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Introduction
Endogeneity issues in regression models have been well stud-

ied in econometrics, though they may have been less fully inves-
tigated in the biometric and biostatistic literature. Endogeneity in 
regression model estimation may arise from reverse or feed-back 
causality, correlated measurement errors in dependent and inde-
pendent variables, and unobserved heterogeneity correlated with 
dependent and independent variables.

It is not difficult to find examples in which endogeneity is a 
problem in biological sciences. For example, in observations of 
natural phenomena in biological sciences, the presence of an un-
observed variable correlated with both the dependent and inde-
pendent variables is often likely to generate endogeneity biases 
in regression estimates. Consider for instance the study of infant 
weights in some tropical country. In this context, heavy rains can 
simultaneously cause higher travelling costs because of flooded 
roads, on the one hand, and, worse health status, because of ma-
laria spurred by a larger number anopheles mosquitoes, on the 
other hand. Then, lower observed weights may result from high-
er malaria incidence. However, it may also come from inefficient 
health care delivery caused by transportation delays. In that case, 
in a regression of observed infant weights on malaria spells, one 
expects some endogeneity of this latter variable associated with 
unobserved transport costs. Moreover, information on rains can 
be used an instrument for malaria.

In this example, investigating low quantiles of baby weights, 
and not only the mean weight, is crucial as these weights are ex 
 

 
cellent measures of child nutrition status, and what matters is that 
the weight does not fall under a minimal threshold.

More generally, analyzing distributions of outcomes in biolog-
ical or medicine studies is fundamental as the global average may 
hide many interesting and vital phenomena. Quantile regressions 
have been found a convenient statistical tool for such explorations 
and for better understanding the heterogeneity of the observed 
individual units in general. The practical statistical use of quantile 
regressions was popularized by Bassett & Koenker [1] and Koen-
ker & Bassett [2] who brought to the fore tractable computational 
techniques and derived asymptotic properties for these methods.

Quantile regressions allow for any given regressor having dif-
ferent effects for different individual units. Therefore, using quan-
tile regressions increases the flexibility of the models. It also en-
ables researchers to explore specific locations of the conditional 
distribution of the outcome variable, in particular the lower and 
upper tails. In that case, more substantial explanations of the vari-
ability of the studied phenomenon can be obtained, particularly in 
the case of nonconstant effect; that is with regression coefficients 
varying across quantiles.

Different approaches have been pursued for dealing with en-
dogeneity issues in quantile regressions. On the one hand, an ana-
logue of the instrumental regression approach, based on exclusion 
restrictions, has been developed by Chernozhukov and Hansen [3-
6]. It is associated with specifications of the conditional quantile 
function of main equation of interest.1 It allows for nonconstant 
quantile effects.
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On the other hand, the fitted-value approach corresponds 
to another analogue of the typical two-stage least-square esti-
mator for quantile regression. It was pioneered by Amemiya [7] 
and Powell [8] who laid their theoretical properties for two-stage 
least-absolute-deviations estimators in a simple setting. First, 
fitted-values of the endogenous regressors are estimated using 
a set of exogenous independent variables. Then, the estimation 
of the quantile regression of interest is performed by substitut-
ing the endogenous regressors with their fitted-values. This ap-
proach can be seen as imposing restrictions on the quantile of the 
reduced-form error. It makes sense to pay particular attention to 
reduced-form equations in experimental settings or policy design. 
Blundell & Powell [9] pointed out that the reduced-form is of in-
terest when control variables for the policy maker include instru-
mental variables. In social statistics, the pro-poor targeting of so-
cial programs can be improved by relying on predictions of living 
conditions based on well focused quantile regressions of reduced 
forms [10,11]. Similarly, in public health interventions, predictive 
quantile equations of health outcomes are useful; and so on for 
other biological sciences in which targeting interventions may be 
important.

Using this approach, Chen [12] and Chen & Portnoy [13] 
studied two-stage quantile regression in which trimmed least 
squares (TLS) and least absolute deviations (LAD) estimators are 
employed as the first-stage estimators. To reduce the variance of 
two-stage quantile regression estimators, Kim and Muller [14] 
constructed a weighted average of the dependent variable with 
its fitted value from a preliminary estimation, which is employed 
as the dependent variable in a final two-stage quantile regression. 
Kim and Muller [15] used a similar approach with instead quantile 
regression in the first stage. We now turn to a more precise dis-
cussion of the conditions in which these estimation methods yield 
consistent estimation and other useful properties.

Results and Discussion

Models and assumptions
Let us consider the estimation of the parameter

1t t t ty x Y uβ γ′ ′= + +  (1)

,t tz uα′= +

where 1, , , ,t tt T y Y ′=
 

  is a ( )1G +  row vector of endogenous vari-
ables, 1tx′  is a 

1K  row vector of exogenous variables, and tu  is an 
error term. We denote by 2tx′  the row vector of the 2K  exogenous 
variables excluded from (1).To shorten notations, let [ ]1 1, ,t t tz x Y ′′ ′=  

[ ], .α β γ ′′ ′=  Assume the first element of 1tx′  is 1.

By assumption, the following linear equation, which is as-
sumed to be correctly specified, can be used to generate an exoge-
nous fitted-value for :tY

,t t tY x V ′′ ′= Π +  (2)

where [ ]1 2,t t tx x x′ ′ ′=  is a K  row vector with 1 2.K K K= +  Matrix Π  

is a K G×  matrix of unknown parameters, while 
tV ′  is a G  row 

vector of unknown error terms. Assumptions 2 and 4 below will 
complete the DGP. However, let us first discuss the reduced form.

Using (1) and (2) yields:

,t t ty x vπ′= + (3)

for 1, , ,t T= 

( )Hπ α= Π  with ( ) 1 ,
0
KI

H  
Π = Π 

 
 (4)

and .t t tv u V γ′= +

Let ( ) ( ) ,z z zθ θρ ψ=  where ( ) [ ]01 ,zzθψ θ ≤= −  for any quantile index 
( )0,1θ ∈  and [ ]1 ⋅  is the indicator function. If the orthogonality con-

ditions, ( )( ) 0,t tE z uθψ =  were satisfied, then the one- stage quantile 
regression estimator would be consistent. However, when tu  and 

tY  are correlated under endogeneity of ,tY  these conditions are gen-
erally not satisfied, and the quantile regression estimator of α  is 
not consistent.

The Two-Stage Quantile Regression estimator α̂ of α is de-
fined, for any quantile ,θ  as a solution to:

( )( )
1

ˆmin ,
T

t t
t

y x Hθα
ρ α

=

′− Π∑  (5)

where Π̂  is a first-stage estimator. Let us state a few hypothe-
ses and regularity assumptions.

Assumption 1: The sequence ( ){ }, ,t t tx u v′  is mixingα −  with mix-
ing numbers ( ){ }sα  of size ( )( )2 4 1 1 .K K− + +

Assumption 2: ( )( ) 0,t tE v xθψ =  for an arbitrary .θ

This is the main identifying condition of the fitted-value ap-
proach with quantile regression.

i.	 Assumption 3: (i) ( )H BΠΠ +  is of full column rank.

(ii) Let ( )tF x⋅  be the conditional cumulative distribution func-
tion (CDF) and ( )tf x⋅  be the conditional probability density 
function (PDF) of .tv  The conditional PDF ( )tf x⋅  is assumed to 
be Lipschitz continuous for all ,x  strictly positive and bound-
ed by a constant 0f  (i.e., ( ) 0 ,tf x f⋅ <  for all x).

(iii) The matrices 
1

1lim
T

t tT t
Q E x x

T→∞
=

 ′=   
∑  and ( )0

1

1lim 0
T

t t t tT t
Q E f x x x

T→∞
=

 ′=   
∑  are 

finite and positive definite.

(iv) There exists 0,C >  such that ( )3 ,tE x C< < ∞  for any .t
In Kim and Muller, a general asymptotic expansion is derived 
that can be used to compute the particular case in the follow-
ing theorem by plugging the asymptotic expansion of a first 
stage OLS estimator Π̂  in it, to obtain:

Theorem 1
Under Assumptions 1-3, the asymptotic representation for the 

two-stage quantile regression estimator is:
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( ) ( ) ( ) ( )1 2 1 2 1 1 2
0 0

1 1

ˆ 1 ,
T T

t t t t t p
t t

T RT x v RQ Q T x v u oα α ψ− −

= =

− = − − +∑ ∑

where ( )1
zzR Q H− ′= Π  and ( ) ( )0 .zzQ H Q H′= Π Π

ii.	 Assumption 4 ( ) ( ).t t tE V x E V=

1.	 Assumption 4 imposes the independence of the re-
duced-form errors with all non-constant exogenous vari-
ables and it corresponds to the use of unbiased OLS in the 
first stage.

iii.	 Assumption 5

(i)	 There are finite constants ,∆  such that 3
,ti jtE x V < ∆ for all 

, ,i j  and .t
(ii)	 The covariance matrix ( )1 2

1
var T

T tt
V T S−

=
= ∑  is positive definite 

for T  large enough, where ( )( ), ,t t t t tS v v u xθψ ′= − ⊗  t t tu v V γ′= −  
and ⊗  is the Kronecker product.

Theorem 2
Under Assumptions 1-5 [14],

( ) ( )1 2 1 2 ˆ 0, ,d
TD T N Iα α− − →

where

T TD MV M ′=  and 1
0, .M R I Q Q− = − 

Therefore, calculating the estimator and performing asymp-
totic inference is straightforward with this approach. In contrast, 
the instrumental variable approach in that case assume, instead of 
Assumption 2, that the conditional quantile of tu  with respect to 

tz  is constant: ( ) constant,U ZQ zθ =  where tu  can be seen as an error 
in ( )0,1 ,  -or another interval - and for any ( )0,1 .θ ∈  This model can 
also be extended to non separable (in error) models. Practically, 
the IV approach is performed by approximating the first-order 
conditions by iterating some ancillary quantile regressions.

Specifically, the IV-QR estimator of the coefficient vector for 
the endogenous regressors is

 arg min  ( ) ( ),Aγ δ γ δ γθ θ θγ
′=  where A is a positive definite ma-

trix, and 

( ( ), ( )) arg min ( - )- - 21, 1

T
y xt Y x tt tt

β γ δ γ ρθ β δθ θθ θ γβ δ θθ θ
= ∑

=
 

The assumption made by Chernozhukov & Hansen [4] for a 
quantile model  Y=Q(Y,x1,Uy) are as follows:

I.	 Assumption B1: Given 1 1,X x=  for each valueY  of ,Y  
( )1, , ,Yy Q Y x U=  where ( )0,1 ,YU U�  and ( )1, ,Q Y x θ  is strictly increasing in 

.θ

II.	 Assumption B2: Given 
1 1,X x=  

YU  is independent of 
2.X

III.	 Assumption B3: Given 1 1X x=  and 2 2 ,X x=  for an un-
known function G  and a random vector ,v  ( )2 1, , .Y G X X v=

IV.	 Assumption B4: For any values Y  and ,Y ′  given ( )1 2, , ,v X X  
.Y YU U ′�

V.	 Assumption B5: ( )1 2, , ,t t ty Y X X  are iid on a compact set.

VI.	 Assumption B6: For any ,θ  ( ),θ θβ γ  is in the interior of a 
compact convex set.

VII.	 Assumption B7: Assume that y has almost sure-
ly a bounded conditional density 1 2, , ,fy X Y X  and let ( ), , ,π β γ δ≡  

( ), ,α β γ′ ′≡  ( ) ( ) ( ) 1, ,t t t tV Xθ θ θ
′ ′ ′Ψ ≡ Φ    where ( ) ( )1 2, ,t t t tX Xθ θΦ ≡ Φ  is a transformation 

of instrument information, ( ) ( )1 2, ,t t t tt
V V X Xθ θ≡  is a positive weight 

function, and ( )
( ){ } ( )

1 0
, 1

ty Y X
E

γ β θ δ
π θ θ θ

′′ ′− − +Φ <

 
≡ − Ψ 

 
∑  and ( ) { } ( )

1
, 1 .

y Y X
E

γ β
η θ θ θ′ ′− −

 ≡ − Ψ  ∑

Assume that ( ) ( ),
,

α θ
β γ
∂
′ ′∂ ∑  and ( ) ( ),

,
π θ

γ α
∂
′ ′∂ ∑  are continuous and 

have uniformly full rank, and that the image of ( ) ( ), ,β γ α θΠ  is 
simply connected.

VIII.	 Assumption B8: Almost surely, the following estimated 
function, denoted ( )1 2, , ,f X Xθ  converge in probability uniformly in 
( )1 2, ,X Xθ  over compact sets: ( )1 2, ,X XθΦ  and ( )1 2

ˆ , , .V X Xθ

Assume that these functions ( )1 2, ,f X Xθ  are uniformly smooth 
functions in ( )1 2,X X  with the uniform smoothness order greater 
than ( )1 2dim , , 2,Y X X  and ( ) ( )1 2 1 2, , , , ,af X X f X X Cθ θ θ θ′ ′− < −  where 

0C >  and 0,a >  for all 1 2, , , .X Xθ θ ′

Theorem 3

Under Assumptions B1-B8, let  1u y X Yt tt tβ γθ θ θ′ ′≡ − −  and 
( ) 1{ 0}ut ut

ψ θθ θ
≡ − <  , ( ) ( )( ) ( ) ( )( ) ( ) ( )1

1

1 ., 1
T

t t p
t

T J l o
T

α α α−

=

⋅ − ⋅ = − ⋅ ⋅ Ψ ⋅ +∑   then:  
converges in distribution to (.)b  , which is a centered Gaussian process 

with covariance function 1 1[ ( ) ( ) ] ( ) ( , )[ (( ) ] ,E b b J S Jθ θ θ θ θ θ− −′ ′ ′ ′=  

where   ( ) [ (0 | , , ) ( )[ , ]]1 2 1J E f X Y X Y Xut
θ ψ θ

θ
′′≡  and  

( , ) min( , ) ) [ ( ) ( ) ].S Eθ θ θ θ θθ ψ θ ψ θ′ ′ ′ ′ ′= −

Let us now compare the two approaches in the next subsec-
tion.

Advantages and drawbacks of the two approaches
On the one hand, the fitted-value approach is often convenient. 

It corresponds to an elementary OLS and quantile regressions, 
which is practically analogous to the two-stage least-square pro-
cedure. For this reason, it has been used by empirical researchers 
keen to avoid computation problems.2 In particular, no non-para-
metric estimation, no simulations, no numerous iterations of com-
putation steps nor optimisation grid are needed. The fitted-value 
approach also allows the use of a new method of variance reduc-
tion for quantile regressions proposed by Kim & Muller [14] under 
very general conditions.
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Table 1: Comparison of computation times.

Number of endogenous regressors: Number of observations 1 2 3 4

Kim and Muller Test:Time in seconds
100 0.01 0.06 0.06 0.01

500 0.18 0.38 0.54 0:82

Chernozhukov and Hansen Test:Time in hours!
100 0.0007 0:0215 1 82

500 0.0013 0:1299 9 703

In contrast, an issue with the IV approach is that it may be 
costly in terms of numerical computations to perform. extracted 
from the following table, extracted from Kim & Muller (2018) [30] 
compares computation times using the fitted-value approach in 
Kim & Muller [14,15] and the Chernozhukov & Hansen [3] proce-
dure and programs, for a simple simulation setting Table 1.

The computation time for the Chernozhukov and Hansen test 
is much higher because of the iterations for the numerical approx-
imation of the first-order conditions, especially with more than 
one endogenous regressor. Although this drawback may be allevi-
ated by using more efficient algorithms, it remains an issue when 
there are many endogenous regressors.

However, recently, new codes and methods have been devel-
oped by Kaplan and Sun (2017) and de Castro, Galvao, Kaplan and 
Lin (2020) that are just faster, and therefore offer a promising av-
enue of development.

On the other hand, the fitted-value approach is often plagued 
by the occurrence of constant effects, as claimed by Lee [17]. That 
is: all coefficients, except for the intercept, should be the same 
for all considered quantiles, which makes the model less flexible 
and therefore less realistic. However, even if this drawback is real, 
this is not completely so. Muller [18] showed that it is possible to 
estimate two-stage quantile regressions using the fitted-value ap-
proach that are consistent with a particular form of nonconstant 
effects. In that case, heterogeneous coefficients can be allowed for 
some of the model regressors only. This can be obtained by as-
suming weaker instrumental variable restrictions than usual. Un-
der these weakened conditions, the endogeneity can be treated by 
using the fitted-value approach, although the nonconstant effects 
have to correspond to parameters that are in the model but cannot 
be identified precisely. However, nonconstant effects, varying with 
the quantile index, can still be present in the true model. Anoth-
er shortcoming of the fitted-value approach is that the first-stage 
equation must be well specified, whereas this is not required for 
the instrumental variable approach.

However, there is also some common ground between the two 
approaches. Indeed, even under constant effects, quantile regres-
sions can be useful when only one given quantile is of interest, for 
example when the considered intervention or experiment is tar-
geted to this quantile. In that case, both methods are appropriate. 
Moreover, when one is only interested in the individual mean, then 
the two approaches can be seen as equivalent under exact identi-
fication [19].

Relaxing identification conditions
The above-mentioned interest in relaxing identification re-

quirements for quantile regression under endogeneity invites to 
pursue the discussion in this direction. Assumption 2 imposes 
that zero is the given thθ -quantile of the conditional distribution 
of ,tv θ  where the quantile index θ  has been added to tv  to show 
well that Assumption 2 characterizes a given quantile index .θ

iv.	 Assumption 6: For a given quantile index ,θ  the cdf of 
tv
θ  conditional on ,tx  denoted ,

t tv xF
θ

 the cdf of tv θ  conditional on 

1 ,tx  denoted 
1

,
t tv xF
θ

 and the marginal cdf of 2 ,tx  denoted 
2

,
txF  

are continuous and strictly increasing.

Now, instead of Assumption 2, the weaker Assumption 2’can 
be used.

Assumption 2’: For a given quantile θ  and under Assumption 
1:

tv θ is independent of 2 ,tx  conditionally on 
1 .tx  (6)

In Muller, it is shown that

Theorem 4:
Under Assumptions 6 and  2’, for a quantile regression process 

of the reduced form (3):

(a) There is a constant effect for the variables in 2 .tx

(b) A nonconstant effect is possible for the variables in 1 .tx

(c) For all ,θ  ( )
1

1
tv x tF θ θ−  is linear in 1 .tx

The popular ‘linear location-scale hypothesis’ in the quantile 
regression literature on the non-constant effect (e.g., Koenker 
[20]) is consistent with Result (c) in Proposition 1. Moreover, Re-
sult (c) may be easily relaxed by including polynomial terms in 

1tx  in the model. Alternatively, the reduced form in (3) could be 
specified as being partially linear in 

2 ,tx  and nonlinear in 
1 ,tx  with 

an unknown nonlinear functional form. This still yields a constant 
effect for 2tx and an unrestricted nonlinear effect for 

1 .tx  In that 
case, Result (c) could be discarded. Finally, instead of imposing 
Assumption 2, one may first test for which coefficients the hy-
pothesis of constant effect is rejected or not in typical quantile re-
gression estimation, so as to guide the precise specification of this 
assumption. Finally, the results in Muller [30] are: 

Theorem 5
Under Assumptions 1 and 2:
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(a)	 The components of θπ  in the reduced form (3) for any 
quantile index θ  can be identified, for the constant coefficients 

2 2θπ π=  of 2 ,tx  but not for the non-constant coefficients 1θπ  
of 

1 .tx
(b)	 For the quantile model (1), the coefficient vector θγ  of 

the endogenous regressors tY  in the quantile model is identified, 
while constant with respect to the quantile index : ,θθ γ γ=  for all 

( )0,1 .θ ∈
(c)	 The coefficient vector θβ  of the exogenous regressors 

1tx  in the quantile model can be non constant with respect to the 
quantile index ,θ  while it is not identified in general.

In biological sciences, obtaining a condition like in Assumption 
2, or a similar one by reversing the roles of 1tx  and 2 ,tx  should 
be much easier than in social sciences. Indeed, experimental set-
tings or specification of controls could be designed accordingly

Conclusion
The design of identification conditions for solving endogene-

ity issues in quantile regressions is still an open research area. The 
diverse methods used in the literature to deal with the problems 
discussed here correspond to non-encompassing restrictions. It 
seems therefore fruitful to further investigate and develop each 
kind of approach. We have sketched the state of the question from 
which such extension could be built on.

In particular, a few reservations would deserve further in-
vestigation. First, studying some practical applications based on 
actual policy data or experiment data that are characterised by 
constant effect of treatment variables would assist in clarifying 
the potential of the respective methods. Second, the rigid distinc-
tion between constant effect and nonconstant effect for endoge-
nous and exogenous regressors could be relaxed to generate more 
flexible specifications. Third, as always, finding instruments, even 
if weakened ones, is still hard in general. However, owing to con-
trolled experiments, this may be easier in biological sciences than 

in other study areas.
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