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Abstract 

The analysis of the photoabsorption spectra of molecules shows that the band maximum is 

usually redshifted in comparison to the vertical excitation. We conducted a throughout analysis 

of this shift based on low-dimensional analytical and numerical model systems, showing that 

its origin is rooted in the frequency changing between the ground and the excited states in 

multidimensional systems. Moreover, we deliver a benchmark of ab initio results for the shift 

based on a comparison of vertical excitations and band maxima calculated with the nuclear 

ensemble approach for the 28 organic molecules in the Mülheim molecular dataset. The mean 

value of the shift calculated over 60 transitions is 0.11 ± 0.08 eV. The mean value of the band 

width is 0.32 ± 0.14 eV. 
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Introduction 

In the computational analysis of UV/Vis photoabsorption spectra of molecules, several 

authors have noticed that the band maximum max

iE  and the vertical excitation v

iE  of band i, 

computed at the same electronic structure level, are shifted by up to 0.2 eV, with the band 

maximum systematically redshifted [1-5]. This shift 
i  (Figure 1) is a parameter that plays a 

particularly important role in the comparison between theory and experiments and in the 

evaluation of the precision of computational methods [4]. Therefore, a direct 

experimental/computational comparison without taking the shifts into account may lead to 

systematic errors.  

 

 Schematic illustration of the absorption band parameters.  

 In the last years, diverse methods for first-principle spectrum simulations have been 

proposed [6-9,5,10], leading to high-accurate predictions of band shapes, including their 

vibrational resolution [11].  Through simulations of vibrationally-resolved absorption spectra 

of several molecules, Avila Ferrer et al. [3] confirmed the existence of the redshift and 

suggested to compare vertical excitations not to the band maximum, but to the first moment 

M1 (center of gravity) of the absorption band. Nevertheless, to the best of our knowledge, the 

origin of the redshift has not been clarified so far. We know from our experience with spectrum 

simulations based on the nuclear ensemble approach [12] that the redshift also occurs when the 

band maximum is simulated with incoherent transition processes. Therefore, its origin should 

have an underlying semiclassical mechanism, not directly related to quantum effects.  

Using a simple analytical model, we show here that when a multidimensional ground-

state vibrational wavefunction is projected onto the excited state, the frequency change between 
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the excited and the ground states causes the maximum spectral intensity to be displaced to 

lower energies compared to the vertical excitation. We confirmed such dependence of the shift 

on the frequency changing using low-dimensionality numerical models. Finally, we deliver a 

benchmark of shift values for the first bands of all 28 organic molecules in the Mülheim 

molecular dataset [13] (Figure 2). This benchmark was produced comparing ab initio vertical 

excitations to band maxima simulated with the nuclear ensemble approach at the same 

electronic structure level. 

 

 Structures of the 28 molecules in the Mülheim dataset. 

Computational details 

The ground state optimization and normal mode analysis of all 28 molecules were done 

with the resolution-of-the-identity coupled-cluster to approximated second-order (RI-CC2) 

[14,15] with the cc-pVTZ basis set. The Cartesian coordinates of the ground-state minimum 

geometries are given in the Supporting Information. Excited states were calculated at RI-CC2 

level with the aug-cc-pVDZ basis set [16]. In a few cases with convergence problems, we 
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alternatively employed the algebraic diagrammatic construction to second-order (ADC(2)) 

[17]. 

For the nuclear ensemble simulations [12], the nuclear configurations were sampled 

according to a harmonic-oscillator Wigner distribution based on normal modes in the ground 

state minimum. An ensemble of 500 nuclear geometries was generated for each molecule of 

the dataset. For each nuclear configuration, up to 15 electronic states were computed using RI-

CC2/aug-cc-pVDZ. Some of the molecules presented recurrent convergence problems with 

CC2, caused by near-degenerated excited states. In such cases, we employed RI-ADC(2)/aug-

cc-pVDZ in the spectrum simulation. Each spectrum was plotted with a Gaussian linewidth 

broadening of 0.05 eV. Details on vertical excitations and simulated spectra are given in the 

Supporting Information. 

RI-CC2 and RI-ADC(2) calculations were done with TURBOMOLE [18]. Nuclear-

ensemble spectra were done with NEWTON-X [19,20] interfaced with TURBOMOLE. A 

program to calculate spectra based on Eq. (13) is freely available for download [21]. 

Results and discussion 

Hypotheses to explain the band maximum shift 

To understand the shift i  between the vertical excitation and the band maximum, it is 

useful to analyze it in terms of the nuclear ensemble approach [12]. In this method, the 

absorption spectrum is built as an incoherent sum of transitions from nuclear geometries 

representing the vibrational distribution of the electronic ground state. Thus, the nuclear 

ensemble approach delivers a band envelope without vibrational resolution but with enough 

information to estimate the shift.  

To determine the origin of the shift, we considered three possible causes: (1) the 

oscillator strength variation in the sampling (a post-Condon effect); (2) the displacement of the 

vibrational mode in the excited state; and (3) the vibrational frequency change between the 

ground and excited states. The penetration of the wave function in regions beyond the classical 

return point may also cause a shift, but it tends to be negligible for large molecules [22]. 

The post-Condon effect (1) was discarded after we noticed that nuclear ensemble 

simulations using a uniform value for the oscillator strength still yields the shift. We show in 
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the next sections that the normal mode displacement (2) also does not cause the shift, although 

it impacts its value. Finally, we found out that the frequency change between the ground and 

excited states (3) is at the root of the phenomenon. The underlying reason for the shift between 

the vertical excitation and the band maximum is that for a multidimensional potential energy 

surface, although most of the nuclear geometries are distributed around the equilibrium 

geometry, there are even more geometries displaced from equilibrium satisfying the resonance 

condition 
ge PE E =  (

geE  is the energy gap between the ground and the excited states, and 

PE  is the photon energy).  

Analytical analysis of the shift origin 

To understand the origin of the shift, consider the following simple two-modes/two-

states analytical model. The two states are separated by a vertical transition energy vE . For 

each state, the potential energy surface is supposed to be given by two uncoupled harmonic 

and degenerated potentials in the coordinates q1 and q2, with the ground and excited states 

sharing the same equilibrium geometry, but with different angular frequencies g  and e . 

Without losing generality, the energy of the ground-state equilibrium geometry is assumed to 

be zero. Thus, the ground- and excited-state potential energies are given as [23] 
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where   is the reduced mass. The resonance condition is 

 ( ) ( )( )2 2 2 2

1 2

1
0.

2

v

ge P P e gE E E E q q   − = − + − + =   (2) 

In a semiclassical approximation, the spectrum is given by 

 ( ) ( )( )1 2 1 2 1 2, ,eg pk q q g E q q E dq dq =  −   (3) 

where  is the distribution of geometries in the ground state, and g is a line-shape function 

satisfying the resonance condition in Eq. (2). k is a constant, which includes the oscillator 

strength between the two states (Condon approximation). If  is given by a Wigner distribution 

for the quantum harmonic oscillator,  
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and the line-shape function is taken as a normalized Gaussian function with arbitrary width w, 
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we obtain  
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w is assumed to be much narrower than the band width, and in the limit when it tends to zero, 

g converges to a Dirac delta function.  

In polar coordinates ( ) ( )( )1 2cos , sinq R q R = = , Eq. (6) becomes  

 ( ) ( )
2

2 2 2 2
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which can be analytically integrated to give 
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where  

 
( )2 2

.
e g

g

A
 



−
=   (9) 

The maximum of this spectral band happens for the photon energy maxE  satisfying 

/ 0Pd dE = . If we expand this derivative to the first order in pE  around vE , we obtain the 

shift  
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Because upon excitation the bond is loosened, it implies that 
e g    and, therefore, 

max .vE E  This means that the band maximum is redshifted in relation to the vertical 

excitation.   

 

 Illustration of the 2-modes/2-states analytical model. The upper surface shows the potential 

energy difference Ege while the bottom surface illustrates the Wigner distribution  in the ground state. The 

ge PE E =dashed curves indicate isoenergetic curves satisfying the resonance condition . 

With this simple model, it is easy to understand the origin of the shift. For a certain 

photon energy EP, the spectral intensity in Eq. (3) is determined by both the ground state 

population on the isoenergetic line satisfying the resonance condition and the length of this 

line. In this model, this line is merely a circle, but it is a hyperline in general multidimensional 

cases. In one limiting case, the ground state population is maximal (q1 = q2 = 0) but the line 

length is too short, yielding a low spectral intensity. In the case of excited and ground states 

sharing the same equilibrium geometry, this limit happens at Ev. In the other limiting case, the 

curve length tends to infinite (q1 = q2 → ∞), but the ground state population is null, also yielding 

a minimal intensity. Between the two extremes, the band maximum occurs at maxE , with 

optimal length and population values, which is proportional to the difference between the 

squared frequencies of the excited and ground states (Eq. (10)).  

Although there are no analytical results for multidimensional, realistic cases, this 

dependence of the shift on the difference of the squared frequencies seems to be general. For 

instance, as mentioned in the Introduction, Avila Ferrer et al. [3] proposed to compare vertical 

excitations to the first-moment M1 of the absorption band to approximately account for the 

shift effect. They recall that the M1 can be analytically computed for harmonic ground and 
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excited states in the Franck-Condon approximation, with the excited state built in the vertical 

Hessian approach. In this model, the shift between the vertical excitation and M1 is [24]  
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where Bk  is the Boltzmann constant, T is the temperature, and r runs over the normal modes. 

In the limit of low temperature and two degenerated normal modes, this expression yields the 

shift given by Eq. (10).  

Note yet that the shift seems to be a multidimensional phenomenon. We have not been 

able to find an analytical expression for the shift in a single-dimensional model, but numerical 

estimates showed that in such a case the shift is a function of the width w, and it tends to zero 

for small w. In the limit of a Dirac delta function (w = 0), the band of the single-dimensional 

model is peaked at the vertical excitation [23]. 

Analysis of the shift with model systems 

To get further numerical insights into the origin of the shift, we simulated the absorption 

spectrum of a model system with few vibrational modes using the nuclear ensemble approach. 

The advantage of working with such low-dimensionality systems is that we can systematically 

control the values of key parameters to verify their impact on the spectrum. 

The model systems are composed of two harmonic potentials representing the ground 

and the first excited states. The simplest model contains a single vibrational mode (1V)  with 

ground-state frequency g  and excited-state frequency given by 
2 2/e g  = , where   is a 

constant. The potential energies of the ground and excited states are 
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In the simulations, 4.08vE =  eV (0.15 au), 1.0 =  amu (1823 au) and 1500g =  cm-

1 (0.0068 au). To compute the spectrum, 50,000 geometries were sampled from a Wigner 

distribution for gE , and the oscillator strength was assumed to be 1.0 for all points.  
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As expected for the one-dimensional model, the results do not show any shift for small 

w.  

We extended the 1V model into three vibrational modes (3V), with ground-state 

frequencies g1 = 1800, g2 = 1500, and g3 = 1000 cm-1; frequency-changing parameters 1, 

2, and 3; and displacements d1, d2, and d3. All other parameters were kept at the same values 

as in the 1V model.  

The results for the shift with the 3V model are given in Table 1. Now, we see that 

displacements without a frequency change lead to a negligible shift. For 2 = 0.8, as the 

displacements of the other two modes increase, the shift increases, too. This result tells that 

although the displacement does not cause the shift, it modulates the shift value. 

Table 1. Numerical simulations of the shift (eV) between the vertical excitation and the band 

maximum for a model with three vibrational modes, considering a shift between the ground and excited-

state frequencies (given by ) and a displacement di (au) between the modes. All results with 1 = 3 

= 1.0 and d2 = 10 a.u. 

 d1 d3 Shift /eV 

1.0 3.0 3.0 -0.01 

0.8 0.0 0.0 0.08 

0.8 3.0 3.0 0.15 

0.8 8.0 8.0 0.27 

0.8 10.0 10.0 0.31 

0.8 15.0 15.0 0.39 

Benchmark of shift values 

Based on the vertical excitations and the results from the nuclear ensemble simulations, 

we investigated the shift between the vertical transition energy v

calcE  and the band maximum 

max

calcE  in the 28 molecules of the Mülheim dataset. Figure 4 illustrates these simulations for 

three molecules—cyclopropene, pyridine, and pyrimidine (molecules 5, 13, and 15 in Figure 

2).  
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 Comparison between the nuclear ensemble spectrum simulation (solid black) and the vertical 

excitations (sticks) for (top) cyclopropene, (middle) pyridine, and (bottom) pyrimidine. The fitting of the nuclear 

ensemble result is shown as a dashed red curve. The Gaussian function components of the fitting, corresponding 

to the sub-bands of each vertical excitation, are shown as well.   

 For energies in eV and absorption cross section in Å2.molecule-1, the spectrum 

convolution can be written as (see derivation in Appendix A) 

 ( )
( )

2
2/

0.619 ,
v
i i iE E

i
A

i i

f
E n e




− − + 
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   (13) 

where n is the refractive index, and v

iE , if , i , and i  are, respectively, the vertical excitation, 

oscillator strength, shift, and width of band i. We used this expression to fit the simulated 

spectra. In the fitting process, v

iE  and if  were kept fixed, and we got i , and i . In some 

cases, the oscillator strength was also optimized to improve the fitting (see Supporting 

Information).The number of Gaussian functions used to fit each spectrum was determined by 

the number of vertical excitations with considerable oscillator strength in the spectral region of 

interest. Thus, for some bands, several Gaussian functions (up to five) were needed. This is the 

case of cyclopropene shown in Figure 4-top (which required three Gaussian functions) and of 
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pyridine in Figure 4-middle (two Gaussian functions). Other bands, like those in pyrimidine 

(Figure 4-bottom), required only one Gaussian function.   

The shift results for all molecules are collected in Table 2. All fitted parameters are 

given in the Supporting Information. As shown in this table, for all 28 molecules we observe 

sub-bands with a redshift between the band maximum and the vertical excitation. The shift 

varies from zero to 0.4 eV; its mean value is 0.11 eV, and the standard deviation is 0.08 eV. 

As expected, the shift value does not show any correlation either with v

iE  or with if .   

Table 2. Vertical excitation energy ( v

iE  in eV) and oscillator strengths ( if ) for all molecules 

28 molecules in the Mülheim dataset in the fitted spectral region. The peak of each Gaussian sub-band 

is redshifted by  
i  (eV) from v

iE . The width of the sub-band is i  (eV). Molecules are numbered as 

in Figure 2.  

Molecule Method 
v

iE  (eV) if  
i  (eV) 

i  (eV) 

1 CC2 7.16 

7.91 

0.082 

0.381 

0.07 

0.14 

0.192 

0.605 

2 CC2 6.14 0.745 0.13 0.403 

3 CC2 5.18 1.265 0.10 0.400 

4 CC2 4.53 1.778 0.06 0.329 

5 CC2 6.75 

7.09 

7.40 

0.075 

0.031 

0.058 

0.02 

0.19 

0.14 

0.771 

0.294 

0.287 

6 CC2 5.49 0.105 0.09 0.460 

7 CC2 5.64 

6.09 

0.018 

0.018 

0.07 

0.18 

0.296 

0.356 

8 ADC(2) 6.89 

7.19 

0.078 

0.770 

0.06 

0.15 

0.059 

0.155 

9 CC2 4.79 0.080 0.13 0.360 

10 CC2 6.39 

6.43 

0.185 

0.042 

0.10 

0.00 

0.328 

0.749 

11 CC2 5.77 

5.86 

6.28 

0.013 

0.027 

0.189 

0.15 

0.21 

0.21 

0.400 

0.134 

0.309 

12 CC2 6.30 

6.35 

6.44 

0.032 

0.027 

0.153 

0.03 

0.00 

0.14 

0.032 

0.027 

0.153 

13 CC2 5.04 0.005 0.27 0.216 
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5.32 0.032 0.05 0.278 

14 CC2 4.18 

5.14 

0.006 

0.085 

0.14 

0.05 

0.213 

0.229 

15 CC2 4.44 

5.52 

6.11 

0.006 

0.030 

0.004 

0.07 

0.11 

0.15 

0.395 

0.262 

0.323 

16 CC2 3.83 

5.39 

0.005 

0.018 

0.08 

0.06 

0.286 

0.359 

17 CC2 4.80 0.016 0.06 0.422 

18 CC2 5.24 0.056 0.09 0.364 

19 CC2 6.38 0.022 0.05 0.128 

20 CC2 5.74 0.031 0.08 0.226 

21 ADC(2) 5.33 0.593 0.14 0.393 

22 CC2 6.13 

6.55 

6.71 

7.23 

7.53 

0.028 

0.021 

0.064 

0.029 

0.337 

0.05 

0.17 

0.01 

0.10 

0.05 

0.349 

0.215 

0.251 

0.241 

0.500 

23 CC2 5.77 

6.36 

6.88 

7.26 

7.60 

0.032 

0.019 

0.019 

0.206 

0.056 

0.00 

0.03 

0.19 

0.09 

0.00 

0.452 

0.239 

0.241 

0.421 

0.240 

24 CC2 5.77 

6.36 

6.76 

7.19 

7.48 

0.026 

0.020 

0.014 

0.189 

0.027 

0.02 

0.08 

0.00 

0.16 

0.00 

0.399 

0.247 

0.259 

0.394 

0.192 

25 CC2 4.68 

5.57 

0.050 

0.137 

0.08 

0.18 

0.412 

0.391 

26 ADC(2) 5.10 

6.10 

6.19 

0.205 

0.028 

0.048 

0.18 

0.41 

0.20 

0.418 

0.275 

0.254 

27 CC2 5.34 

6.30 

0.182 

0.068 

0.17 

0.23 

0.344 

0.430 

28 ADC(2) 5.13 

5.19 

0.247 

0.059 

0.17 

0.00 

0.357 

0.569 

 

The current results confirm that the redshifts are a common feature shared by many 

molecules. 80% of the sub-bands presented shifts equal or superior to 0.05 eV. Therefore, it 
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seems that the standard practice of comparing computed vertical excitations to the experimental 

band maxima should be reconsidered. Ideally, we should compare the experimental band 

maximum to the calculated band maximum. If only vertical excitations are known (as it is 

usually the case), a simple estimate of the band maximum is given by max v

calc iE E = − , where 

0.1 =  eV is the mean value of our benchmark. This point is further elaborated in the next 

section, where we discuss a specific example. 

The fitting of the simulated spectra yielded the sub-band width i  as a side product. 

Their values are also given in Table 2. The minimum width is 0.03 eV and the maximum 0.77 

eV. The mean value is 0.32 eV, and the standard deviation is 0.14 eV. 

Accounting for the shifts in spectrum convolutions 

The parameters in the simple spectrum convolution defined in Eq. (13) are illustrated 

in Figure 1. This equation is often used to make simple spectrum simulations from vertical 

excitation energies and oscillator strengths calculated at the equilibrium geometry. In such 

applications, the width is either taken as an arbitrary value common to all bands (based on our 

benchmark, we recommend to employ  = 0.3 eV) or fitted to experimental values.  

Note that the area under each sub-band in Eq. (13) is proportional to the oscillator 

strength of the corresponding vertical excitation. Nevertheless, it is still common in the 

literature to find spectrum convolutions taking the oscillator strength as the height of the sub-

band. Such a procedure, however, should be avoided, as it does not bear the right functional 

form /i if   and delivers spectra in arbitrary units. 

Figure 5 shows the absorption cross-section of pyrimidine in the gas phase. Compared 

to the experimental spectrum from Ref. [25], the simulations deliver satisfactory results. The 

intensity and position of the two bands are semi-quantitively described. Neither the spectrum 

convolution nor the nuclear ensemble can describe the vibrational resolution of the bands. 

Nevertheless, in the nuclear ensemble, the band envelope is a result of the simulation, while in 

the simple convolution, it is assumed to be a sum of Gaussian functions with an arbitrary width 

. Naturally, there is a large difference in the computational effort invested in the two methods. 

While the Gaussian convolution only demands the calculation of vertical excitation energies 

and oscillator strengths for the ground-state equilibrium geometry, the nuclear ensemble needs 

hundreds of such calculations; in the present case, 500 single points.   
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 Absorption cross section for pyrimidine in the gas phase. Spectrum convolutions based on Eq. 

(13) with the same width value for all sub-bands (0.3 eV). Nuclear ensemble spectra computed with 500 points. 

Experimental data from Ref. [25].  

If now we turn our attention to the spectrum convolutions and the nuclear ensemble 

results in Figure 5, we can clearly see the effect of the shift. With 0 = , the convolution is 

blueshifted compared to the nuclear ensemble band. A significantly better agreement is 

obtained when a shift 0.1 =  eV is uniformly applied to both bands. 

Experimentally, the high-energy band is peaked at 5.2 eV [25]. The vertical excitation 

energy computed with CC2 is at 5.52 eV, 0.32 eV above the experimental value. However, as 

we have been discussing, we should preferentially compare the estimated band maximum to 

the experimental result. The band maximum computed with the nuclear ensemble, still with 

CC2, is at 5.43 eV, therefore, 0.23 eV above the experimental value. A simpler estimate of the 

band maximum is obtained by computing v

iE − , where 0.1 =  eV, the mean shift value 

obtained from our benchmark. In this case, the band maximum estimate is 5.42 eV, 0.22 eV 

above the experimental value.  

Conclusion 

It is well established in the literature that band maxima of absorption spectra are 

redshifted in comparison to the corresponding vertical excitations by values reaching up to  = 

0.2 eV (assuming that both are computed with the same electronic-structure method). Using an 

analytical model and numerical estimates from low-dimensionality model systems, we 

determined that these shifts are primarily caused by the frequency change between the ground 
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and the excited states in multidimensional systems. The geometry displacement between the 

ground- and excited-state minima does not cause the shift but may affect its value. Nuclear 

ensemble simulations for a dataset of 28 small organic molecules completed this analysis by 

delivering a benchmark of shift values. The mean value of the shift calculated over 60 

transitions is 0.11 eV with 0.08 eV standard deviation. The mean value of the band width is 

0.32 eV with 0.14 eV standard deviation.  

Despite the availability of highly accurate methods for spectrum simulations, it is likely 

that the workhorse method for routine estimation of the one-photon absorption of molecules 

will remain the simple spectrum convolution of vertical excitations. Based on the results 

presented in this paper, we recommend that in such convolutions the  shift should be 

systematically taken into consideration in the comparison between the experimental band 

maximum and computed vertical excitations. This can be done, for instance, following the 

suggestion of Ref. [3] of comparing the vertical excitation to the M1 moment of the 

experimental band. Alternatively, it can be simply done by estimating the band maximum by 

redshifting the vertical excitation by 0.1 eV, the mean value of our benchmark.  

Appendix A. Derivation of Eq. (13) 

Experimentally, the oscillator strength of an absorption band i is given as [26] 

 
( )

( )
3

2

10 ln 10
,e

i i
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m c
f d

N e n
  


=    (14) 

where me is the electron mass, c is the speed of the light, NA is the Avogadro’s number, e is the 

electron charge, and n is the refractive index (CGS units). i  is the molar absorbance (or 

extinction coefficient). The integral is done over the absorption frequency . Supposing that 

the band has a Gaussian shape with maximum max

i  at max

i , and width i , the integral is 

 ( )
( )

2
max 2/max max .
i i

i i i id e d
  

      
− −

= =    (15) 

Thus, the oscillator strength is  

 
( )3
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2

10 ln 10
.e

i i i

A

m c
f

N e n
 


=   (16) 

Following these definitions, the total simulated spectrum can be written as the sum of all bands 
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   (17) 

The absorption cross section is [26] 

 

( ) ( ) ( )
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3

2
/

10
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i i
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N
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=
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  (18) 

It is convenient to express the absorption cross section in terms of the absorption energy  

 ( )
( )

2
max 23/2 2

/2
,

i iE E
i

ie i

e n f
E e

m c




− − 
=


   (19) 

where i  is the energy width of the band and max

iE  its energy maximum. As usual,  is the 

reduced Planck constant.  

To account for the shift between the band maximum max

iE  and the vertical excitation 

v

iE , it is convenient to introduce an energy-shift parameter i to account for this effect:  

 max .v

i i iE E = −   (20) 

Replacing this equation in Eq. (17) leads to (CGS units)  

 ( )
( )

2
23/2 2

/2
.

v
i i iE E

i

ie i

e n f
E e

m c




− − + 
=


   (21) 

For energies in eV and absorption cross section in Å2.molecule-1, it results in Eq. (13). 

From this result, the molar absorbance is  

 

2 -

-1

1

-1

5

Å .molecu
.M cm

3.82353 1

le

0




−

    =  
  (22) 
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