05)
between %ID/g values and relative HER2 expression (measured by Western blot) was found for
all tumor-bearing mice. Biodistribution results were in accordance with PET images, with a rapid
localization in HER2-positive tumors, a prominent urinary excretion and a significantly reduced
liver accumulation in comparison with the same covalently 18F-labeled affibody [160]. Reduced
hepatobiliary excretion could be due to the increase in hydrophilicity conferred by the peptidic linker.

Since the renal accumulation of antibody-derived radiotracers can sometimes be considered as
a significant drawback, Zhou et al. recently reported the design of an anti-HER2 single domain
antibody fragment (sdAb 2Rs15d) functionalized with a renal brush border enzyme-cleavable
glycine-lysine (GK) linker [161]. The 2-steps [18F]AlF radiolabeling protocol involved the formation
of a [18F]AlF-NOTA(5)-PEG3-Tetrazine prosthetic group and its conjugation with sdAb 2Rs15d via
a trans-cyclooctene (TCO)-tetrazine-based inverse electron demand Diels Alder (IEDDA) reaction
(Figure 16). [18F]AlF-NOTA(5)-PEG3-Tz was obtained in 46.3% ± 4.1% RCY, in conventional reaction
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conditions. Conjugation was carried out in PBS at 20 ◦C and led to the expected radioconjugate in
17.8% ± 1.5% overall RCY, within 1.5 h. Noteworthy, this total preparation time could be shortened
by avoiding the purification step which follows NOTA(5)-PEG3-Tz radiolabeling. Nevertheless,
these results remained better than those obtained with other sdAb 2Rs15d radiofluorination
strategies [162,163]. The in vivo biodistribution in healthy mice of the labeled sdAb showed a
15- and 28-fold lower renal uptake than that of its analog with no GK linker, at 1 h and 3 h p.i.,
demonstrating its significant interest. In SK-OV-3-xenografted mice, although the tumor uptake
of the radioconjugate was lower than that seen for 2Rs15d labeled with 18F using other methods,
tumor-to-kidney ratios obtained at 1 h were 1.5 to 10 times better.
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As another HER receptor subtype, EGFR is an attractive target for both cancer molecular imaging
and therapy. After the study of a covalently radiofluorinated anti-EGFR affibody (ZEGFR:1907) [164],
Su et al. described 2 different radiofluorination strategies of ZEGFR:1907 [165]. The first approach
consisted of conjugating the affibody with NOTA(5) and radiolabeling with [18F]AlF. In a second way,
the 18F-labeled 2-cyanobenzothiazole ([18F]FCBT) prosthetic group was conjugated to ZEGFR:1907. Due
to a single purification step, [18F]AlF-NOTA(5)-ZEGFR:1907 total synthesis time was 3-times shorter
than that of [18F]FCBZ-ZEGFR:1907 (40 min 1-step protocol and 120 min 2-steps protocol, respectively).
However, both the overall RCY and molar activity of the [18F]FCBT derivative were considerably
better (41% RCY, 22.2 GBq/µmol and 15% RCY, 1.5 GBq/µmol, respectively). Stability studies revealed
significant differences between the two tracers, both in vitro and in vivo (>90%, 2 h in mouse serum
and 90%, 1 h in vivo for the [18F]AlF derivative, 75%, 2 h in mouse serum and 40%, 1 h in vivo for the
[18F]FCBT derivative). In vivo biodistribution of these two affibodies in A431 tumor-bearing mice was
slightly different, demonstrating once again the noticeable influence of the labeling pathway on the
tracer pharmacokinetics.

HER3 can also be overexpressed in a wide variety of cancers and could be predictive of tumor
resistance [166]. Using the anti-HER3 affibody ZHER3:8698 as a vector, Da Pieve et al. compared the
efficiency of 2 non-covalent radiofluorination techniques [167]. The first approach was a classic 1-step
[18F]AlF chelation with a NOTA(5)-bioconjugate. The second method involved [18F]AlF complexation
in a NODA-Tetrazine precursor, then its conjugation with cyclooctene-functionalized ZHER3:8698

via IEDDA reaction. [18F]AlF-NOTA(5)-Affibody was obtained in 38.8% ± 5.8% RCY and 6.0 to
11.9 GBq/µmol molar activity. Formation of byproducts, assumed to originate from the decomposition
of the radioconjugate, was observed. The tetrazine-bearing [18F]AlF-NODA chelate was formed in very
good yields (70% to 95%) and was engaged in the second step without further purification. Reaction
with TCO-ZHER3:8698 yielded the product almost quantitatively. Two different IEDDA adducts could
be identified: a dihydropyridazine and an aromatic pyridazine derivative. In vivo imaging properties
of the two tracers in MCF-7 tumor-bearing mice were very similar, allowing high contrast images from
1 h post-injection. [18F]AlF-NODA-ZHER3:8698 displayed, however, slightly increased accumulation in
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intestine and in other non-target tissues, possibly due to its greater lipophilicity (logD = −1.87 ± 0.07,
versus −2.19 ± 0.01 for [18F]AlF-NOTA-ZHER3:8698).

Considering the major clinical benefits of checkpoint inhibitors both in oncology and autoimmune
diseases, Gonzalez-Trotter et al. designed a [18F]AlF-NOTA(5)-PD-L1-binding affibody as a PET
tracer candidate [168]. [18F]AlF-NOTA(5)-ZPD-L1_1 was obtained in 15.1% ± 5.6% RCY, with a
14.6 ± 6.5 GBq/µmol molar activity and high RCP (96.7% ± 2%, following a preparative HPLC
purification step). In vivo PET imaging after injection of this tracer demonstrated much higher tumor
uptake in PD-L1-positive LOX tumor-bearing mice than in PD-L1-negative SUDHL6-xenografted mice
(7:1%ID/g ratio at 90 min p.i.). Prominent renal clearance and retention were observed in all mice.
These conclusive results suggest a possible clinical use of this type of tracer, whose value would be
even greater if a kit formulation would be possible.

In the cardiology field, Lu et al. conjugated Cys-Annexin V with [18F]AlF-NOTA(5)-Maleimide
with the view to target membrane phosphatidylserine exposed during apoptosis [169]. Through this
2-steps radiolabeling procedure, the final [18F]AlF-NOTA(5)-MAL-Cys-Annexin V was obtained within
65 min, with both high RCP and molar activity (97.38% ± 0.35% and 54.0 GBq/µmol, respectively).
The conjugation step was achieved in 78.88% ± 5.23% RCY in PBS at room temperature, for an
overall yield (from [18F]F- to the radioconjugate) about 15%. After confirming the tracer was stable
in vitro (>95% either in PBS, mouse serum and cell culture medium for 3 h), in vivo microPET
imaging of apoptotic rat liver highlighted an increased liver uptake versus control (3.09 ± 0.08%ID/g
and 0.50 ± 0.02%ID/g at 1 h p.i. respectively). As with most of other [18F]AlF-labeled tracers,
[18F]AlF-NOTA(5)-MAL-Cys-Annexin V underwent high renal excretion (67%ID/g at 35 min p.i.),
possibly due to the hydrophilicity of the [18F]AlF-NOTA(5) complex. Overall, the authors emphasized
the greater convenience of this non-covalent radiofluorination strategy compared to the use of other
fluorinated prosthetic groups such as [18F]fluorobenzylethylmaleimide.

In order to develop an easy-to-label PET blood pool tracer, Basuli et al. studied the 2-steps [18F]AlF
radiofluorinaton of rat serumalbumin (RSA) [170]. First, NODA-Bn-Tetrafluorophenyl ester (TFPE)
was synthesized and labeled with [18F]AlF using DMSO as organic co-solvent (1:5 to 1:1 v/v in 0.5 M
sodium acetate buffer, pH 5) to facilitate the reaction and properly solubilize chelator. Without any
intermediate purification because of very high radiochemical conversion of [18F]AlF-NODA-Bn-TFPE
(93% ± 5%), RSA was directly added to the reaction medium after cooling and pH adjustment to 8.
After purification by size exclusion chromatography, the final radioconjugate was isolated in 45% ± 10%
yield within 50 min. Rat biodistribution studies showed the highest retention of the tracer in blood up
to 2 h p.i. and noticeable activity in lungs, heart and kidneys, proportionally to the specific plasma
volume of these organs. PET images of rats allowed a good visualization of central vasculature, without
any apparent activity in the skeleton. Pharmacokinetics of [18F]AlF-NODA-Bn-RSA appeared very
similar to those of covalently labeled RSA with [18F]fluoronicotinate, suggesting that organ plasma
volume measurements with these tracers give a valid estimation of these properties if carried out in
early timepoints.

In vivo bioorthogonal reactions are an original bioconjugation strategy which overcomes both
antibody thermolability and its rather slow in vivo distribution step. In this kind of pretargeting
approach, the antibody is radiolabeled within the body, after it has reached the tumor, facilitating
the use of short-lived radioisotopes such as fluorine-18. Following this methodology, Meyer et al.
described the Tz/TCO-based pretargeting of an anti-CA19.9 IgG with an [18F]AlF-NOTA(6)-PEG11-Tz
radioligand (Figure 17) [171]. The [18F]AlF-NOTA complex was obtained in 54–65% RCY in high purity
(>96%) and a molar activity between 21.4 and 26.7 GBq/µmol. It is worth noting that the quantities of
organic co-solvent used are particularly significant (at least 3:1 MeCN/H2O). After validation of its
in vitro and in vivo stability (79% ± 4.4% in human serum after 4 h, and 63% ± 8.9% in healthy mice
after 4 h, respectively), biodistribution of [18F]AlF-NOTA(6)-PEG11-Tz alone was studied and showed
in particular dual renal and fecal elimination pathways. Pretargeted biodistribution experiment
on BxPC3-xenografted mice was conducted by injecting TCO-MAb 72 h prior to the radiolabeled
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probe and revealed increasing tumoral uptake over the course of the study. Uptake in other tissues
remained low, except in the intestine and kidneys. PET imaging study was conducted the same way
and confirmed the previous data, especially the increase over time of the tumor-to-background ratio.
Optimization of the PK properties of the [18F]AlF-labeled probe in order to obtain high-quality images
at earlier time points could be a major improvement of this strategy.
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radioligand and a TCO-conjugated MAb.

Shi et al. employed a similar pretargeting protocol, with tetrazine-conjugated anti-EGFR MAbs
and [18F]AlF-NOTA(6)-Reppe anhydride derivative (Figure 18) [172]. [18F]AlF-NOTA complex was
synthesized in 30% RCY and >95% RCP after steric exclusion chromatography purification. Pretargeted
biodistribution and metabolism study of [18F]AlF-NOTA(6)-Reppe anhydride displayed a quite comparable
profile to that of [18F]AlF-NOTA(6)-PEG11-Tz [171], with a progressive HCT116 colorectal tumor uptake,
a mixed hepatobiliary and renal elimination and a quite rapid decrease of the abdominal radioactivity.
It should be noted that another advantage of this strategy over using long-lived radioisotopes is the
substantially decreased overall radiation burden, especially on non-target tissues and organs.
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To overcome the drawbacks associated with proteins thermosensitivity, Cleeren et al. designed an
original restrained complexing agent (RESCA, see Figure 19) for application of the [18F]AlF radiolabeling
strategy at room temperature [173]. H3RESCA-TFPE was first conjugated with lysine residues of
three different proteins: human serumalbumin (HSA), anti-Kupffer cells nanobody and anti-HER2
affibody (ZHER2:2891). As a proof of concept, H3RESCA-HSA was directly labeled with [18F]AlF in
good RCY (52% to 63%) and under mild reaction conditions (12 min, R.T., NaOAc 0.1 M pH 4.5). Final
purification by size-exclusion chromathography provided the radioconjugate in high RCP (>98%) and
within less than 30 min. Biodistribution study of [18F]AlF-RESCA-HSA in healthy rats confirmed
the structural and functional integrity of the tracer, along with its good in vivo stability (only minor
increase in bone uptake observed over time). Radiolabeling of anti-Kupffer cells nanobody at R.T. gave
similar encouraging results (35% to 53% RCY, >98% RCP, <35 min synthesis time, 80 to 85 GBq/µmol
molar activity), much better than those obtained with covalent radiofluorination protocols applied to
the same kind of nanobody derivative [174–176]. However, purification of the crude residue needed
4 Hitrap desalting columns in series to isolate pure radioconjugate. As expected, this compound
subjected to high renal accumulation and notable liver uptake in healthy mice. Moreover, bone uptake
slightly increased over time, maybe because of a degradation/recycling cycle occurring in the kidney
and releasing [18F][AlF]2+. Concerning affibodies, they are often considered heat-stable, however,
thermal degradation of the radioconjugate is sometimes observed [167]. Thus, two batches of ZHER2:2891

were conjugated either with H3RESCA-Maleimide or NOTA-Maleimide. Then bioconjugates were
[18F]AlF-labeled at R.T. (RESCA) or 100 ◦C (NOTA) with other reaction parameters remaining the
same (15 min, pH 4, 50% v/v ethanol). [18F]AlF-RESCA-MAL-radioconjugate was obtained in slightly
higher yields (20% ± 7% vs 8% ± 6%) but in same RCP, molar activity, and within the same reaction
time. PET/CT study of these two radioconjugates in healthy male non-human primates showed
very similar PK patterns for both, even though [18F]AlF-RESCA-MAL-ZHER2:2891 displayed quite
lower radioactivity accumulation in kidneys because of a faster clearance to the bladder. Overall,
RESCA chelator was presented as an appealing alternative to 2-steps protocols for [18F]AlF labeling of
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Following these findings, Cleeren et al. published a detailed protocol for both RESCA-nanobody
coupling reaction and [18F]AlF radiolabeling step [177]. This overview highlights several critical
reaction parameters, such as suitable pH (4.4 to 4.6 for a good [18F]AlF chelation), high molar activity
[18F]F- batch purified on ion exchange cartridge, optimal [18F]F−-to-Al3+ and chelator-to-Al3+ ratios (20
nmol AlCl3 for 1.1 to 2.2 GBq [18F]F- and ~40 nmol chelator) or total reaction volume (~700 to 800 µL).

2.3. [18F]AlF-Labeled Small Molecule Conjugates

Functionalization of a small molecule with a bifunctional chelating agent towards its labeling
with a radiometal remains a challenging technique, mainly due to the low permissiveness of these
compounds to significant steric modifications. Although few in number (Figure 20), several small
molecules bearing a chelating motif were labeled with [18F]AlF and evaluated as PET tracers.
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By analogy with [18F]fluoromisonidazole, Hoigebazar et al. proposed the [18F]AlF radiolabeling
of NODA-2-nitroimidazole derivatives for PET imaging of hypoxia [178]. Compounds with 2- or
3-carbons linker were synthesized and labeled in very good RCY (84.5% to 87.9%), high RCP (>99%),
sufficient molar activity (3.9 to 4.3 GBq/µmol) and within only 15 min. Usual reaction conditions
were used for this radiolabeling (0.1 M NaOAc pH 4, 45 nmol AlCl3, ~100 MBq [18F]-, 50 nmol vector,
110 ◦C, 10 min) and alumina cartridge followed by HPLC were necessary for the purification step.
Both radiocomplexes showed very low in vitro plasma proteins binding (0.36% to 0.64% after 2 h
incubation) and elevated in vitro uptakes on 3 cell lines under hypoxic versus normoxic conditions.
Biodistribution and PET imaging studies in CT-26-xenografted mice evidenced early and predominant
renal elimination along with better tumor-to-muscle and tumor-to-nontumor ratios at 1 h p.i. than
those of reference drugs ([18F]FMISO and [18F]FAZA).

As a simple and original PET renal radiotracer, Lipowska et al. evaluated [18F]AlF-NODA-Butyric
acid for kidney function imaging [179]. Radiolabeling conditions used were those published by
Shetty et al. [56], with no organic co-solvent. RCY for the radiofluorination step is not specified, but
the expected radiotracer was isolated after HPLC purification in >95% RCP. [18F]AlF-NODA-Butyric
acid exhibited high in vitro and in vivo stability (>95%) over 4 h at physiological pH and at 15 min p.i.,
respectively. The [18F]AlF-labeled tracer, compared to o-[131I]iodohippurate, was highly specific for
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renal excretion and probably eliminated by both glomerular filtration and tubular secretion. Moreover,
this specificity is conserved in a renal failure animal model, with only a small shift to hepatobiliary
excretion, conferring to this molecule acceptable pharmacokinetic and chemical properties as a renal
imaging agent.

Wang et al. developed a non-peptidic bivalent small molecular integrin αVβ3-targeting compound
(IA), conjugated with p-SCN-Bn-NODA and labeled with [18F]AlF for angiogenesis or metastatic
potential imaging [180]. NODA-IA was radiolabeled in good RCY (65% to 75%) and high molar activity
(27.75 to 31.45 GBq/µmol) after being easily purified on a C18 cartridge. In vivo evaluation of this tracer
on two different xenografted mouse models showed a correlation between tumor uptake and integrin
expression levels. In U-87 MG tumor-bearing mice (high integrin expression), [18F]AlF-NODA-IA
showed rapid and high tumor accumulation (6.35 ± 0.67%ID/g at 1 h p.i.) along with a fast renal
excretion. It would have been very elegant to directly compare the PET imaging properties of this
tracer with a reference [18F]AlF-labeled RGD bivalent PET probe such as alfatide II.

Due to the specific binding ability of benzamide moiety to melanin [181], Chang et al. proposed an
[18F]AlF-NOTA(5)-Benzamide derivative as a potent PET imaging agent of malignant melanoma [182].
After a 5-steps synthesis (~26% overall yield), NOTA(5)-Benzamide conjugate was radiolabeled with
[18F]AlF, purified on HLB cartridge and isolated in 20–35% RCY within 40 min. In addition to a high
in vitro stability (>95% in PBS and in human plasma after 2 h incubation), [18F]AlF-NOTA(5)-BZA
displayed high cellular uptake in melanin-expressing cell lines and a conserved binding affinity to
melanin. Biodistribution studies evidenced good tumor uptake and tumor-to-normal tissue ratios
since 6 min p.i. in high melanin expressing B16F0-xenografted mice. Rapid radioactivity accumulation
in kidneys and bladder suggested that [18F]AlF-NOTA(5)-BZA is mainly excreted via the urinary tract,
which is consistent with its hydrosolubility (logP = −1.96 ± 0.14).

By analogy with flutemetamol, an 18F-fluorinated heterocyclic PET radiopharmaceutical targeting
amyloid β (Aβ) plaques associated with Alzheimer disease, Song et al. synthesized NODA-conjugated
2-phenylbenzothiazole derivatives [183]. After the selection by in vitro binding assay of the molecule
with the highest affinity for Aβ plaques, the retained compound was [18F]AlF-labeled within 40 min
in 17.8% RCY and isolated in >98% RCP after HPLC purification. Ex vivo biodistribution study of
this [18F]AlF-NODA-Benzothiazole tracer showed its initial brain uptake was significantly decreased
compared with commercially available Aβ tracers (0.30 ± 0.04%ID/g at 2 min vs >4%ID/g at 2 min).
However, in vitro autoradiography study pointed out the highly potent binding of this probe to Aβ

deposits in blood vessels of cerebral amyloid angiopathy patients.
Fisher et al. evaluated a NOTA(5)-conjugated elastin-binding molecule (EBM) as a PET imaging

agent for visualizing atherosclerotic plaque lesions [184]. Derived from previously published
procedures [57,155], [18F]AlF-labeling of NOTA(5)-EBM was accomplished with up to 25% incorporation
yield and 8% to 13% RCY after HPLC purification. The expected radioconjugate reached a quite
high molar activity (59 ± 12 GBq/µmol). In vivo biodistribution study in healthy mice showed rapid
radioactivity accumulation of [18F]AlF-NOTA(5)-EBM in the carotid arteries, heart and lung, known
to have high elastin content. The tracer tends to be excreted through kidneys but also through the
hepatobiliary system, despite its rather low logD7.4 (−1.3 ± 0.1). In vitro autoradiography studies
on human carotid plaque sections found a higher binding of [18F]AlF-NOTA(5)-EBM in stable and
vulnerable atherosclerosis plaques compared to normal human arteries samples. However, no clear
differentiation between stable and unstable lesions was evident.

NOTA-folate radioconjugates were particularly studied in the recent years, both for cancer and
non-oncological imaging. Silvola et al. investigated [18F]AlF-NOTA(5)-Folate for atherosclerotic
plaque inflammation detection [185]. The radioconjugate was obtained in very good molar activity
(77 ± 22 GBq/µmol) and high RCP (>95%) but within a rather long synthesis time (80 to 95 min),
particularly because of semi-preparative HPLC purification step lasting 20 min. In order to stabilize
[18F]AlF-NOTA(5)-Folate, the tracer was ultimately formulated in PBS (pH 7.4) in the presence of 8%
ethanol and 4–7% propylene glycol, with a radioactive concentration kept under 400 MBq/mL
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at the end of the synthesis. Under these conditions, the tracer was stable for at least 4 h at
room temperature. In vitro autoradiography on carotid endarterectomy samples from patients
confirmed the colocalization of the tracer with folate receptor β-positive macrophages. Similarly,
[18F]AlF-NOTA(5)-Folate administered in atherosclerotic mice and hyperlipidemic rabbits specifically
accumulated in inflamed lesions, making it a promising tool for PET imaging of atherosclerosis plaques.

In the oncology field, the same tracer bearing either a PEG2 [186] or a PEG12 [187] linker was
evaluated by Chen et al. for preclinical PET imaging of folate receptor-positive tumors. The overall
radiosynthesis process was faster than described by Silvola [185] (~35 min), although radioconjugates
were obtained in slightly lower RCY (8.4% to 18.6%). Biodistribution studies and microPET in vivo
imaging in KB tumor-bearing mice demonstrated an important kidney uptake for the two tracers.
Accumulation in the liver was considerably reduced by the introduction of a hydrophilic PEG12

linker. Considering its radiochemical and in vitro properties as well as its preclinical PET results,
[18F]AlF-NOTA(5)-PEG12-Folate meets most of the requirements for possible translation in clinical use.

3. Current Clinical Use of [18F]AlF-Labeled Biomolecules

To date, very few [18F]AlF-labeled molecules were administered to man. These experimental
radiopharmaceuticals may be subject to preconceptions because they contain aluminum, a metal that
may accumulate in several organs and can be associated with bone, brain or liver toxicity [188]. With
the aim of reducing aluminum exposure, especially from parenteral nutrition in preterm infants [189],
the U.S. Food and Drug Administration (FDA) has set in 2004 the aluminum limit rate at 25 µg/L (≈
927 nmol/L) for large volume parenterals. This limit is associated with the warning that repeated IV
aluminum administrations >4–5 µg/kg/day (≈ 148–185 nmol/kg/day) could lead to central nervous
system and bone toxicity [190]. Considering the classical [18F]AlF labeling reaction conditions,
quantities of aluminum chloride rarely exceed a few dozen nanomoles in one multi-dose preparation
(see Supplementary material). These very small quantities, combined with the punctual nature of a PET
examination, are important arguments in favor of the non-toxicity of the aluminum traces contained in
these radiopharmaceuticals.

As stated before, [18F]AlF-PSMA-BCH was evaluated on 11 patients with prostate cancer and
displayed good detectability of tumor lesions with reasonable radiation exposure [101]. Nonetheless,
the two [18F]AlF-labeled tracers that were the most studied in man are NOTA-PRGD2 derivatives
alfatide I and alfatide II.

The first administration of alfatide I to human was in 2012 [191]. The vector was formulated in a
kit, allowing the whole radiosynthesis process to be accomplished within 20 min, with 41.2% ± 2.0%
RCY. Nine patients with primarily diagnosed lung cancer were examined by static and dynamic
PET imaging with alfatide I. All tumors could be identified with this tracer, with mean standardized
uptake values of 2.90 ± 0.10 at 1 h post-injection. Tumor-to-blood and tumor-to-muscle ratios were
2.71 ± 0.92 and 5.87 ± 2.02, respectively. This first study proved that alfatide I could specifically
image αVβ3 expression with good contrast in lung cancer patients and could be used for planning
or response evaluation of therapies that affect angiogenesis. Other pilot studies came to the same
conclusions in lung cancer [192–194] and glioblastoma patients [195]. Alfatide I also showed a potential
interest in diagnosing metastatic lymph nodes in 13 patients with non-small cell lung cancer [196].
However, the diagnostic value of alfatide I in lymph nodes metastasis identification in 20 patients with
differentiated thyroid cancer was stated as inferior to [18F]FDG [197]. Another study in 61 patients
with esophageal squamous cell carcinoma found quite similar results but stated that alfatide I could
still provide complementary molecular information about the metastasis of this cancer [198]. Recently,
alfatide I PET imaging was shown to possibly be predictable of the response to antiangiogenic agent
apatinib [199].

First evaluation of alfatide II in man was carried out in 2015, in 11 patients with bone
metastases [200]. This study stated that alfatide II PET imaging could detect bone metastatic lesions
with good contrast and higher sensitivity than [18F]FDG (92% and 77% positive rate, respectively).
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More specifically, alfatide II was superior to [18F]FDG in detecting osteoblastic and bone marrow
metastases (70% vs 53% and 98% vs 77%, respectively). Quite similar results were highlighted
in a series of 9 patients with brain metastatic lesions [201]. In contrast, a study on 44 patients
suspected of primary breast cancer showed no superiority of alfatide II over [18F]FDG in identifying
these lesions [202], although alfatide II PET imaging was of good performance in detecting strongly
estrogen receptor-expressing lesions. Diagnostic value of alfatide II has also been investigated in lung
inflammation patients (tuberculosis, sarcoidosis) and lung cancer patients [203]. Tracer uptake in
malignant lesions was significantly higher than in tuberculosis (4.08 ± 1.51 vs 2.63 ± 1.34 SUVmax at 1
h p.i., respectively) and sarcoidosis lesions (three negative results), suggesting the value of alfatide II in
the differentiation of inflammatory and cancerous lung diseases.

Overall, these pilot studies provided interesting preliminary results on the potential clinical uses
of integrin αVβ3 imaging by alfatide derivatives. In the future, studies with larger patient cohorts are
warranted to formally decide on the clinical usefulness of these radiotracers.

4. Conclusions

Among the different radiofluorination methods available to label potential PET imaging agents,
the non-covalent approach using aluminum [18F]fluoride has been widely exemplified since its first
report in 2009. [18F]AlF radiofluorination can be applied to the labeling of various kinds of vectors
such as peptides, small molecules or proteins, via a one- or two-steps protocol in aqueous medium.
Indeed, this method has the advantage of bypassing the azeotropic drying step associated with
covalent radiofluorination techniques. However, it may need an organic co-solvent to improve
radiolabeling yields, precise monitoring of acido-basic conditions and a heating step at ~100 ◦C,
especially unsuitable for direct thermosensitive molecules labeling. Numerous conjugates, in various
application fields, have been successfully radiolabeled via [18F]AlF strategy and showed encouraging
in vitro and preclinical potential. Three of them, fulfilling critical criteria such as in vivo stability,
favorable PK parameters and high specificity, have reached clinical evaluation stages. The compatibility
of these vectors with a kit formulation for direct [18F]AlF labeling and the possibility to automate
this process further encourages their transfer to clinical use. Compared to 68Ga, synthesis of [18F]F is
dependent on cyclotron production and may present routing constraints. In contrast, possibility of
obtaining high activity [18F]F− batches allows the preparation of high activity kits, usable for a large
number of patients, when a conventional 68Ga generator eluate is only sufficient for three–four patients.
Imaging properties of 18F are inherently better than those of 68Ga, nevertheless, the better quality of
[18F]fluorine images compared to [68Ga]gallium seems only moderately notified. Overall, [18F]AlF
radiofluoration strategy tends to provide a convenient, simple and fast way to label nine-membered
ring conjugates with [18F]fluorine, opening both preclinical and clinical development perspectives for
several PET radiotracers.

Supplementary Materials: Supplementary Materials are available online. Table S1: [18F]AlF-labeled peptides
reports in scientific literature. Table S2: [18F]AlF-labeled proteins reports in scientific literature. Table S3:
[18F]AlF-labeled small molecules reports in scientific literature.
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