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Abstract 
 
Background and objective: In this paper, we introduce a new R package goftte for goodness-
of-fit assessment based on cumulative sums of model residuals useful for checking key 
assumptions in the Cox regression and Fine and Gray regression models. 
 
Methods: Monte-Carlo methods are used to approximate the null distribution of cumulative 
sums of model residuals. To limit the computational burden, the main routines used to 
approximate the null distributions are implemented in a parallel C++ programming 
environment. Numerical studies are carried out to evaluate the empirical type I error rates of 
the different testing procedures. The package and the documentation are available to users 
from CRAN R repositories. 
 
Results: Results from simulation studies suggested that all statistical tests implemented in 
goftte yielded excellent control of the type I error rate even with modest sample sizes with 
high censoring rates. 
 
Conclusions: As compared to other R packages goftte provides new useful method for 
testing functionals, such as Anderson-Darling type test statistics for checking assumptions 
about proportional (sub-) distribution hazards. Approximations for the null distributions of test 
statistics have been validated through simulation experiments. Future releases will provide 
similar tools for checking model assumptions in multiplicative intensity models for recurrent 
data. The package may help to spread the use of recent advocated goodness-of-fit 
techniques in semiparametric regression for time-to-event data.  
 
Keywords: goodness-of-fit; survival data, competing risks; cumulative sums of residuals; 
goftte. 
 

  



 

1. Introduction 
 

In biomedical research, Cox regression analysis [1] is the most commonly used statistical 

method for investigating the association between a survival time and one or more predictor 

variables. Other areas of application are finance [2], criminology [3], reliability [4] and 

industrial engineering ([5],[6]). Typically Cox regression is based on a semi-parametric 

proportional hazards (PH) model relying on two fundamental assumptions: (i) a time-invariant 

multiplicative effect of covariates on the hazard rate function, and (ii) a log-linear effect of 

covariates on the hazard rate function. Several authors have studied the implications of 

model misspecification in Cox regression (Lagakos and Schoenfeld [7]; Lagakos [8]; 

Struthers and Kalbfleisch [9]; Lin [10]; Gerds and Schumacher [11]). The Fine and Gray 

(FG) proportional sub-distribution hazards model is often viewed a weighted Cox regression 

model using inverse probability of censoring weighting commonly adopted for analyzing the 

direct effect of covariates on a specific cumulative incidence function (CIF) [12]. Latouche 

[13] and Grambauer [14] studied the implications of model misspecification in the FG 

proportional sub-distribution hazards (PSH) model. 

 

Lin et al. [15] proposed model diagnostic tools and Kolmogorov-Smirnov (KS) goodness-of-fit 

(GOF) tests based on cumulative sums of martingale residuals for checking the PH, the 

linearity assumptions, and the link function in the Cox model, and showed how to 

approximate the asymptotic distribution of the different test statistics under the null using 

Monte-Carlo methods. Recently Li et al. [16] extended these methods to propose KS 

goodness-of-fit tests for checking the FG model assumptions. Empirical studies of the finite-

sample properties suggested that the KS goodness-of-fit test for the PH or PSH assumptions 

based on cumulative sums of residuals are more sensitive to general non-PH or non-PSH 

alternatives than other tests assuming specific time-varying covariates effects (Kvaloy and 

Neef [17], Li [16]). Moreover, Kvaloy and Neef illustrated the good frequency properties of 

Cramer-von Mises (CvM) and Anderson-Darling (AD) type statistics against general non-PH 

alternatives. 

Two packages in R propose KS-type GOF tests for checking the model assumptions in the 

Cox model and the FG model, respectively the gof [18] and crskdiag [19] packages. Each 

package has its own advantages and limitations. The package gof allows to test for PH using 

the maximal deviation and a CvM type statistic, but provides no test for checking the 



functional form of a covariate. The package crskdiag implements GOF tests based on 

cumulative sums of model residuals that extend the class of GOF tests first pioneered by Lin 

for the Cox model to the FG model [16]. In both packages, the p values are estimated using 

a similar Monte Carlo method, but slightly different from the method originally proposed by 

Lin in the Cox model. Neither gof nor crskdiag implements AD test statistics to test for PH 

and PSH against general alternatives.  

The main purpose of this manuscript is to give an overview of the functionalities of a new R 

package goftte [21] implementing KS-type goodness-of-fit tests based on cumulative sums of 

residuals for the Cox model and the FG model, including Cramer-von-Mises (CvM) and 

Anderson-Darling (AD) type test statistics for checking PH and PSH assumptions.  

 

The remainder of this manuscript is organized as follows. In Section 2 we present the 

different test statistics implemented by the package and the different methods available to 

approximate their asymptotic null distributions. Section 3 provides a basic description of the 

core functions and main subroutines, including details of the programming language and 

classes. Results from simulation studies assessing the empirical type I error rates of the 

different tests are reported in Section 4. In Section 5 a case study is given to illustrate the 

different package functionalities. We end with concluding remarks in Section 6. 

  



2. Methods 

2.1. Data and models 
 

Let � denote the time to failure, � the time to censoring, � ∈ �1, ⋯ , 	
 the failure cause, and � 

a vector of � individual covariates. We assume the data consist of a collection of  

independent observations ��� , ��  ��, ���, where �� = ��⋀ �� is the time to failure or censoring 

observed for the ��� patient, �� = 1  if �� ≤ �� and 0 otherwise. Assuming � is a failure cause 

of specific interest, we note ���|�� the cause-specific cumulative incidence given a set of 

individual covariates, 

���|�� = � � ≤ �, � = �|�!. 
Two regression models are considered, the Cox model and the FG model that simply 

assume that the (sub)hazard rate function "��|�� = − $���|�� %1 − ���|��&⁄   takes the form,  

"��|�� = "(���)*��+,�� 
where "(��� denotes an unspecified baseline (sub)hazard function and + = �+-, ⋯ , +.� a set 

of unknown regression coefficients. Further let  /���� = 0��� ≤ �, �� = �, �� = 0�, 1���� =⥠
−/��� −� where 0�. � denotes the indicator function, and let 45��� be the Kaplan-Meier 

probability estimator of remaining uncensored up to time �. Assuming ��� , ��� and �� are 

conditionally independent given ��, a consistent estimate +6 for + is obtained by solving the 

equation 7�+� = 0 where 

7�+� = 8 9 :�� − ;�-��+, ��
;�(��+, ��< $/����=

(

>

�?-
 

and ;�@��+, �� =  ∑ B����1������@)CDEF>�?-  for G = 0,1 with B���� = 0��� ≤ �� if �� = � or �� = 0, 

B���� = 45��� 45��⋀���⁄  otherwise ([1],[12]). 

2.2. Goodness-of fit test statistics 

 
The package goftte implements goodness-of-fit (GOF) tests based on cumulative sums 

;6��, H� for detecting departures from PH/PSH assumptions and deviations from the assumed 

functional form for a given covariate , where ;6��, H� = ;%+6, �, H& and  

;�+, �, H� = 8 9 :I����0��� ≤ H� − ;�-��+, �, H�
;�(��+, �� < $/�����

(

>

�?-
 

or equivalently 



;6��, H� = ∑ I����0��� ≤ H�B����JK����>�?- . 

Here I�. � denotes a known smooth function, ;�-��+, �, H� =  ∑ B����1����I����0��� ≤>�?-
H�)CDEF, JK���� =  /���� − L 1��M�)CK DEF$Γ5�M��

(   with $Γ5��� = ;�(�%+6, �&O- ∑ $/����>�?-  and H =
%H-, ⋯ , HP& ∈ ℝP. Setting I���� = �� and H = �∞, ⋯ , ∞�, ;6��, H�=7%+6, �& where 7�+, �� denotes 

the score process 7�+, �� = ∑ L S�� −  T�U��C,V�
T�W��C,V�X $/��M��

(>�?- . In the sequel, G will denote the 

index of a covariate of interest, 7@�+, �� the G�� component of the score process, 06@,@��� =
− Y

YCZ 7@�+, ��[C?CK   and ��M� = 06@,@�M� 06@,@�∞�\ . 
The new package makes available three measures of deviation for the user to detect 

departures from PH/PSH assumptions in covariates. The first is based on  KS statistics as in 

Lin et al. [15] and Li et al. [16]: 

	;@ = sup� [7@%+6, �&[. 
The CvM and AD type statistics are also available as they have been recommended for 

detecting general non PH alternatives [17]. These have the following form: 

�`J@ =  9 7@%+6, M&a$��M�=
(

 

 bc@ =  9 7@%+6, M&a
��M��1 − ��M�� $��M�=

(
 

As in gof and crskdiag packages, GOF tests based on maximal deviation statistics 	;@ =
supdZ

[;6@%H@&[, ;6@�H@� = ∑ 0%��@ ≤ H@&JK��∞�>�?-  with H@ ∈ ℝ , were made available for assessing 

the functional form adequacy assumed for covariate ��@ .   

2.3. Methods for approximating the null distribution 

 

Let /�e��� = 0��� ≤ �, �� = 1�, 4��� = � � > �!, Λe��� = − h���� ����⁄ ,  $J�e��� = $/�e��� −
 0��� ≥ ��$Λe��� and $J��+, �� = $/���� − 1��M�)*��+,���"(�M�$M. For any fixed � and H, it 

can be shown using the same probabilistic arguments as outlined in Lin et al. [15] and Fine 

and Gray [12] that the statistic OU
j;�+, �, H� is asymptotically equivalent under the model 

assumptions to a sum OU
j ∑ Ψ�>�?- ��, H�, where  

l���, H� =  9 mI���� − ñ�-��+, M, H�
ñ�(��+, M, H�p qr��M�$J��+, M��

(
+ 9  tu�+, M, H�

vu�M� $J�e�M��
(

 

 



with ñ�w��+, �, H� = lim>→=O-;�w��+, �, H� for � = 0,1,  vu��� = lim>→=O- ∑ 1@���>@?-  and tu�+, �, H� =
− lim>→= O- ∑ L SI���� − |̃�U��C,V,d�

|̃�W��C,V,d�X 0�M ≥ � > ���qr��M�$J��M�=
(>�?- . Let ℎ~��, H� = lim>→=O-�K��, H� 

with �K��, H� = − Y
YC ;�+, �, H�[C?CK  and �̃ = lim>→=O-06, with 06 = − Y

YC 7�+�[C?CK . Again for any fixed 

� and H, it can be shown using a Taylor’s series expansion of OU
j;6��, H� around + (Lin [15], 

Boher [22]) that OU
j;6��, H� is asymptotically equivalent to the sum OU

j;���, H� =
OU

j ∑ ;����, H�>�?- , where ;����, H� = l���, H� − ℎ~��, H��Õ-Σ� with Σ� = l��∞, ∞�  when letting I�H� =
H. As under the null, OU

j;���, H� is essentially a sum of mean-zero independent variables; we 

approximate the limiting distribution of OU
j;6��, H�  by a mean zero Gaussian process. 

Two Monte Carlo procedures have been implemented to empirically generate samples 

representing the null distribution. Following Lin [15] and Liu [23], approximations to the null 

distributions are obtained by repeatedly sampling random normal deviates �4��
�?-,…,> to 

draw J realizations OU
j;����, H� = OU

j ∑ ;6���, H�4��>�?- . The values ;6���, H� are obtained by 

replacing the unknown limiting values ℎ~��, H� and � ̃ in ;����, H� with consistent sample 

estimates, ;6���, H� = ΨK���, H� − �K��, H�06O-Σ5� and setting 

Ψ����, H� = ��0��� ≤ �� :I���� − ;�-�%+6, ��, H&
;�(�%+6, ��, H&< +  �1 − ���0��� ≤ �� �%+6, �� , H&

∑ 1@����>@?-
 

or  

Ψ����, H� = 9 :I���� − ;�-�%+6, M, H&
;�(�%+6, M, H&< B@�M�$JK@�M��

(
+ 9 �%+6, M, H&

∑ 1@�M�>@?-
$JK@e�M��

(
 

with   
�%+6, �, H& = − ∑ 0%� > �@& L �I%�@& − T�U�%CK,V,d&

T�W�%CK,V,d&� B@�M�$JK@�M�=
�>@?- , 

$JK�e��� = $/�e��� − 1���� ∑ ��Z��V��Z�U
∑ �Z�V��Z�U  and Σ�K = l�K �∞, ∞�  when letting I�H� = H. P values are 

then derived from the randomly perturbed processes  �OU
j;����, H���?-,…,�as the sample 

proportion of simulated KS type statistics greater than the observed value of the test statistic.  

  



3. Package description 
 

As Monte Carlo method is characterized by long lead times, the main computations were 

carried out using primitive functions using C++ code, and possibly parallelized in the C++ 

environment. Results are made available to the user by two main generic S3 function, fcov() 

and prop(), including methods for R objects of class coxph{survival} [24], cph{rms} [25], 

crr{cmprsk} [26]. Compiled binaries are available for Linux, macOS, Solaris and Windows 

platforms. The package with detailed documentation is distributed freely by CRAN 

(Comprehensive R Archive Network). Table 1 summarizes the different testing functionalities 

made available in the R packages goftte, gof and crskdiag. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Type I error 
 
We conducted numerical studies to evaluate the level I properties of GOF tests with level 

� =  5%  checking departures from PH, PSH or functional linear form in covariate Z under 

both regression settings. We first checked the Type I error control and compared the 

performance of goftte to other packages. Repeated sets of independent data were generated 

from a model with a single covariate �,  �~/�0,1�, cumulative incidence function for a type 1 

failure of interest given by 

F��|�� = 1 −  1 − ��1 − )O��!�W.��
 

and various sample sizes (N=50,100,200). Independent uncensored data were obtained by 

first drawing each failure type with probability Pr� � = 1|�� = 1 −  1 − �!�W.��
 and exact failure 

time from the distribution F��|�� if failure of type 1 or from an exponential distribution with 

rate ¡*��)O(.¢E�. To assess the performance under both regression settings, the value for � 

was set to 1 and to a scalar <1 to yield an overall type 1 failure rate under PSH equals to 

0.66. Censored data were obtained by drawing independent censoring times from an 

exponential distribution chosen to yield 0.15, 0.30 and 0.50 overall crude censoring rates. 

For all scenarios, a total of 2000 repetitions was used to estimate with precision around 1% 

the true rejection rates of 5%. In Table 2 are reported the empirical sizes for all new testing 

functionalities using the two methods for p-value approximation: the first called the Lin 

method and the last implemented in other packages [20] and referred to as the Liu method. 

Overall all proposed tests maintained the empirical error rates close to the 5% Type I 

nominal level even in mild to moderate sample sizes. In the few cases where the differences 

between the observed and theoretical type I error rates exceeded 1%, the Lin method 

showed some conservatism as opposed to the Liu method who exhibited some anti-

conservatism. The Lin method was set as the default method to approximate the p values 

because of its apparent  conservatism in situations where error rates of type I were outside 

the expected range, except for checking the PSH assumptions where the Liu method better 

maintained the error rates close to the 5% nominal level. According to these default settings, 

we evaluated the empirical type I error rates between goftte and  gof (cf Supplementary 

Table 1)., goftte and crskdiag (cf Supplementary Table 2). With respect to KS and CvM 

statistics, we observed some empirical error rates higher than expected with gof as 

compared to goftte. These results are consistent with our findings from Table 2 suggesting 

that the Lui method rejects too frequently. Note that the CvM statistic for checking the PH 

assumptions in gof differs slighthly from described in paragraph 2.2 with ���� = $�  20!. 
Overall the rejection rates for KS statistics reported with crskdiag were higher than  those 



reported using goftte. In particular, the empirical Type I error rates for PSH with crskdiag 

increased up to 7% with moderate to high censoring rates.  

  



5. Examples 
 
As an illustrative example, we consider the dataset “pbc” available in the R package survival 

[24]. The data consists of times to occurrence of a first event (death, transplantation) or 

censoring in a set of 418 patients with primary biliary cirrhosis of the liver followed at the 

Mayo Clinic, of whom 161 died and 25 had liver transplant first.  

Following Dickson et al. [27] and Li et al. [9], we used multivariate PH and PSH regressions 

models with terms for edema, age at diagnosis, and log-transformed serum albumin, serum 

bilirubin and prothrombin time, to model the overall survival and the cumulative incidence of 

death without transplant. To assess the PH or PSH model assumptions, we first estimated 

the regression coefficients using the functions coxph{survival} and crr{cmprsk} and test for 

PH/PSH using the functions prop.coxph() and prop.crr() with default resampling methods 

implemented by goftte package. Note that the default number of independent realizations 

(R=1000) used to approximate p values was over-ridden (R=20000) to improve accuracy. 

The generic function plot() plotted the observed and the first 50 simulated paths for each 

component of the score process vs time (see Figure 1 and Figure 2). For each covariate the 

output displays three tests for checking proportionality and one for functional form. In 

addition, the Monte-Carlo approximation method selected and the number of simulations 

used are reported. All the results with default resampling method are summarized in Table 3.  

 

# Estimation of regression coefficients, 
data(pbc,package=”survival”) 
attach(pbc) 
fit.coxph <- coxph(Surv(time,status==2) ~ age+edema+log(bili) + log(albumin) + log(protime), ties="breslow") 
fit.crr<-crr(ftime=time,fstatus=status,cov1=cbind(age,edema,log(bili),log(albumin),log(protime)),failcode=2) 
 
# Test for PH/PSH assumptions  
coxph.prop<-prop(model=fit.coxph,variable=c("age","edema","log(bilirubin)","log(albumin)","log(protime)"), 
R=20000, plots=50, seed=10) 
crr.prop<-
prop(model=fit.crr,ftime=time,fstatus=status,cov1=cbind(age,edema,log(bili),log(albumin),log(protime)),failcode=2
,variable=c("age","edema","log(bilirubin)","log(albumin)","log(protime)"),R=20000, plots=50,seed=10) 
 
# Print results of tests for PH for log prothrombin time in output windows 
print(coxph.prop,idx=5); plot(coxph.prop, idx=5) 
 

Rejection p-values associated to Lin’s approximation for proportional hazards assumption 

- - -  

Kolmogorov-Smirnov-test : p-value<0.001 

Cramer-von-Mises-test : p-value<0.001 

Anderson-Darling-test : p-value<0.001 

Based on 20000 realizations. Cumulated residuals ordered by log(protime)-variable.  

 



# Print results of tests for PSH for edema in output windows 
print(crr.prop, idx=2); plot(crr.prop, idx=2) 
 

Rejection p-values associated to Liu’s approximation for proportional subdistribution hazards assumption 

- - -  

Kolmogorov-Smirnov-test : p-value=0.024 

Cramer-von-Mises-test : p-value=0.0437 

Anderson-Darling-test : p-value=0.04995 

Based on 20000 realizations. Cumulated residuals ordered by edema-variable.  

 

KS and CvM test statistics rejected the PH assumptions for log prothrombin time and edema. 

The same conclusions hold using te package gof. The default KS p-values for PH were 

almost identical, only the differences for CvM statistics were more pronounced because of 

the lack of homogeneity of the definitions between the packages. For example, using gof and 

goftte, the p value of KS statistics for Edema were respectively p=0.0210 and p=0.0218, 

while the p value of CvM statistics for Edema were respectively p=0.0244 and p=0.0474. 

Regarding PSH assumption, the KS test rejected the null hypothesis at the 5% significance 

level for Edema and log prothrombin time whatever the package used. The CvM and AD 

statistics as implemented in gofttte led to the same conclusions. There were some noticeable 

differences in p values for PSH between crskdiag and goftte. As an example, the p value of 

the KS test for PSH for log(Bilirubin) was p=0.0757 using crskdiag and p=0.2868 using 

goftte. As more than 50% of the patients were censored, this large difference can be 

attributed to the lack of Type I error control observed with crskdiag (Supplementary table 2). 

Several authors have emphasized the inadequacy of the linear functional form for 

untransformed bilirubin in Cox regression (Lin & Wei [10]; Leon & Tsai [28]; Kvaloy & Neef 

[17]) and suggested a model with logarithm transformation of bilirubin as an alternative 

[15],[16] For illustrative purposes, we estimated the regression coefficients assuming 

untransformed bilirubin with other covariates left unchanged, and then checked the adequacy 

of untransformed bilirubin in both regression settings. 

# Estimation of regression coefficients assuming untransformed bilirubin, 
fit2.coxph <- coxph(Surv(time,status==2) ~ age+edema+bili + log(albumin) + log(protime), ties="breslow") 
fit2.crr<-crr(ftime=time,fstatus=status,cov1=cbind(age,edema,bili,log(albumin),log(protime)),failcode=2) 
 

# Test for untransformed bilirubin functional form  
coxph2.fcov <- fcov(model=fit2.coxph, variable=c("age", "edema","bilirubin","log(albumin)","log(protime)"), 
R=20000, plots=50, seed=10) 
 
crr2.fcov <-
fcov(model=fit2.crr,ftime=time,fstatus=status,cov1=cbind(age,edema,bili,log(albumin),log(protime)),failcode=2,var
iable=c("age","edema","bilirubin","log(albumin)","log(protime)"),R=20000, plots=50,seed=10) 
 

# Print summary information of GOF test for untransformed serum bilirubin 



print(coxph2.fcov,idx=3) 
 

Rejection p-values associated to Lin’s approximation for covariate(s) functional form assumption 
- - -  
Kolmogorov-Smirnov-test : p-value<0.001 
Based on 20000 realizations. Cumulated residuals ordered by bilirubin-variable.  
- - - 
 

print(crr2.fcov, idx=3) 
 

Rejection p-values associated to Lin’s approximation for covariate(s) functional form assumption 
- - -  
Kolmogorov-Smirnov-test : p-value<0.001 
Based on 20000 realizations. Cumulated residuals ordered by bilirubin-variable.  
- - - 
As expected, the KS test for untransformed bilirubin rejected the null hypothesis in both 

regression models �� < 0.001�. Deviations of the observed cumulative sums process from 

simulated paths under the null are depicted in Figure 3 (PH model) and Figure 4 (PSH 

model).  After substituting bilirubin by log(Bilirubin), tests assessing the functional form of 

covariate remained non statistically significants (Table 3). We did not noticeable difference 

between the p values derived from goftte and crskdiag. 

6. Discussion 
 
The Cox model [1] and the Fine and Gray model [12] are the most widely used statistical 

regression models for analyzing right-censored survival and competing risks. Two different R 

packages, respectively the package gof [18] and the package crskdiag [19], implemented 

omnibus KS tests checking the Cox and the Fine and Gray models with cumulative sums of 

residuals. The package goftte [21] can be viewed as add-on to the package gof allowing 

assessing misspecification in the functional form of a covariate as proposed in Lin et al. [15] 

and detecting general non PH alternatives using AD type statistic. It also provides diagnostic 

tools and goodness-of-fit methods based on cumulative sums of residuals for checking the 

Fine and Gray model assumptions, including CvM and AD statistics against general non PSH  

alternatives not available from crskdiag [19],. 

Two resampling methods have been implemented in goftte to derive the p values, a first 

method pioneered in Lin &al. for checking the model assumptions in the Cox model [15], and 

a similar method implemented in gof and crskdiag [20]. Numerical results showed that all 

different test statistics have empirical rejection rates close to the expected 5% error rate. In 

few cases where the empirical rejection rates were outside of the expected range, the Lin 

method exhibited some conservative properties as opposed to the Liu method.  



In Cox regression settings, unlike gof, the package goftte allows to test the functional form of 

a covariate and to test against general non PH alternatives using AD test statistics [17]. In 

FG regression settings, the package goftte allows to test against general non PSH 

alternatives using different test statistics, including CvM and AD type statistics. More 

important, our numerical results showed  that KS statistics in crskdiag failed to control the 

Type I error rate under moderate and heavy censoring.  

Despite the computational burden, the use of the C++ environment for parallelization of the 

code allows efficient computing and thereby a relatively short execution time enabling one to 

increase the number of iterations in the Monte Carlo step in order to get same p values 

rounded up to 3 digits with different seeds in large samples.  

  



7. Conclusion 
 

This paper introduces a new package goftte for R to check model assumptions in semi-

parametric Cox-type regression for standard failure time data and competing risks data. The 

package available from CRAN R-like repositories performs model diagnostics and goodness-

of-fit tests based on cumulative sums of residuals to detect departures from proportionality 

assumptions or functional misspecifications in regression covariates. In the present 

manuscript we explored the ability of our package to identify departures from modeling 

assumptions through real applications where violations in non-proportionality assumptions or 

functional misspecifications in specific regression covariate have been clearly evidenced in 

the literature.  

The package goftte for R propose new testing functionalities, including AD test statistics 

against general non PH and non PSH alternatives. Unlike crskdiag, the  package goftte 

controls the Type I error under moderate and heavy censorings. Empirical studies aimed to 

assess the type II level properties and the sensitivity of the different testing capabilities under 

specific alternatives will be reported in a future manuscript.  

The development of this package work was originally oriented to medical applications. The 

scope of applications could be extended to other fields where Cox-type regression is now 

becoming a more popular analytical tool. In particular in industrial engineering studies where 

the Cox model assumptions are often checked graphically [30]. 
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The package can be load on CRAN repository at https://CRAN.R-project.org/package=goftte.  
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Figure legends 
 

Figure 1: Checking PH assumption for log(protime) 
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Figure 3: Checking functional form of Bilirubin in PH model 

Figure 4: Checking functional form of Bilirubin in PSH model 

 











 Table 1: Comparison between the packages main features. 
 

Assumption Model Statistic  Packages 

Goftte Gof Crskdiag 

            

Proportionality Cox KS x x x 

CvM x x 

AD x 

Fine & Gray KS x x 

CvM x 

AD x 

Functionnal form Cox KS x x 

  Fine & Gray KS x   x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Empirical sizes (%) for 2000 simulations of goftte tests under (H0) based on cumulative 

sums of residuals (R=1000). 

      

    

Proportionality assumption 

  
Functional 

form  
assumption  

Model 
Event Censoring Sample KS   CvM   AD KS 

Rate 
(type 1) 

Rate Size 
 

Lin Liu 
 

Lin Liu 
 

Lin Liu 
 

Lin Liu 

Cox 

1 0 50 5.20 5.75 4.70 6.20* 4.35 6.30* 3.00* 4.30 

100 5.90 5.85 4.65 6.15* 3.95* 6.10* 4.15 5.25 

200 5.70 5.95 5.70 6.00 5.75 6.55* 4.60 5.20 

0.85 0.15 50 4.05 4.85 4.15 5.60 3.60* 5.55 3.40* 5.65 

100 6.05* 6.25* 4.65 5.60 3.95* 5.95 4.30 5.05 

200 5.95 6.25* 5.40 5.40 4.95 5.50 4.95 5.25 

0.7 0.3 50 4.10 5.55 4.00 5.35 3.50* 5.30 3.90* 6.60* 

100 6.00 6.65* 5.05 6.15* 5.00 6.40* 4.40 5.90 

200 4.95 5.25 5.10 4.90 4.65 5.35 5.30 5.95 

0.5 0.5 50 4.65 5.30 4.40 5.90 3.75* 5.40 3.55* 6.25* 

100 4.80 5.25 5.10 5.80 5.00 5.60 5.20 7.00* 

200 4.20 4.75 4.20 4.75 4.05 4.95 5.15 5.50 

                                

Fine  
and  
Gray 

0.66 0 50 5.30 5.10 4.70 5.00 4.10 4.70 3.75* 5.25 

100 4.80 4.90 5.55 5.65 4.60 5.10 5.35 6.20* 

200 4.50 4.60 4.20 4.25 4.05 4.00 5.20 5.70 

0.56 0.15 50 4.10 5.10 4.30 4.65 3.45* 4.35 3.25* 5.30 

100 4.55 5.00 4.85 5.30 4.40 4.75 5.00 6.40* 

200 4.90 5.10 4.20 4.60 3.80* 4.25 4.60 5.60 

0.46 0.3 50 4.25 4.75 4.30 5.30 3.15* 4.25 3.30* 5.90 

100 3.80* 4.75 4.35 4.70 4.50 4.50 4.50 6.50* 

200 5.65 6.00 4.80 5.45 4.40 5.50 5.10 6.05* 

0.32 0.5 50 3.80* 4.65 3.50* 5.30 2.55* 4.05 2.50* 4.65 

100 3.85* 4.45 4.00 4.65 3.35* 4.40 4.55 6.10* 

200 4.85 5.40 4.35 4.70 4.10 4.25 4.40 5.45 

                        

KS : Kolmogorov-Smirnov ; CvM : Cramer-von-Mises ; AD : Anderson-Darling; R : Number of Monte-Carlo simulations 
to generate the limiting null distribution of the statistics; 
*: Empirical sizes outside of the 1% range from the expected nominal level (5%) 



Table 3: Rejection p-values for goftte on Mayo Clinic Primary Biliary 

Cirrhosis (PBC) data under proportionality and functional form assumptions 

(R=20000). 

    Proportionality assumption 

  Functional 

form 

assumption 

Variable analyzed KS CvM AD  KS 

PBC data (Model 1) 

Overall survival 

Age 0.4219 0.57315 0.66045 0.396 

Edema 0.0218 0.04745 0.06175 0.3313 

log(Bilirubin) 0.09775 0.2037 0.2303 0.0511 

log(Albumin) 0.51905 0.52415 0.55935 0.58165 

log(Protime) <0.001 <0.001 <0.001 0.38485 

            

PBC data (Model 2) 

Death incidence 

Age 0.84635 0.6919 0.61285 0.19225 

Edema 0.024 0.0437 0.04995 0.29705 

log(Bilirubin) 0.2868 0.2736 0.2935 0.09425 

log(Albumin) 0.23975 0.1325 0.1101 0.4897 

  log(Protime) 0.00435 0.00415 0.0034   0.2148 

KS : Kolmogorov-Smirnov ; CvM : Cramer-von-Mises ; AD : Anderson-Darling; R : Number of 
Monte-Carlo simulations to generate the limiting null distribution of the statistics; 

 

 

 

 

 



 Supplementary Table 1: Empirical sizes (%) in a Cox model under proportional hazard 

assumption for 2000 simulations and n=200 for goftte and gof tests based on cumulative 

sums of residuals (R=1000). 

    

  

Proportionality assumption 

Event Censoring 

Rate 
 (type 1) 

Rate 
 

Goftte 
 

Gof 

KS CVM AD KS CVM 

              

1 0 5.70 5.70 5.75 5.90 6.80* 

0.15 0.15 5.95 5.40 4.95 6.30* 5.75 

0.3 0.3 4.95 5.10 4.65 5.25 5.95 

0.5 0.5 4.20 4.20 4.05 4.30 5.25 

              

 KS : Kolmogorov-Smirnov ; CvM : Cramer-von-Mises ; AD : Anderson-Darling; R : Number of Monte-Carlo 
simulations to generate the limiting null distribution of the statistics; n : sample size for each simulation; 
*: Empirical sizes outside of the 1% range from the expected nominal level (5%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 Supplementary Table 2: Empirical sizes (%) in a Fine and Gray model under proportional sub-distribution 

hazard and functional form assumptions for 2000 simulations and n=200 for goftte and crskdiag tests based on 

cumulative sums of residuals (R=1000). 

 

    

  

Proportionality assumption 

  
Functional form  

assumption 

Event Censoring 

Rate 
 (type 1) 

Rate 
 

Goftte 
  

Crskdiag 
 

Goftte 
 

Crskdiag 

KS CVM AD KS KS KS 

                

0.66 0 4.60 4.25 4.00 4.65 5.20 5.75 

0.56 0.15 5.10 4.60 4.25 5.65 4.60 5.75 

0.46 0.3 6.00 5.45 5.50 6.55* 5.10 5.50 

0.32 0.5 5.40 4.70 4.25 7.60* 4.40 5.45 

                              

 KS : Kolmogorov-Smirnov ; CvM : Cramer-von-Mises ; AD : Anderson-Darling; R : Number of Monte-Carlo simulations to generate the 
limiting null distribution of the statistics; n : sample size for each simulation; 
*: Empirical sizes outside of the 1% range from the expected nominal level (5%) 
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