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Abstract

A novel theoretical framework for describing the dynamics of transient anions is

presented. An ensemble of classical trajectories is propagated on-the-fly, where reso-

nance energies are computed with bound state techniques, and resonance widths are

modeled with a combination of bound state and scattering calculations. The method-

ology was benchmarked against quantum dynamics results for model potential energy

curves, and excellent agreement was attained. As a first application, we considered

the electron induced dissociation of chloroethane. We found that electron attachment

readily stretches the C–Cl bond, which stabilizes the transient anion within ∼10 fs and

leads to the release of fast chloride ions. Both magnitude and shape of the computed

dissociative electron attachment cross sections are very similar to the available exper-

imental data, even though we found the results to be very sensitive on the accuracy

of the underlying methods. These encouraging results place the proposed methodol-

ogy as a promising approach for studies on transient anions dynamics of medium sized

molecules.

1



1 Introduction

Among electron induced processes in molecular systems, dissociative electron attachment

(DEA) plays a prominent role in a series of physico-chemical environments. Basically, a

molecule captures an incoming low-energy electron (≤10 eV) and forms a transient anion

state, or resonance, which triggers off a nuclear dynamics that may culminate in dissociation.

In interstellar space and planetary atmospheres, DEA may generate small inorganic and even

prebiotic molecules.1 Cold plasmas, which are currently employed in many technological ap-

plications,2 rely on DEA of alkanes and haloalkanes in order to create species responsible for

the devised treatment. One proposed application where DEA would be an active participant

is the pre-treatment of lignocellulosic material, also based on cold plasmas.3 DEA is also

recognized to have a range of implications in materials4,5 and environmental sciences.6,7 A

major motivation concerns the interaction of low-energy electrons with biomolecules.8 They

are very efficient in inducing single and double strand breaks in DNA,9 which may account

for long-term biological damage. On the other hand, radiosentizer compounds typically

present much larger DEA cross sections when compared to non-sensitizers,10,11 which sug-

gest that electrons might play a decisive role in its bioactivity. DEA has also been suggested

to participate in other biological processes.12,13 These and other situations where molecules

fragment upon collision of low-energy electrons are reviewed in reference.4

In spite of its significance as a fundamental physico-chemical process, and its relevance

to several fields, theoretical attempts to describe DEA are still limited to very small or

to simplified systems. Non-local resonance theory,14 which is the most accurate treatment

for electron induced processes, has been successfully employed for a series of diatomics or

pseudo-diatomic models.15,16 High accuracy comes with high cost, and for larger molecules

one usually employs a local approximation.14 Non-local effects are important for broad res-

onances or near-threshold phenomena. Otherwise, the local approximation provides similar

results with a significantly reduced computational cost.14 Within the local approximation,

the available theoretical contributions to the problem usually rely on building potential en-
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ergy surfaces with time consuming scattering calculations followed by nuclear wavepacket

propagations.17–19 When considering all vibrational degrees of freedom, this approach is still

restricted to diatomics and triatomics,18–20 and even then calculations are very costly. If

the system of interest is a large molecule, one has to restrict the multidimensional potential

energy surfaces to one21 or two17 vibrational coordinates. Molecular dynamics simulations

are sometimes employed for the later stages of DEA,22–24 but without accounting for the au-

todetachment probability of its initial stage, when the anion is still transient. Alternatively,

potential energy curves computed along reaction coordinates can also help understanding

DEA mechanisms.25,26 Although theory has been providing significant contribution to the

understanding of electron induced processes in small molecules, the current approaches are

too computationally demanding to be applied to more complex systems and/or to more vi-

brational degrees of freedom. In view of these difficulties, the large amount of DEA data

obtained in the last decades, from small27 to considerably complex biomolecules,12 remain

mostly untouched by theory.

Faced with the various motivations related to DEA of molecular systems, the existence

of abundant experiments on the process, and the limited contribution from theory to the

problem up to date, we propose a new theoretical approach to investigate electron induced

processes, based on mixed quantum-classical nuclear dynamics of the transient anion states.

While this class of methods has been widely employed to survey species with constant charge

state, it has not yet been adapted to describe transient anions, mostly due to the difficulty

in describing autodetachment from these states.

In order to validate the proposed methodology, we have benchmarked it against quantum

dynamics results for a series of model one-dimensional potential energy curves (PECs) for

a single dissociative state. Then, we applied it to model DEA to an actual molecule. The

chosen target should have a single low-lying shape resonance, count with available experi-

mental DEA cross sections for comparison purposes, and should be larger than a diatomic

or triatomic. Chloroethane (CH3CH2Cl) fulfills these requirements and was thus selected
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as the first case study. Electron attachment gives rise to a σ∗ resonance, which is centered

at impact energies around 2.5 eV, as revealed by electron transmission spectroscopy (ETS)

measurements28 and by scattering calculations.29 This resonance induces the elimination of

the chloride ion (Cl−), which has a maximum yield around 1.5 eV.30,31 Short lived resonances,

such as those of chloroalkanes,31–34 promote a shift from the vertical resonance energy to the

maximum of the DEA cross section. This redshift is understood only at a qualitative level,

and is related to the considerable difference in autodetachment lifetimes at energies lying

below and above the center of the resonance. Our goals here are twofold. First, to propose

the methodology and validate it by comparing to quantum dynamics results. And second, to

demonstrate its potential and feasibility for a quantitative description of DEA to polyatomic

molecules, by considering the chloroethane molecule as a test case.

2 Theory

The basic idea of our proposed computational strategy is to classically propagate nuclei on

potential energy surfaces computed on-the-fly with bound state methods, while the prob-

ability of electron autodetachment is evaluated with an ad-hoc model built from electron

scattering calculations. The first component of the problem comprises the nuclear dynamics,

which we have described with mixed quantum-classical trajectory method.35–37 Basically,

the full quantum mechanical nuclear wavepacket is replaced by an ensemble of independent

and classical trajectories propagated on-the-fly, along adiabatic PECs that are computed

as needed. It is thus expected that the ensemble average of an observable should behave

similarly to its quantum mechanical expectation value. For many years now, this method

has been successfully employed in photophysics and photochemistry problems,36,37 and we

thus believe its extension to electron-induced processes should be equally reasonable. Next

is the electronic description. Since the resonant anion is coupled to the continuum of scat-

tering states, its description would ideally require the use of scattering methods38–40 or
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adapted bound state methods, such as the complex absorbing potential41,42 and the stabi-

lization method.43,44 Conventional bound state methods can also be employed,45–47 as long

as one ensures that the roots of the Hamiltonian correspond to the quasi-bound state (a

valence anion state), rather than a pseudo-continuum state (the neutral molecule plus a free

electron). This so-called variational collapse of the wavefunction can be circumvented by

avoiding very diffuse functions. More importantly for the present discussion, methods that

ignore the discrete-continuum coupling cannot provide information on the autodetachment

probabilities, which is key for a quantitative description of resonant anions dynamics.

The discrete-continuum coupling of the transient state is given by the nonlocal resonance

width Γ(q, E), which depends on both the impact energy E and the nuclear coordinates of the

target q. Within local descriptions, the energy dependence is substituted by the resonance

energy Er, which defines a local resonance width ΓL(q) = Γ[q, Er(q)].48 As long as the

resonance width is not very large and thus does not overlap the collision threshold, local

approximations provide very similar DEA cross sections to the full nonlocal description.48

In this case, the transient anion state can be characterized by a complexed value resonance

energy ǫ:

ǫ = Er −
i

2
ΓL, (1)

where the real component part Er defines the energy of the transient anion relative to the

neutral, which is called resonance energy or resonance position. The decay of the state

by electron detachment is accounted for by the imaginary component −iΓL/2, where ΓL is

the local resonance width (which controls the autodetachment rate), while 1/ΓL (in atomic

units) is the autodetachment lifetime. Here and throughout the text we are going to use

atomic units.

The calculation of DEA cross sections based on a classical formalism has been presented

before.49,50 Much of the following construction is based on these previous works. There

are, however, three key differences from their derivation to ours. First, Lehr et al49,50 have

assumed a classical distribution for the nuclear degrees of freedom, while we adopt the Wigner
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distribution associated with the nuclear wavepacket, which has been shown to be much more

accurate in other applications.51–53

Second, while we also employed the local resonance width ΓL(q) for the dynamics propa-

gation, we kept the energy dependent resonance width Γ(q, E) in the attachment probability.

In a sense, this is equivalent to the semilocal approximation,14,54 which uses the local width

for the wavepacket propagation and the nonlocal version for the entrance and exit ampli-

tudes. We further assumed energy and coordinate dependence of the width function to be

separable: Γ(q, E) = g(q)2γ(E), as is typically done in semilocal descriptions of quantum

dynamics.14,48,54 The g(q) function is built in such a way that the nonlocal width Γ(q, E)

coincides with the local width ΓL(q) at the resonance energy (E = Er(q)):

g(q)2 =
ΓL(q)

γ(Er(q))
, (2)

such that:

Γ(q, E) = ΓL(q)
γ(E)

γ(Er(q))
. (3)

And third, in Ref.49,50 the DEA cross section curves were obtained by transforming from

coordinate to resonance energy variables, since the relation between these was known in

their one-dimensional PEC. This is clearly not the case in actual molecules, which ulti-

mately motivates the idea of sampling initial conditions and numerically propagating the

trajectories. Here, the DEA cross sections are obtained by assigning a broadening function

to each trajectory, as is usually done in calculations of photoabsorption cross sections.55

We start by considering the neutral target is prepared in a state whose Wigner distri-

bution is given by W (x), where x = (q0,p0) denotes a nuclear phase space point with

coordinates q0 and momenta p0. The Wigner distribution W (x) represents the probability

density function (PDF) for finding the nuclear variables at x. Now, the rate for electron

attachment is given by Γ(q0, E), and we assume it takes place when the kinetic energy of the

incoming electron E matches the resonance energy Er(q0), which brings in a delta function
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δ[E−Er(q0)]. This implies a vertical electron capture, in the sense that the nuclear degrees

of freedom x remain unaltered. The multiplication of these factors provide the probability

for electron attachment patt(x, E)dx:

patt(x, E)dx = Γ(q0, E)δ[E − Er(q0)]W (x)dx. (4)

Once the transient anion is formed, the nuclear coordinates evolve in time (q(x, t)) ac-

cording to Hamilton’s equations of motion, where we explicitly kept the dependence on the

initial condition x. Due to the time reversal symmetry of electron capture, both attach-

ment and detachment rates at q must be the same and equal to ΓL(q). Instead of working

with the detachment probability, it is more convenient to consider the survival probability

Psurv(x, t), which is the probability that electron autodetachment has not taken place until

time t for the initial condition x. At each instant t, the survival probability is decreased by

the detachment probability, which provides the following equation:

Psurv(x, t+ dt) = Psurv(x, t) [1− ΓL[q(x, t)]dt] . (5)

And given that Psurv(x, t = 0) = 1 (electron capture sets the clock), the survival probability

can be computed in closed form:49,56

Psurv(x, t) = exp

[

−
∫ t

0

ΓL[q(x, t
′)]dt′

]

. (6)

As long as the resonance width is different from zero, the survival probability will be a

monotonically decreasing function of time. When the anion becomes more stable than the

neutral, autodetachment no longer takes place (ΓL = 0), and Psurv(x, t) converges to the final

survival probability, which we denote Psurv(x). A scheme for the electron induced dynamics

and the competition between DEA and autodetachment is represented in Fig. 1.

The mixed quantum-classical DEA cross section σ is constructed by integrating the prod-
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Figure 1: Schematic representation of electron induced dynamics of the molecule AB. Initially
(left panel), electron attachment promotes the nuclear wavepacket from the neutral ground
state AB (black curve) to the transient anion state AB− (orange curve), thus triggering
the dynamics of the nuclei (represented by the red arrow) along a dissociative coordinate.
While the anion lies higher in energy than the neutral, the resonance width Γ accounts for
the possibility of electron detachment (middle panel). At the end (right panel), part of the
wavepacket remains in the anion potential energy curve (accounting for dissociation), and
part will lie in the neutral curve (accounting for vibrational excitation). The competition
between dissociative electron attachment (DEA) and autodetachment is governed by the
survival probability P = exp

[

−
∫

Γ(t)dt
]

.

uct of the electron attachment patt(x, E) and the survival Psurv(x) probabilities over the initial

conditions phase space x:49,57

σ(E) =
π

E

∫

Γ(q0, E)δ[E − Er(q0)]Psurv(x)W (x)dx. (7)

The integral in eq 7 is fit to be evaluated within the nuclear ensemble method.55 An

ensemble of initial conditions is sampled according to the Wigner distribution W (x), which

effectively transforms the integral into an average over the ensemble. Given the constraint

imposed by the delta function in eq 7, each initial condition determines the energy E for

which the cross section is computed. Therefore, the energy dependence of the cross section is

accounted for by the different initial resonance energies, which in turn reflects the underlying
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Wigner distribution. In order to shift from a collection of delta functions to an actual cross

section curve, we have assigned a broadening function gl(x, E) to each trajectory, similarly

to what is done in photoabsorption cross section calculations.55 This also allows for the ratio

γ(E)/γ(Er(q)) (eq 3) to become different from one when the impact energy does not coincide

with the resonance energy. Here we have employed a generalized Breit-Wigner profile:

gl(q0, E) =
N(q0)

π

η(q0, E)/2

[E − Er(q0)]2 + [η(q0, E)/2]2
, (8)

where N(q0) is a normalization constant ensuring that
∫

∞

0
gl(q0, E)dE = 1. In particular,

we have gl(q0, E) ∼ δ[E − Er(q0)] when η → 0. We could have used a constant broadening

parameter (η(q0, E) = η), which would give a Lorentzian function. Instead, we have incor-

porated the same γ(E) function from the nonlocal width (eq 3) into the broadening function,

which then leaves us with a single broadening parameter η:

η(q0, E) = η
γ(E)

γ(Er(q0))
. (9)

Whether we adopt a constant or energy dependent broadening function makes a very small

difference on the DEA cross section curves we have computed, but the later option should be

more accurate for resonances closer to 0 eV, as Wigner’s threshold law58 would be accounted

for with an appropriate γ(E).

When accounting for the separable width function, the initial conditions sampling and

the broadening function, the working expression for the DEA cross sections becomes:

σ(E) =
π

E

1

N

N
∑

i=1

γ(E)

γ(Er(qi
0))

ΓL(q
i
0)gl(q

i
0, E)Psurv(x

i), (10)

where the superscript i denotes one of the N trajectories, whose initial conditions x
i =

(qi
0,p

i
0) are sampled from the Wigner distribution.

For the dynamics of chloroethane, the autodetachment lifetime was modeled as follows.
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First, we have assumed that the local resonance width dependence on position can be ap-

proximated by an explicit function of the corresponding resonance energy:

ΓL[q(x, t)] ≃ ΓL[Er(q(x, t))]. (11)

We performed ab-initio electron scattering calculations (to be described in Sec. 3.5), for

four geometries where the C–Cl bond distance was varied, which provided pairs of resonance

energies and widths. We further included the point (Er = 0,ΓL = 0) into the set, which

guarantees that autodetachment cannot take place when the anion becomes electronically

stable. Since we found resonance energies and widths to be quite correlated, the instan-

taneous ΓL[Er(q(x, t))] was obtained from a third-order polynomial interpolation59 to the

computed points. Accounting only for the C–Cl stretching coordinate when building our

model for the resonance width is justified a posteriori, since the dynamics simulation re-

veals that the anion relaxes mainly via the elongation of the C-Cl bond. More sophisticated

models (that include an explicit dependence on the vibrations) could be devised, but that is

beyond the scope of the present work. But based on the character of the state and on the

actual results from the dynamics, we anticipate the effect of the other degrees of freedom to

be of lesser importance to the resonance width.

While the scattering calculations served mainly to provide a reliable model for the au-

todetachment probabilities, they were not employed for the calculation of energies and gra-

dients during the dynamics. Rather, bound state methods (to be described in Sec. 3.4) were

employed for the calculation of anion energies (Vd) and energy gradients, as well as for a

single point calculation of the neutral ground state energy (V0), which then provided the

instantaneous resonance energy (Er). We stress that a key benefit of the proposed method-

ology lies on the observation that resonance positions can be estimated based on bound state

methods, and these are usually less computationally demanding than scattering calculations.

Furthermore, the former class of methods usually offers analytical nuclear gradients (pivotal
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for the efficiency of the dynamics), which is not the case for the later. Finally, the com-

puted resonance energy is employed in the above-described autodetachment model in order

to evaluate the local resonance width (ΓL) at each timestep. It is also worth mentioning

that the dynamics propagation and the autodetachment model are two independent aspects

of the problem. Therefore, improved autodetachment models could be devised, without the

need to repeat the computationally demanding dynamics simulations. Moreover, although

we have not investigated this aspect here, this methodology can be directly connected to

surface hopping trajectories.60

3 Computational details

3.1 Quantum dynamics

For the quantum propagation in the model PECs, we have employed the semi-local version

of the Feshbach projection operator formalism.48 Since the employed models involve one

nuclear degree of freedom, we will use the dissociative coordinate R instead of q. In the

semi-local approximation, the entrance amplitudes incorporate the non-local Γ(R,E) width,

while the local ΓL(R) width is employed for the wavepacket propagation:48

i
∂

∂t
ψ̃d(R, t) =

[

Tn + Vd(R)−
i

2
ΓL(R)

]

ψ̃d(R, t), (12)

whose initial condition is given by:

ψ̃d(R, 0) = g(R)χν(R). (13)

In the above equations, Tn = −(2µ)−1d2/dR2 is the nuclear kinetic energy operator, µ is

the reduced mass, Vd(R) and ΓL(R) are respectively the real and imaginary components of

the anion PEC, g(R) is related to ΓL(R) via eq 2, and χν(R) is the initial vibrational state.
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Once the wavepacket is propagated, the DEA cross section can be computed as:48

σ(E) =
π

2E

K

µ
γ(E)

∣

∣

∣

∣

lim
R→∞

e−iKR

∫

∞

0

dtψ̃d(R, t)e
iEt

∣

∣

∣

∣

2

, (14)

where K =
√

2(E − Ethr) is the relative momentum of the departing fragments and Ethr is

the energy threshold for the DEA reaction.

The numerical propagation was performed with the split-operator technique.61 The wavepacket

is multiplied by the (real and imaginary) potential energy in position representation and by

the kinetic energy in momentum representation, while the transformation between represen-

tations is performed with fast Fourier transform.62 We employed a space grid of 210=1,024

points, from −2.0a0 to 6.0a0, and a temporal grid of 218=262,144 points, from 0 fs to 500 fs

(which corresponds to a timestep of 3.8×10−3 fs). In order to avoid spurious reflexions of the

wavepacket from the end of the grid, the amplitude of the wavepacket lying beyond the cutoff

radius Rcut was damped by multiplying it by the term cos[(π/2)(R−Rcut)/(Rlast −Rcut)],48

where Rlast is the last grid point. Finally, the limit in eq 14 is taken at a finite R = RDEA

position, beyond the crossing point of anion and neutral PECs, and before Rcut. Here we

have used RDEA = 4.0a0 and Rcut = 4.1a0.

3.2 Distorted sampling distribution

As already pointed out, the ensemble of initial conditions for the dynamics simulations should

be sampled according to the appropriate Wigner distribution. Here we consider each normal

mode to be given by a harmonic oscillator potential, whose normalized Wigner distribution

for finite temperatures63,64 is given by:

W (q,p) =
M
∏

i=1

(αi

π

)

exp

(

− q2i
2σ2

qi

− p2i
2σ2

pi

)

, (15)
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with σ2
qi = 1/(2αiµiωi), σ2

pi = µiωi/(2αi), αi = tanh(ωi/2T ), ωi and µi are the vibrational

frequency and reduced mass of mode i, and T is the temperature.

Alternatively, we could sample from any other sampling PDF, and employ the importance

sampling technique to map the results to the target PDF of interest, as has been recently

demonstrated.65 Basically, each trajectory is assigned an importance sampling weight (the

ratio between target and sampling PDF evaluated at the sampled point), which exactly

compensates for the difference between the two PDFs. There are two situations in which

one would employ different sampling and target PDFs. First, when a set of calculations has

already been performed for one sampling PDF, the results can be mapped into any other

target PDF. This is the case discussed in Ref,65 where the importance sampling technique

was employed to compute temperature dependent observables. The second motivation is

related to a situation when sampling from the target PDF leads to a poor convergence of

the observable being computed. In this case, one should adopt a PDF that better samples

from the most important region of the parameter space. While this does not seem to be a

reason for concerns in simulations of photoexcited states, it proved to be a major issue in

the present dynamics of short-lived transient anions, as will be discussed in Sec. 4. Here we

have performed importance sampling calculations for both situations discussed above.

The implementation of the importance sampling technique for the selection of initial

conditions65 was generalized by allowing for arbitrary broadened and displaced Gaussians

as PDFs. Denoting x = (q,p) as the phase space point with coordinate q and momentum

p, a Gaussian distribution centered at x0 = (q0,p0) with standard deviation σ = (σq, σp) is

given by:

P (x) =
2M
∏

i=1

1√
2πσ2

i

exp

(

−(xi − xi0)
2

2σ2
i

)

(16)

In the most general case, displacements and standard deviations for both sampling and

target distribution could be different, and the importance sampling weights would be calcu-

lated by the ratio of the corresponding distributions, as given by eq 16. When distributions

are displaced from one another, but share the same Gaussian exponent σ, then the impor-
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tance sampling weights are computed as:

w(x) =
2M
∏

i=1

σs
i

σt
i

exp

(

−(xti0)
2 − (xsi0)

2

2σ2
i

− xti0 − xsi0
σ2
i

xi

)

, (17)

where the superscript s and t denote sampling and target PDF parameters.

3.3 Classical dynamics

100,000 trajectories were propagated for each of the model PECs. The dynamics simula-

tions of the chloroethane resonant anion were performed with the Newton-X package66,67

interfaced with the Columbus68,69 software. The electronic problem was described at the

multireference configuration interaction (MRCI) level,70 with two levels for the excitation

number: zero (MRCI(0)), and two (MRCI with singles and doubles, or MRCISD), which will

be described in Sec 3.4. 1,400 trajectories were run for the MRCISD calculations, while the

dynamics performed at the MRCI(0) level counted with 1,000 trajectories. Nuclei were prop-

agated numerically according to Velocity-Verlet algorithm, with a timestep of 0.5 fs. This

timestep did not compromise the calculation of the survival probability, as they were very

close to those obtained by employing a timestep of 0.1 fs, for 10 selected initial conditions.

Furthermore, due to the exponential dependence of the survival probability on the resonance

width, its calculation could become inaccurate if we were to evaluate the integral in eq 6

with the same timestep of the dynamics. Instead, we have integrated a third-order polyno-

mial interpolation59 of the ΓL[q(t)] function, with a timestep of 0.002 fs, which guaranteed

a smooth variation of the exponential argument. If one is interested in evaluating the initial

relaxation of the transient anion and also in computing DEA cross sections, it is enough

to propagate the dynamics until the anion becomes more stable than the neutral. Thus,

whenever the C–Cl distance reached 4.5a0, the trajectory was terminated, which is more

than enough to guarantee stabilization against autodetachment. On the other hand, if one

is also interested in how the initially deposited energy is distributed between the fragments,

14



than the dynamics should contemplate the drifting of the fragments until their interaction

has considerably decreased. We have analyzed this later stage of DEA by proceeding with

the propagation of 200 trajectories beyond the 4.5a0 cutoff. The bound state calculations

(MRCISD/MRCI(0)) eventually failed to converge, which typically happened for a C–Cl

distance of around 13a0.

Initial conditions for the dynamics simulations of chloroethane were generated by in-

dependently sampling position and momentum for each normal mode. Except for the ν3

normal mode (which is dominated by the C–Cl stretching), all other modes were sampled

according to the harmonic potential Wigner distribution for a temperature of 333 K (eq 15),

which matches the experimental condition of the DEA cross section measurements.31 As for

the ν3 mode, we adopted a displaced Wigner distribution (eq 16) with qsν3,0 = 1.5/(µ3ω3)

and psν3,0 = 1.0µ3ω3, both in the direction of promoting the dissociation. This bias showed

to be critical in order to attain a reasonable convergence of the DEA cross sections with the

number of trajectories. The centers of the sampling PDF were chosen after testing a couple

of combinations for a very reduced set of trajectories. Finally, the bias on the sampling is

corrected to the actual 333 K Wigner distribution by means of the importance sampling

weights (eq 17).

3.4 Bound state calculations

Describing resonant states with bound state methods is expected to be a rather tricky task.

On the one hand, anion states usually require more diffuse functions than neutral states.

However, when very diffuse functions are employed, the additional electron of the anion state

does not lie in a valence-type orbital, but rather in a diffuse orbitals far from the molecular

frame. In this case, the anion state is actually emulating the scattering continuum and not

the resonant anion, which has a valence nature. One can circumvent this issue by choosing

a basis set that effectively constraint the electron to occupy a valence orbital. We found

the aug-cc-pVDZ basis set71 offered a good compromise between both requirements. The
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exception would be at geometries where the C–Cl bond is compressed, where the computed

anion state mimics the continuum, but these geometries are unimportant for the dissociation

and were never actually sampled for the dynamics. Instead of this simpler approach of

employing an already described basis set, one should ideally search for an adequate set of

basis functions with the aid of stabilization methods,25,72 but we did not pursue that here.

Another major methodological challenge concerns a balanced description of correlation effects

for neutral and anion states. In view of these inerent difficulties, our choice of basis set and

electronic structure methods should imply in an overestimation of the resonance position.

Employing more sophisticated techniques (such as the stabilization method and higher levels

of electronic structure theory) should in principle provide more accurate resonance energies,

but that would make our proposed on-the-fly dynamics methodoly impracticable. Here

we have corrected the resonance energies computed with bound state methods in order to

match the result obtained from ab-initio scattering calculations (to be described in Sec. 3.5)

performed at the neutral equilibrium geometry.

The active orbitals of chloroethane were generated in a state-averaging (SA) complete

active space self-consistent field (CASSCF) calculation, or SA-CASSCF, which included

the ground state and two singlet excited states of the neutral in the SA. 6 electrons were

distributed in 4 orbitals: the bonding σCCl and anti-bonding σ∗

CCl orbitals at the C–Cl bond

and the two non-bonding nCl orbitals at the chlorine atom. Augmenting this active space

with orbitals located at the C–C bond had a small effect (∼0.1 eV) on the energies of the

resonance and thus we kept with the (6,4) active space. Performing CASSCF calculations

for the anion state usually resulted in diffuse orbitals replacing the σ∗ orbital in the active

space, as placing the extra electron far from the molecule provides a lower electronic energy

than that of the valence σ∗ anion. In order to avoid the appearance of continuum intruder

states, both anion and neutral states shared the same active orbitals as obtained from the

above described SA(3)-CASSCF level. Attempts to include the anion state in the SA also

led to the same issue. The electronic wavefunction was described at the MRCI level,70 with
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a (6,4) reference space for the neutral and a (7,4) space for the anion, and with both zero

(MRCI(0)) and two (MRCISD) excitations from the active space. For the neutral state the

MRCI(0) energy is equivalent to the first root of the SA(3)-CASSCF calculation. On the

other hand, the MRCI(0) calculation is not the same as a CASSCF calculation performed

for the anion, since the orbitals of the former are optimized according to the SA(3)-CASSCF

calculation. For the static calculations the Davidson correction to the MRCISD wavefunction

(MRCISD+Q)73 was computed.

3.5 Scattering calculations

In order to provide a reliable model for the resonance lifetime, and also to validate the

results obtained from the bound state calculations, we have performed fixed-nuclei elastic

scattering calculations, at the equilibrium geometry obtained from the MRCISD level and

also for a couple of distorted geometries. We employed the Schwinger multichannel method

(SMC),40,74,75 with pseudopotentials,76 in its latest computational implementation.77 The

same Cartesian Gaussian functions presented in Ref.78 (generated as in Ref.79) were employed

here, while one p-type function with a 0.75 exponent was supplemented to the hydrogen

atoms. An additional set of diffuse 4s3p functions was placed at the carbon atom bonded

to the chlorine, with exponents generated by successive divisions by 4, as proposed in Ref.80

The neutral ground state was described at the restricted Hartree-Fock level, making use of

the Gamess package,81 while modified virtual orbitals82 were employed for the scattering

calculations, as generated in the field of the cation with charge +4. The use of MVOs is

a standard procedure in scattering calculations.83 They should provide a more compact

representation of correlation-polarization effects (thus requiring less CSFs), since they have

a more valence-like character than the canonical virtual orbitals.

The scattering wavefunction was expanded in a set of configuration state functions (CSFs)

{|χm〉}, built as |χj〉 = A[|Φ0〉 ⊗ |ϕj〉] (which accounts for static and exchange interactions),

and |χij〉 = A[|Φi〉 ⊗ |ϕj〉] (which incorporates polarization and correlation effects). For the
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former type of CSFs each virtual orbital (scattering orbital) |ϕj〉 is coupled to the target

ground state |Φ0〉 and then antisymmetrized with the operator A. The later type was

generated by coupling a scattering orbital |ϕj〉 to a single virtual excitations |Φi〉 of the

target (which define a pair of hole and particle orbitals). This set of functions were selected

based on the criteria εscat+εpart−εhole < εcut,84 for an energy cutoff εcut = 1.6 Hartree, where

the ε’s are the energies of the scattering, particle and hole orbitals. Both singlet- and triplet-

coupled target excitations were considered, while only the spin preserving doublet CSFs were

kept in the scattering wavefunction expansion. Since we are interested in characterizing

the σ∗ resonance, the scattering calculations were performed only for the A′ irreducible

representation. The three lowest singular vectors of the SMC denominator matrix were

removed from the calculation, since they were assigned to linear dependency problems. The

same protocol was adopted for the scattering calculations performed at nuclear configurations

where the C–Cl bond was stretched.

At each C–Cl bond distance R, energy Er(R) and width ΓL(R) of the resonance were

obtained from the scattering calculations by fitting the computed eigenphase sum δ(R,E) to

a functional form comprising a Breit-Wigner profile and a second-order degree polynomial

in energy:

δ(R,E) = − tan−1

(

ΓL(R)/2

E − Er(R)

)

+ a0 + a1E + a2E
2 (18)

Meanwhile, the γ(E) function was obtained with a single fit to the equilibrium geometry

eigenphase sum, according to:48

δ(R0, E) = − tan−1

(

γ(E)/2

E − ǫd −∆(E)

)

+ a0 + a1E
1/2 + a2E, (19)

with

γ(E) = AE1/2 exp(−bE), (20)

∆(E) =
A

2

[

− 1√
πb

+ E1/2e−bE
∣

∣

∣
erf(i

√
bE)

∣

∣

∣

]

, (21)
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where erf is the error function. According to the Wigner threshold law, at lower collision

energies the scattered electron decays with the lowest partial wave allowed by the target

symmetry.58 For polar molecules, the threshold behaviour is dominated by the s-wave (l = 0),

such that γ(E) ∼ E1/2 for E → 0. It is important to realize that the resonant contribution

(as given via the tan−1 functional form in Eqs. 18 and 19), and the threshold behavior (as

governed by the γ(E) function) are two separate aspects of the scattering eigenphase. In

fact, while the σ∗ resonance of chloroethane is mostly of p-wave (l = 1) character at the

local resonance energy, the s-wave prevails close to the threshold. The set of parameters

obtained from the eigenphase sum fitting can be found in the Supporting Information.

At this point, we briefly review how each term of the working expression for the DEA cross

sections is evaluated (see Eq. 10). The local resonance width ΓL(q
i
0) is evaluated at each

sampled initial condition q
i
0, and its expression is built from a few scattering calculations, as

explained after Eq. 11. The γ(E) function is given by Eq. 21, and is obtained from a single

scattering calculation performed at the neutral equilibrium geometry, as described above.

In the denominator it is evaluated at the resonance energy of each initial condition Er(q
i
0),

while in the numerator it is evaluated in terms of the continuous electron impact energy E

variable. The broadening function gl(q
i
0, E) is given by Eq. 8, and depends on the initial

resonance energy Er(q
i
0) and the γ(E) function. And the survival probability Psurv(x

i)

is computed according to Eq. 6, thus requiring the resonance width along the trajectory

q(xi, t′). Therefore, results from the actual propagation of the trajectories enter solely in the

survival probability, while the others terms depend only on the initial condition q
i
0. Finally,

the cross section curve is obtained by multiplying each term and averaging over the ensemble

of N trajectories.
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4 Model potential energy curves

A harmonic potential was employed for the neutral PEC V0(R) and a single-exponential

dissociative curve for the anion PECs Vd(R), while the local resonance width ΓL(R) was

modeled as being proportional to the resonance energy Er(R) = Vd(R)− V0(R):

V0(R) = CR2, (22)

Vd(R) = [E0
r −D] exp(−αR) +D, (23)

ΓL(R) = max

[

Γ0

E0
r

Er(R), 0

]

. (24)

The max function ensures that ΓL(R) = 0 whenever the anion is more stable than the neutral

(Er(R) < 0). In all models considered, we have fixed the neutral PEC (C = 1.5 eV), the

vertical resonance energy (E0
r = 2 eV) and the asymptote of the anion PEC (D = −1 eV).

Unless stated otherwise, the reduced mass was taken as µ = 9 a.m.u. The explicit energy

dependent part of the resonance width was modeled as:

γ(E) = AEl+1/2 exp(−bE), (25)

with A = 1, l = 1 and b = 0.5 eV−1.

We start by discussing the results for the reference model A1, where α = 0.8a−1
0 and Γ0 =

1 eV. The PECs and both the actual Wigner distribution and a displaced (qs0 = 0.2/(µω))

Wigner distribution are presented in Figure 2. We have computed the energy integral of the

DEA cross section for an increasing number of trajectories, when sampling from both shifted

and unshifted Wigner PDFs. In the former case, we employed importance sampling weights

(eq 17) to correct for the different sampling and target (unshifted Wigner distribution)

PDFs. As can be seen in Figure 2, both approaches lead to the same result for a sufficiently

large number of trajectories, as they should. Importantly, the convergence is dramatically

improved when sampling from the shifted Wigner distribution. This happens because of the
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Figure 2: On the left, PECs for the A1 model: neutral state (black) and real (orange) and
imaginary (blue) components of the anion state, together with the corresponding Wigner
distribution of the neutral vibrational ground state (black) and a displaced distribution
(purple). On the right, energy integral of the DEA cross section (in arbitrary units) for an
increasing number of trajectories, computed for both original (black) and displaced (purple)
Wigner distribution as the sampling distribution, with the former as the target distribution.

much larger survival probabilities obtained for trajectories starting with the more positive

position and momentum. They start closer to the crossing point and reach it faster, such that

autodetachment is less likely and takes place during a shorter period of time, thus decreasing

the argument of the exponential in the survival probability (eq 6). On the other hand,

sampling an initial condition that provides larger survival probabilities becomes increasingly

unlikely, due to the Gaussian decay of the Wigner distribution. When accounting for the

opposing trends of the survival probability and the initial condition sampling distribution,

there should be an intermediate region in phase space which maximizes the likelihood of

DEA. Therefore, when there is good overlap between this important phase space region and

the sampling PDF, the convergence of the DEA cross section should improve, as we have

observed. For all model PECs, we employed broadening and shifting parameters for the

sampling PDF that provided a similar convergence as that obtained for the A1 model. One

could in principle optimize the sampling PDF in order to maximize the rate of convergence,

but we did not pursue that. When dealing with dynamics simulations of photoexcited
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molecules, one can usually afford to run on the order of few hundred trajectories based on ab

initio methods to few thousand trajectories based on semiempirical methods. For transient

anions which present a sizable shift from the vertical resonance energy to the maximum of

the DEA cross section, as is the case of chloroethane, converged observables would only be

attained with the aid of the importance sampling technique65 and a well suited sampling

PDF.

-0.4 0 0.4
0

4

pr
ob

ab
ity

 d
en

si
ty

0 0.4
q (a

0
)

0
2×

10
-3

0.8 1.2
0

2×
10

-4

0 fs 6 fs 12 fs

Figure 3: Quantum wavepacket (green) and distribution of classical trajectories (violet) for
the A1 model, at t = 0 fs, t = 6 fs and t = 12 fs.

The wavepacket (as obtained from the quantum propagation) and the distribution func-

tion for the classical trajectories are depicted in Figure 3, for propagation times of t = 0

fs, t = 6 fs and t = 12 fs. The classical distribution was obtained by attaching a narrow

Gaussian function to each trajectory and summing over the ensemble. The matching be-

tween the curves is quite remarkable. Not only the classical propagation correctly mimics the

displacement and speed of the wavepacket, but it also reproduces the four order of magni-

tude decrease in its norm. This last point demonstrates that assigning a survival probability

(eq 6) as an effective weight to each trajectory provides an excellent approximation to the

action of the imaginary component operator −iΓL(q)/2 on the quantum wavepacket.

Besides the reference model A1, we have tested for other combinations of the parameters
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α and Γ0. The former provides the steepness of the PEC, and is thus the key parameter

controlling the dissociation lifetime, while the later governs the magnitude of the resonance

width, hence the autodetachment lifetimes. The following values were considered: α = 0.8a−1
0

(model A), α = 0.5a−1
0 (model B) and α = 0.2a−1

0 (model C), and Γ0 = 1 eV (model 1),

Γ0 = 0.2 eV (model 2) and Γ0 = 0.04 eV (model 3). Each pair of parameters was combined,

which gave rise to nine sets of model PECs. For example, α = 0.8a−1
0 and Γ0 = 1 eV defines

the model A1, and so on. Even though these parameters were arbitrarily chosen, they

should be representative of what one could encounter in actual molecules. Figure 4 shows

the nine model PECs considered, while the corresponding DEA cross sections computed

according to both quantum (eq 14) and mixed quantum-classical (eq 7) propagations are

presented in Figure 5. Overall, agreement is excellent. The main difference lies on a small

shift of the mixed quantum-classical DEA cross section peak position to lower energies. This

shift virtually disappears when the resonance width is decreased (moving from left to right

panels in Figures 4 and 5), but becomes more pronounced when the anion PEC becomes

less steep (moving from top to bottom panels). To a great extent, the redshift in the DEA

cross sections can be traced back to the small differences between the quantum wavepacket

and the ensemble of classical trajectories. In the A1 model, we found the development of

a very slight displacement of the classical distribution to larger q’s (see Figure 3). This

displacement becomes negligible when going from A1 to A3 models (not shown) and thus

it should not be related to the real component of the anion PEC, which are the same is

these cases. On the other hand, larger shifts on the distribution appear when moving to

B1 and C1 models (not shown), in line with the worsening in the corresponding DEA cross

sections. This indicates that the shift on the ensemble distribution and consequently on the

DEA cross section arises from the different description of the imaginary component. Larger

q’s are associated to lower resonance energies, which explains the observed redshift. Still,

the comparison between the DEA cross sections (top left panel of Figure 5) is less favorable

than the underlying distributions (Figure 2), which suggests that it is not only the imaginary
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component to be blamed for the larger discrepancy of the former. We have found the phase

of the quantum wavepacket changes considerably before the stabilization of the anion state,

which is obviously absent in the classical propagation. Interference effects should become

more pronounced when going from faster (model A1) to slower (model C1) dynamics and

could thus play a role in explaining the differences between quantum and mixed quantum-

classical DEA cross sections. We have also compared the average resonance energy and

width, as computed in both descriptions, and they follow the same trends discussed above.
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Figure 4: Model PECs (according to eq 24) for the neutral state (black) and for the real
(orange) and imaginary (blue) components of the anion state, for C = 1.5 eV, E0

r = 2 eV and
D = −1 eV. We considered combinations of α = 0.8a−1

0 (top), 0.5a−1
0 (middle) and 0.2a−1

0

(bottom), and Γ0 = 1.0 eV (left), 0.2 eV (middle) and 0.04 eV (right).

In the following, we briefly compare the results of the nine models. In models A3, B3 and

C3, the vertical width assumes a very small value (0.04 eV), such that the survival probabil-
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ities are closer to 1, the DEA cross sections are large and the peak positions coincide with

the vertical resonance energy (2 eV). The narrowing of the peak (and larger maximum) when

moving from model A3 to C3 reflects the less steep dissociating PEC. The real component

PEC of the anion is the same in models A1, A2 and A3, while the vertical resonance widths

assume the values 1, 0.2 and 0.04 eV. For larger resonance widths, the variation of the survival

probabilities on the initial position (and momentum) becomes more dramatic, which means

the important region in initial conditions phase space for DEA becomes even more displaced

from the equilibrium region. This implies in a shift from the vertical resonance energy to

the actual DEA peak position and a decrease in the cross section magnitudes. Indeed, both

effects are systematically observed in our model PECs. For a fixed row of Figure 5, the

25



comparison along columns shows exactly that. Additionally, we found a larger effect on the

cross sections for the slower dynamics (last row), when magnitudes are reduced by six orders

of magnitude, compared to the two order of magnitude difference for the faster dissociation

(first row). On the other hand, the peak position becomes less displaced when going from

faster (first row) to slower (last row) dynamics, which is more marked when comparing A1,

B1 and C1 models.
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Figure 6: DEA cross section for the model A1, for the neutral state prepared at 0 K (left),
300 K (middle) and 500 K (right).

We have further considered how results for model A1 are affected when preparing the

initial conditions at different temperatures: 0 K, 300 K and 500 K. For the quantum propa-

gation, the DEA cross sections were obtained by Boltzmann averaging the contribution from

each vibrational level, while in the mixed quantum-classical approach the appropriate finite

temperature Wigner distribution was employed. As can be seen in Figure 6, an increase

in temperature enhances the cross section and shifts its peak position to smaller energies,

which is due to DEA to the vibrationally excited levels of the neutral. The important aspect

for our main discussion is that both approaches provide very similar results.

Finally, we have considered different reduced masses: 90 a.m.u., 9 a.m.u. and 1 a.m.u.,

again for the reference model A1. We found it to have a huge impact on the magnitudes

of the cross sections (shown in Figure 7), which spanned 11 orders of magnitude. For a

larger reduced mass, the dissociation dynamics takes longer, thus enhancing the probability
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for autodetachment and decreasing the DEA cross section. Moreover, the heavier particle

is more localized, which accounts for the narrower peak. Once again, the matching between

both descriptions for the nuclear propagation is great, specially when realizing the range of

orders of magnitude involved.
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Figure 7: DEA cross section for the model A1, for a reduced mass of 90 a.m.u (left), 9 a.m.u.
(middle) and 1 a.m.u. (right).

5 Chloroethane

5.1 Static results

Elastic integral cross sections of the A′ symmetry are shown in Figure 8, together with the

computed eigenphase sum, obtained at the neutral equilibrium geometry. The least-squares

fit to the later is also shown, according to local (eq 18) and non-local (eq 19) functional

forms. We found the vertical resonance energy at 2.33 eV, which matches very well with

the value obtained from ETS measurements (2.35 eV).28 This value lies slightly below the

elastic cross section peak (2.43 eV), in view of the its considerable width and the influence of

background scattering.85 Our peak position is also close to what was reported in a previous

SMC calculation29 (2.6 eV). The vertical resonance width was obtained at 1.35 eV, which

corresponds to an autodetachment lifetime of 0.49 fs. Our computed width is smaller than

the 1.8 eV obtained from the ETS spectrum,31 but it should be kept in mind that the
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measured value includes the vibrational broadening of the nuclear wavepacket, absent in our

single fixed-nuclei calculation.
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Figure 8: A′ elastic cross section (top left) and corresponding eigenphase sum (top right)
of chloroethane, with the fitted Breit-Wigner profile (eq 18) in cyan, as computed for the
equilibrium geometry (black), and for C–Cl stretchings of 0.1a0 (red), 0.2a0 (brown) and
0.3a0 (magenta). In the bottom left, computed pairs of resonance widths and energies (dots)
and the interpolated function (violet) employed for the dynamics. In the bottom right,
non-local fit (eq 19) (green) to the computed equilibrium geometry eigenphase sum (black).

The distribution of resonance energies at the Franck-Condon region was obtained by per-

forming an additional set of 1,000 MRCISD single point calculations, as sampled from the

unshifted harmonic potential Wigner distribution. We had to disregard around 6% of these

points, which grouped at considerably lower resonance energies than the vertical value, thus
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indicating these calculations were actually emulating the continuum. By including them and

assigning an arbitrary and common resonance energy of 2.8 eV, average and standard devia-

tion of the energy distribution increase very slightly (0.03 eV), and we thus prefer to simply

discard these points. Interestingly, the ensemble average of the resonance energy (2.15 eV)

lies below the vertical value (2.33 eV). This vibrationally averaged energy should more closely

correspond to what is obtained from ETS measurements (2.37 eV).28 Assuming this 0.18 eV

redshift applies for the measured ETS spectrum, the equivalent of an experimental vertical

resonance energy would be at 2.55 eV. Making use of the importance sampling technique65

we found a very close shift (0.15 eV) when the neutral state is prepared at 0 K, while the

temperature increase to 333 K accounts for the remaining 0.03 eV. The present finding is

somewhat analogous to what is encountered in molecular photoexcitation, where the absorp-

tion band maximum is usually redshifted relative to the vertical excitation energy,65,86 due

to both zero-point and temperature effects.65 We are not aware of previous discussions of this

effect in the context of transient anions. The distribution of resonance energies has a stan-

dard deviation of 0.22 eV, which should represent the vibrational broadening width. Adding

this number to the computed vertical resonance width of 1.35 eV, we obtain a composite

energy width for electron attachment of 1.57 eV, closer to the measured 1.8 eV.28

In order to build the autodetachment model employed in the dynamics simulations

(eq 11), we have performed additional scattering calculations for geometries where the C–

Cl bond was stretched by 0.1, 0.2 and 0.3a0, while the other coordinates were kept fixed.

The computed elastic cross sections and eigenphase sums (and the fits to the later) are also

displayed in Figure 8. We found that the resonance width strongly correlates with the res-

onance energy. This result is in line with the linear relation between widths and energies

found for a series of chloroalkanes in ETS measurements.31,87 The interpolation to the pairs

of computed resonance width and energy (also displayed in Figure 8) provided the ΓL(Er)

function that was employed in the dynamics.

Moving to the results obtained from bound state methods, we found that the vertical
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chloroethane, as computed with different levels of bound state calculations (orange) and
with SMC scattering calculations (turquoise). Right: same PECs, but vertically shifted in
order to match the SMC vertical energy.

resonance shifts to smaller energies and approaches the experimental value when the level of

theory is improved: 4.97 eV with MRCI(0), 3.53 eV with MRCISD and 2.81 eV with MR-

CIS+Q, compared to the measured 2.33 eV.28 We assign this discrepancy to an unbalance of

correlation effects in the description of anion and neutral states, which is a well known issue.

Simply due to the larger number of electrons, there should be more correlation energy in the

anion than in the neutral, such that very sophisticated calculations are needed for obtaining

quantitative resonance energies.88,89 Additionally, very large basis sets are usually needed

for calculations of accurate energies.72,88,89 but if we were to employ these, a continuum-like

state would be described, instead of the valence transient anion. Despite lacking an accurate

description of correlation effects, the current implementation of the SMC method provides

a more or less balanced description of neutral and anion states, which explains the quite

reasonable results for low-lying shape resonances it usually delivers. Figure 9 displays the

PECs of the σ∗ resonance and the neutral state of chloroethane, along the C–Cl stretching

coordinate, as computed in the MRCI(0), MRCISD and MRCISD+Q levels. It also shows

the anion PECs shifted by a fixed amount, such that the vertical resonance at each level of
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calculation matched the SMC result (2.37 eV). The MRCISD PEC, for example, was shifted

by ∆E0
r,MRCISD = E0

r,SMC − E0
r,MRCISD, where E0

r,SMC = 2.37 eV and E0
r,MRCISD = 3.53 eV

are the vertical resonance energies obtained with the SMC and MRCISD calculations. This

correction compensates for the lack of correlation effects and the limited basis set employed

in the bound state calculations for the anion. Since the PECs computed with both bound

state and scattering calculations are roughly parallel, it is reasonable to assume the same

correction could be applied beyond the neutral equilibrium geometry. Therefore, this correc-

tion was imposed on top of the anion (Vd(R)) and neutral (V0(R)) energies computed along

the dynamics simulation, such that the on-the-fly resonance energies were actually evaluated

as Er(R) = Vd(R)− V0(R) +∆E0
r,MRCISD. Similarly, the resonance widths were computed at

each timestep as described in the bottom left panel of Fig. 8.

5.2 Dynamics results

The evolution of the resonance energy for 200 out of the 1,400 trajectories (for clarity reasons)

is shown in Figure 10, together with the whole ensemble average for both resonance energy

and width. It also shows the survival probability, importance sampling weight and the DEA

cross section contribution of each trajectory, plotted as a function of impact energy. We

found that the electronic stabilization of the anion takes place extremely fast, as the average

resonance energy goes to zero in 8 fs after electron attachment. Most of the trajectories

start with a resonance energy below the vertical value, which is a consequence of the shifted

PDF from which the initial conditions were sampled. Trajectories that begun at higher

energies have overall large resonance widths and thus their survival probabilities decrease

very rapidly, while those starting at lower energies have smaller resonance widths, hence

survival probabilities that decrease at a slower rate. Therefore, the later will gain in relative

importance compared to the former as the dynamics unfolds. We found a huge variation

of the survival probabilities, which span 9 orders of magnitude and decrease very rapidly

as the initial resonance energy increases. On the other hand, the different sampling and
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Figure 10: Top left: resonance energy for 200 out of the 1,400 trajectories (gray), and
ensemble average resonance energy (orange) and width (blue). On the other panels, sur-
vival probability, importance sampling weight and DEA cross section for each of the 1,400
trajectories.

target PDFs lead to importance sampling weights that correlate positively with the initial

resonance energy. Both survival probabilities and importance sampling weights are accounted

for when computing the contribution of each trajectory to the DEA cross section, such that

the effective weight becomes much more uniform, as shown in the bottom left panel of

Figure 10. The uniformity of these points means that there is a good overlap between the

sampling PDF and the region in phase space which is most important for the DEA process.

Figure 11 shows the evolution of the four most activated internal coordinates, for the
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Figure 11: Evolution of four internal coordinates for each trajectory (gray) and for the
ensemble average (violet). The coordinates are the C–Cl distance, the C–C distance, the
C–C–Cl angle and the CCH2 pyrimidalization angle, defined as the average between the
three bending angles to the central carbon atom.

ensemble average and for the 200 trajectories that run beyond the 4.5a0 C–Cl distance

threshold. The dynamics simulation reveals that the electron capture into the σ∗ orbital

readily induces the stretching of the C–Cl bond, as the departing chloride ion gains momen-

tum to dissociate. As this is the dominant vibrational relaxation mechanism, most of the

impact energy should be primarily transfered to kinetic energy of the fragments when DEA

takes place. On top of that, this result supports the autodetachment model we have adopted,

which only considered the behavior of the resonance width upon the C–Cl stretching. Ad-
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ditional scattering calculations (not shown) further indicate that the width is less sensitive

to the activation of other vibrational modes. Figure 11 further shows the reaction of other

internal coordinates to the electron capture and to the C–Cl stretching. The recoil of the

departing chloride ion induces a shortening of the C–C bond, which continues to oscillate

coherently after dissociation (at least in the first 100 fs). The C–C–Cl angle is shortened in

a more or less constant rate, which indicates that the neutral fragment gains some rotation.

Also, the CH2 hydrogens initially move towards the halogen atom, which causes the CCH2

moiety to oscillate around its planar conformation. Thus, our results point out that the

CH3CH2 fragment should be formed with some rotational excitation and in vibrationally

excited levels for the C–C stretching and the CH2 wagging modes.
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Figure 12: Computed DEA cross section of chloroethane (violet), for the neutral state pre-
pared at 0 K, 333 K (experimental condition) and 433 K. Measured data31 in red.

Our computed DEA cross section is presented in Figure 12, together with the measured

data of Pearl and Burrow.31 In their first measurement,30 the ion yield peaked at 1.7 eV,

with a cross section of (1.6 ± 0.3) × 10−19 cm2 while in a subsequent paper,31 they report

a maximum DEA cross section of 1.49 × 10−19 cm2, peaking at 1.49 eV. The later data

34



was reproduced in Figure 2 of Ref.,87 from which we extracted the data points presented in

Figure 12. Our calculations correctly reproduce the shift from the vertical resonance energy

(2.37 eV) to the peak position of the DEA cross section (1.56 eV), which agrees very well

to the measured displacement from 2.33 eV to 1.49 eV. Furthermore, the DEA cross section

magnitudes are remarkably close to experiment.

The recently proposed application of the importance sampling technique for dynamics

simulations allows for an inexpensive evaluation of temperature effects on computed observ-

ables.65 We have thus assessed temperature effects on the DEA cross section of chloroethane,

which is also presented in Figure 12. Heating of the neutral molecule is followed by a sizable

increase in the cross section and a small shift of the peak position to lower energies. This

finding is consistent with previous reports on the effect of temperature on DEA induced

by short-lived resonant states.90–92 Even for the rather small variation from room tempera-

ture (288 K) to the temperature of the experiment (333 K), we found a non-negligible 10%

increase in the DEA cross section magnitude (not shown).

5.3 Precision and accuracy assessment

In the following, we discuss how the computed DEA cross section is modified when precision

and accuracy of the underlying calculations are varied. Figure 13 shows that with as few

as 100 trajectories, the curves are already quite close to that obtained with the much larger

set of 1,400 trajectories. When the broadening parameter η is increased from 0.1 eV to 0.5

eV, the structures in the curves (which arise from the limited number of trajectories) are

smoothed out. In the present case, using a larger broadening parameter is justifiable, since

the measured cross section is already relatively broad in energy. This is very promising for

future applications of the method, where semi-quantitative magnitudes and peak positions

are expected to be attained with an affordable number of trajectories. We further evaluated

the effect of scaling the MRCISD computed vibrational frequencies by a factor of 0.95, again

with the aid of importance sampling calculations.65 The DEA cross section (not shown)
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Figure 13: Computed DEA cross section for 1,400 (full lines) and 100 (dashed lines) tra-
jectories, for linewidths of η = 0.1 eV (left) and η = 0.5 eV (right). Measured data31 in
red.

increased by only 5%, while the peak remained at the same position.
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Figure 14: On the left, computed DEA cross section of chloroethane, according to MRCISD
(full violet) and MRCI(0) (dashed violet) dynamics, together with the measured data31 (red).
On the right, ensemble average of the resonance energy (orange) and width (blue), for the
two levels of theory (full and dashed lines).
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In Figure 14 we compare DEA cross sections computed with both MRCISD and MRCI(0)

levels of description for the transient anion dynamics. MRCI(0) results provide one order of

magnitude larger cross sections, peaking at even lower energies (1.34 eV), when compared to

the more accurate MRCISD results. This is due to the faster stabilization of the resonance

energy (and width), also compared in Figure 14, which in turn reflect the steeper MRCI(0)

PEC (see Figure 9).
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Figure 15: Computed DEA cross section of chloroethane. On the left, curves from top
to bottom correspond to increasing vertical resonance energies: 2.23, 2.33 and 2.43 eV,
while keeping a proportional resonance width. On the right, curves from top to bottom
correspond to increasing vertical resonance widths: 1.25, 1.35 and 1.45 eV, while keeping the
same vertical resonance energy of 2.33 eV. Measured data31 in red.

Finally, we also assessed the sensitivity of DEA cross sections on the vertical resonance

energy and width. Two cases were tested: (i) a ±0.1 eV variation of the vertical resonance

energy, while the vertical widths also change accordingly, and (ii) same vertical resonance

energy, but vertical widths modified by ±0.1 eV. Results of this comparison, shown in Fig-

ure 15, point out that the DEA cross sections are rather sensitive to both vertical energy and

width. The magnitudes are impacted by ∼50% when the width varies by only 0.1 eV, while

the same shift in the resonance energy brings in a factor of 2 to the cross section. These
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scenarios should be representative of what one encounters in scattering calculations. For

example, typical precisions of resonance energies obtained with the SMC method are around

∼0.3 eV. When a resonance is found in the upper limit of this margin, its width tends to

follow accordingly and be wider than if it had been found in the lower limit, which con-

templates case (i). Besides that, scattering calculations may provide comparable resonance

energies and yet rather distinct widths, as recently discussed for the low-lying resonances

of para-benzoquinone.93 We have performed an additional set of scattering calculations for

chloroethane, without the additional set of very diffuse 4s3p functions (not shown). Even

though the resonance positions were not affected considerably, the linear correlation between

resonance widths and energies (upon C–Cl stretching) turned out to be noisier than what

was found when including the extra 4s3p diffuse set. This results suggests that calculating

accurate resonance widths might require more diffuse functions that are usually employed

for describing resonance energies.

6 Conclusions

A novel theoretical framework for describing the dynamics of transient anions has been

proposed. It is based on propagating an ensemble of classical trajectories, where resonance

energies are computed on-the-fly with bound state methods, while the widths are described

with a model that requires few electron scattering calculations. It has been implemented

into the Newton-X package, and will be freely available to the community in the next release

of the code. The proposed mixed quantum-classical dynamics approach was benchmarked

against quantum dynamics propagations, for model one dimensional potential energy curves.

Different slopes of the dissociating curve, resonance widths, temperatures and reduced masses

were considered, and both methodologies consistently delivered quite close DEA cross section

curves.

The very first application of the proposed methodology to a real molecular target con-

38



cerned the dissociation of chloroethane induced by electron capture. While autodetachment

is the main decaying mechanism, we found it only takes place at very short timescales (∼10

fs), since the C–Cl stretching rapidly stabilizes the σ∗ transient anion. The fragments should

be formed with high kinetic energy, while some of the deposited energy should be transfered

to vibrational excitation of the neutral radical. The computed DEA cross section curve is in

excellent agreement to existing experimental data, both in magnitude and in shape. In par-

ticular, our calculations provide a quantitative shift from the vertical resonance energy to the

ion yield peak energy. We also found the cross section to be quite temperature dependent.

When accounting for rather conservative uncertainties on the resonance energy and width,

DEA cross sections varied to within one order of magnitude. This great sensitivity highlights

the need for further theoretical developments on the description of transient anions. Special

attention should be given to the widths of resonant anions, as the uncertainties of calcula-

tions are not well known. Furthermore, the cross sections showed an even more pronounced

sensitivity on the nuclear energy gradients, which ultimately govern the dissociation time.

Therefore, for DEA processes involving short-lived resonances, quantitative cross section

magnitudes require very sophisticated electronic structure methods for the dynamics propa-

gation and accurate models for the autodetachment probability. In spite of that, the present

application of the proposed methodology provided quantitative observables and a detailed

picture of the electron-induced dynamics.
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