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Power Profiling and Monitoring in Embedded Systems:
A Comparative Study and a Novel Methodology Based on NARX Neural
Networks

Oussama Djedidi*, Mohand A. Djeziri
Aiz-Marseille University, Université de Toulon, CNRS, LIS, Marseille, France

Abstract

Power consumption in electronic systems is an essential feature for the management of energy autonomy,
performance analysis, and the aging monitoring of components. Thus, several research studies have been
devoted to the development of power models and profilers for embedded systems. Each of these models is
designed to fit a specific usage context. This paper is a part of a series of works dedicated to modeling
and monitoring embedded systems in airborne equipment. The objective of this paper is twofold. Firstly,
it presents an overview of the most used models in the literature. Then, it offers a comparative analysis of
these models according to a set of criteria, such as the modeling assumptions, the necessary instrumentation
necessary, the accuracy, and the complexity of implementation.

Secondly, we introduce a new power estimator for ARM-Based embedded systems, with component-level
granularity. The estimator is based on NARX neural networks and used to monitor power for diagnosis pur-
poses. The obtained experimental results highlight the advantages and limitations of the models presented
in the literature and demonstrate the effectiveness of the proposed NARX, having obtained the best results
in its class for a smartphone (An online Mean Absolute Percentage Error = 2.2%).

Keywords: Data fitting, Embedded Systems, Machine learning, Modeling, NARX, neural Networks,
Power Consumption, Power profiling, Smartphone

1. Introduction

Since the introduction of the modern smartphone in 2007, there has been a great deal of research dealing
with the duality performance-battery life in these systems [1]. One of the earliest challenges in mobile devices’
power consumption was to predict the remaining battery life [2]. This decade-old question is still generating
studies aiming to enhance accuracy while accounting for newly released technologies [3]. Furthermore, with
the emergence of new factors, such as the Internet of Things (IoT), and the ubiquity of embedded systems
in general, the interest in power consumption is no longer limited to just mobile devices, and now includes
most embedded electronics [4, 5].

The main issue is how to increase the performance of the system while maintaining sustainable—if
not minimal—power consumption levels. Hence, both the scientific and industrial communities have been
working actively to improve power efficiency [6, 7]. Most solutions focused on the optimization of resource
utilization and varied widely. For instance, some of the proposed solutions were algorithmic like the Dynamic
Voltage and Frequency Scaling (DVFS) for CPUs [8] and GPUs [9], and new scheduling and task distribution
algorithms [10]. Alternatively, other works focused on empirical approaches in reducing power consumption,
like reducing screen resolutions [11], or using large-scale statistical methods to study the impact of the
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user’s behavior on power consumption [12]. The interest in power consumption went even further than just
improving efficiency. Researchers have studied power consumption to detect and solve energy bugs [13],
create energy-aware software [14], and even to creatively deal with cyber-security issues [15, 16] and detect
anomalies [17, 18].

This paper is a continuation of our previous works on the modeling and monitoring of mobile and
embedded systems [19]. In this work, the main focus is on building a power model and profiler for the online
monitoring of onboard embedded systems [18].

Power profilers are tools that allow for the measurement or the estimation of power consumption on a
system-wide level [20] or down to components [21] or applications [22]... Moreover, not only these tools
allow users to estimate the power consumption or the remaining battery life, but they also help developers
decrease energy loss [12] and create energy-friendly [23] or reliability-aware algorithms [24].

The specialized literature is rich with power profilers and models that were indexed into several surveys
[1, 25, 26]. These surveys included profilers made by software and hardware companies [27], as well as
those made by researchers like PowerBooter [28] and Sesame [29]. While these surveys are relatively recent,
the generational differences between components (and hence their power profiles [30]), coupled with the
changes in user-device interactions, deprecate the use of old models [31]. Thus, the continuing trend in
power profiling and the flux of new power models [20, 32, 33, 34, 35]. Some of these models offered more
accessible construction and implementation [36], while others focused on accuracy [33].

As it will be demonstrated hereafter, all these models and profilers differ in their purposes and techniques.
Thus, explaining why there are so many of them). The aim behind this work is to complement the available
research by compiling and comparing the methods and ideas found in the literature and then offering a step-
by-step methodology on how to build power profilers, then, use this methodology to build a new accurate
profiler that uses a Nonlinear AutoRegressive eXogenous (NARX) neural network model. The profiler,
which is called N3, is built to be used as a power consumption monitoring tool to detect anomalies in power
consumption. In the results section, it will be shown how N3 improves upon the accuracy reported in the
literature while maintaining low power and computational overhead.

In the next section, the main steps of building a power profiler are outlined. The differences between
each type of profilers are also highlighted with examples from the literature alongside the different design
choices to be made. Then, in the following sections, the use of these steps to design and build a neural
network-based power profiler is detailed. Henceforth, this work will serve as both a tutorial to building
power profilers and a paper presenting a novel work. In the last section, the obtained results are discussed,
validating the profiler.

2. Design and Construction of Power Profilers

All power profilers found in the literature or the industry share the common task of delivering power
consumption values, whether by measurement or estimation. Through this commonly shared task, some
other standard features and techniques that these profilers use to achieve their results may be outlined. In
the following paragraphs, these features are streamlined into manageable steps through which the design
choices to be made are explained, starting with the goal of building the profiler.

2.1. Defining the purpose of the profiler

Power profilers are built to accomplish a very specific task energy-wise. For instance, they might be
used to measure the consumed energy of the device [37], or some specific component [38], or monitor the
device for anomalies [16, 39]. Therefore, the granularity—the level at which the profiler can deliver power
measurement or estimation [25]—would differ from one case to another.

Accordingly, to choose the type and the structure of the profiler, the first step in building one, is to
state the goal that the profiler has to achieve, which will also indicate how fine the granularity should be.
For instance, if the profiler is built to help developers estimate the amount of energy consumed by their
applications, it should have an application-level granularity [40, 41] or even higher [42].



Design choices:
e Purpose: Monitoring, diagnosis, software optimization...

e Granularity: Device-level, component-level, application-level...

2.2. Defining the profiling scheme and measurements source

Once the purpose of the profiler is defined, the next step is to set which profiling scheme to use. There
exist two main ones: the hardware-based method and its software counterpart [25].

As their name suggests, hardware-based profilers use external sensors and equipment to collect and
report measurements [43]. They generally use multimeters or power monitors, which requires the device
to be opened and connected at all times to the monitoring equipment. On the other hand, software-based
profiling uses a program to collect power measurements or generate estimations. These profilers rely on
several techniques such as self-metering [1], or the state of charge of the battery, or the battery Application
Programming Interface (API) [25].

The use of hardware-based power profiling has dwindled over the years since their main advantage
(accurate power measurement) no longer outweighs their main drawback (physical intrusion of the device).
Furthermore, with recent advancements, software power metering is reaching the accuracy of hardware
measurements [41] and has thus gained popularity, since its delivering estimations that are comparable to
hardware-based profiling with no physical intrusion.

The purpose of the profiler and the needed level of granularity would also dictate which scheme the profiler
will use to deliver power estimations. If the purpose is to observe the power consumption of the whole device,
there would be no need for a fine level of granularity, and the physical recordings measurement would be
sufficient [43]. However, if the purpose is to monitor a specific component—such as the CPU—then a finer
granularity is needed [24]. Moreover, since obtaining physical measurements of the individual components
is not always possible, it would be wiser to use a power model to generate estimations. These profilers are
called model-based profilers [1]. An even finer granularity, such function-level, would require models based
on techniques such as code analysis [40]. The latter is mainly used to help developers optimize their code
and avoid energy hogs [44].

Design choices:
e Scheme: Hardware-based or software-based profiling

e Measurements source: Instruments or battery API or discharging curve...

e Measurements generation: Code Analysis-based estimation, or Model-based estimation, or physical
measurement recording

2.8. Model-based profilers

2.8.1. Modeling scheme

White-box modeling of power consumption in embedded systems would result in the building of a model
generating accurate power estimation. Such a model would typically use finite state machines [45], or
simulate differential equations [46], which would require design level knowledge of all the inner components
of the chip [1].

Alternatively, black-box modeling techniques—such as identification and regression—train the model to
fit its outputs to observations [1]. In this type of model, the expertise of the factors influencing the output
is appreciated, but not required, nor is the formal theoretical proof of the relation between the inputs and
outputs [28]. However, these methods require large amounts of data for training and validation to obtain
satisfactory results [1].

Grey-box models are the middle ground between white-box models and black-box models, where a part
of the model is built through physical knowledge, and the rest is identified using black-box methods [47].
For instance, in a first step, PowerBooter defines the power usage of a set of determined states in an FSM,
then it uses regression to determine the power consumption of each of these states [48].

3



2.8.2. Choice of inputs

Hoque et al. [1] state that there exist two types of inputs: Utilization-based and event-based ones.
Utilization-based models focus on the direct correlation between the usage of a peripheral or a component
and the consumed power. For instance, to account for the power consumed by the Wi-Fi module, its data
rate transfer is observed. Event-based models, on the other hand, would instead observe the status of the
component (On/Off) [45]. Nevertheless, recent works proved to not stick with either one type for each have
their limitation [49], but instead rely on a mixture of them [33, 50, 51, 52].

The choice of inputs depends on two major factors: The available sensors and data on the device and
the desired granularity. The most basic model-based profilers need to include at least data from the most
relevant components, such as the processors, the communication components, and the most used sensors [26].
In this line of research, Chen et al. [53] demonstrate, in their study, how much each hardware component
contributes to the total energy count. Additionally, Ardito et al. [30] also shows the gap between the different
generations of materials and technologies in terms of energy consumption.

Finally, finer granularity requires more data to estimate the power correctly. For instance, when profiling
the power use of an application, one might call upon code analysis, or use timestamps and systems traces.
These two are crucial for estimating software components power consumption—Ilike an application or a
function, which encourages the use of time series [54, 55].

2.8.8. Model construction and implementation

Hardware-based profilers, by design, are built to deliver measurements and estimations on the fly.
Software-based profilers, on the other hand, can either work online and provide direct estimations of the
power consumed by the device or generate estimations from previously gathered data. For instance, for a
large-scale study, offline estimation is better suited for the task [12]. However, if the purpose of the profiler
is to monitor the device debug and its energy consumption, online estimation is the better solution [19, 56].

Models are also characterized by where they are constructed and trained. Those constructed and trained
on the profiled device, require no additional training or tuning [28]. They accurately estimate power con-
sumption and adapt to the device’s specific power profile [1]. However, they require a data gathering and a
training time that might come at a high computational cost. Models constructed and trained offline would
avoid the drawbacks of the first category [18, 57], but they are always device-specific and their accuracy
varies from one device to the other.

The last category is off-device profilers which are constructed and trained off-device [58]. These profilers
deliver accurate estimation, notably in fine granularity cases, but require a permanent link to the profiled
device.

Design choices:
e Modeling scheme: White-box, or grey-box, or black box

e Estimations availability: Online or offline

e Model implementation: On-device or off-device

2.4. Profiler evaluation and tuning

In the case of model-based profilers, once the model is built and trained, it goes through the valida-
tion process. In this process, the model is tested by comparing its estimations or predictions y with the
measurements y. To validate the model, one should evaluate the goodness of fit, study the accuracy of the
estimations, and analyze the residuals.

The goodness of fit is a direct comparison between model estimations and the measurements. It is
evaluated through the linear regression of estimations and measurements (R) or the calculation of the
coefficient of determination (R?) [59]. For a test set of n samples, R? is equal to:

B2 k) —9(k)* SSE
D oh=1 (y(k) = py)? D ohr (k) = y)?
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where i, is the mean value of the measurements y(k) n, and SSE is the Sum of Squared Errors :

SSE = S (y(k) — (k)2 (2)
k=1

In an ideal case, y = 4. Hence, R and R? will be equal to 1. In practice, however, the nearer the value of

these indicators is to 1, the better are the estimations of the model.
The calculation of R or R? is an indicator of the latter, but the accuracy of the model has to be further

evaluated by calculating estimation errors:

e(k) = y(k) —g(k) (3)

The study of these residuals makes it possible to conclude if (k) fit y(k) well. These residuals must have
a random profile. Their randomness indicates that the inputs and outputs of the model are correlated.
Therefore, their distribution must be tested. Among the different tests possible to determine if the residues
are random, the most used are the normality test [59] and the Kolmogorov-Smirnov test (K-S test) [60].
These two tests make it possible to deduce if the residuals are normally distributed and centered around
an average [ with a standard deviation o.. This variable is also affected by the heteroscedasticity, which
indicates the existence of a relationship between the variance (¢2) and the samples size of the input variables.
Thus, in order to verify the homoscedasticity of the residuals, several tests like that of White [59] or Engle’s
ARCH test [61] can be used.

Once the goodness of fit is satisfactory, the residuals are analyzed, and the estimation errors are suffi-
ciently small to satisfy the requirements of the designers (MAE lower than the resolution of the sensors, for
instance), the model is validated. If the model can not be validated, then the designer must repeat the steps
from the choice of the modeling approach. This was the case of this work, where the accuracy of the model
has been considerably improved, by changing the type of the model, compared to its first version [19].

In the last step, the performance is also observed to be satisfied or not. During this step, one should
look at the time needed to generate estimations, and whether the adoption of some choices outweighs the
drawbacks—fine granularity against slower estimations, for instance. Additionally, tweaks can be made to
obtain the optimum desired results. For instance, the influence of each input can be observed favoring some
inputs to others, leading sometimes to the elimination of some as their influence is marginal. Once the

model is validated satisfying all design and performance constraints, the process ends.

2.5. Summary
In figure 1, the general algorithm describing the building of a power profiler is shown. It shows all the

steps to follow. It also shows, in case of unsatisfactory results which steps should be revisited according to
the constraints underhand. For instance, if the accuracy of the model is not sufficient, one has to review
the modeling scheme and onward, until the desired results come through. Furthermore, table 1 displays
a compilation of profilers and models found in the literature categorized according to the steps explained

above in this section.

Table 1: Summary of some of the profilers available in the literature. —: Information not available or not applicable.
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3. Case study devices
The systems on which N3 is validated are a smartphone and a development board running Android.

These systems were chosen for three main reasons. Firstly, these devices are available on a wide scale and

are easily programmable, making all the developed programs easily transferable between them. Secondly,
these devices run on the kernel used by most of the embedded systems in the world—Linux—extending

the portability of the N3 profiler to, virtually, all devices running this kernel (with some device-specific
adjustments). Finally, these devices are well-instrumented and need no external or invasive measurement

schemes.

Table 2 shows all the significant specifications of both the development board and the smartphone. The
board is a system used to develop prototypes. The one used in this work has only one core CPU and no extra
peripheral making a perfect case study for basic systems. Figure 2 shows the board alongside a multimeter

used to measure its power consumption.

4. Constructing the power profiler
In the previous section, the steps and the design choices for building a power profiler were outlined. The

paragraphs in this section demonstrate how those steps are to be undertaken, starting with the purpose of
the profiler.

4.1. Purpose of the profiler
The N3 power profiler is meant to serve as a power monitor for an embedded or a mobile device and its
components. It is meant to be a component of an incremental model and a monitoring framework previously
presented by Djedidi et al. [18], it is also an improvement and a generalization of their previous works [19].
The profiler will collect data, generate power estimation with its incorporated power model for the system
as a whole, and its components individually, then log this data. Hence, the granularity is chosen to be at

the components’ level. The monitored components are:
The system on chip (SoC): In most embedded systems, it is composed of the CPU and a Graphics

Processing Unit (GPU) when needed.
The Random Accesss Memory (RAM)

e The LTE module

1The Vivante GC400T and GC320 are modules handling 3D and 2D graphics. However, they does not fall under the modern

definition of a GPU [87].
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Figure 1: A general algorithm for constructing a power profiler for embedded and mobile devices.




Table 2: Highlights of the specifications of the smartphone and the development boards used in this study [85, 86]. —: Not
Applicable.

‘ Mobile Device

Development board

0Ss | Android 8.0.1 (Oreo) | Android 6.0.1 (Marshmallow)
SoC Exynos 8895 MCIMX6SX
e CPU Octa-core (big.LITTLE) One core + microcontroller
e 4 x 2.3 GHz Mongoose M2 e 1GHz ARM Cortex-A9
e 4 x 1.7GHz Cortex-Ab53 e 0.2GHz ARM Cortex-M4
e GPU Mali-G71 MP20 3D : Vivante GC400T / 2D : Vi-
vante GC320!
RAM | 4GB | 1GB
Communication
e Cellular GSM/HSPA/LTE —
e Wi-Fi Wi-Fi 802.11 a/b/g/n/ac —
e Blutooth 5.0 —
e GPS Yes —
1/0
e Touchscreen QHD+ Super AMOLED HD LCD
e Speakers 2 Speakers —
e Camera 2 (Front and back) —
e Microphone Yes —
e Vibration Yes —
Power supply ‘ Battery 3500 mA h ‘ plugged

The GPS module

The wireless module: Wi-Fi and Bluetooth.

The touchscreen

The speakers and the microphone

e The camera module containing the font facing camera, the rear facing camera(s), and the flash.

These components are the major factors when it comes to power consumption [26]. The smartphone
contains other peripherals, but their power draw is considered to be marginal [88] and a part of the static
power consumed by the device. For instance, the capacitive touch layer on the screen is considered to be
consuming a marginal and static amount of power [89].

This assumption was tested and confirmed experimentally. In figure 3, the measured power consumption
is drawn during multiple stages. In the first stage (Blue dots), the frequency is set to its minimum, and
the screen is kept off by a custom app. During the second stage (Plain magenta), the fingerprint sensor is
activated and used. Nevertheless, the power draw is unchanged. The same draw is observed in the third
stage (Red dashes), during which the heartbeat sensor was used instead. The power draw significantly
increased in the last stage (Green dashes), when the frequency was no longer limited, and the screen was
turned on again.

4.2. The profiling scheme and measurements source

Modern smartphones are abundantly available, and developing applications for them is relatively cost
and risk-free. The N3 profiler is software-based that will rely on system files system and traces for its power
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Figure 2: The development board alongside the multimeter and the monitoring PC.

Figures/Power

ConsumptionWithMarginalSensors-eps-converted-to.pd

Figure 3: The measured overall power consumption of the device during multiple stages with different components activated

and deactivated at each stage.
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Figure 4: General architecture of the N3 profiler.

readings and inputs’ readings. This profiling scheme and measurement source are adequate for the chosen
level of granularity in this work. Moreover, the results obtained with these methods are on par with the
accuracy of hardware-based measurements [41].

Accordingly, the profiler will be composed of two parts: a data logger and a model (Figure 4). Firstly,
the data logger will collect relevant information from the device. Then, the model will use these pieces of
information as inputs to generate power estimation.

4.3. Data logging

The operating system (OS) generates traces and logs to indicate its current state and the status of the
peripherals. Thus, instead of encumbering the system with queries for the values of the inputs, the system
files are read in parallel. Data from experimentation also showed that it is also faster to read the system
files than to use system APIs (Table 3).

Table 3: The mean time needed to access the value of some variables through Android APIs and through system files, on the
smartphone.

Variable System APIs (ms) System files (ms)

CPU core frequency — ~ 2
GPU frequency — >2
Screen status 8 2
Screen brightness 8 >2

On call status 15 ~ 2
Battery voltage 15 5
Battery current 10 2

An application was constructed to read and organize the necessary data. In order to have a correct
correlation between the inputs and output, the application reads the data concurrently to minimize the
reading time. It divides the reading queries into two halves and lunches two threads. Each of the threads
reads the current time and then proceeds to get the readings from the systems files. Once the reading is
finished, each of the threads queries for the time again and add it to the end of the data array (Figure 5).

To ensure the sanity of the data, the application compares the starting time of each of the threads and
its ending time (TS3 - TS1 and TS4 - TS2). Then, it compares the start of the thread that started first
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TS1 R(1) R(2) R(n/2) | TS3

TS2 |R(n/2 +1)|R(n/2 +2) R(n) TS4

Figure 5: Concurrent readings (R) of n pieces of data with timestamps (TS).

with the end of the second one, to compute the time of the whole process. The process should not take
more than 20 ms (the average is around 10 ms), with each thread taking at most 10 ms. Otherwise, the data
is considered corrupted and discarded.

The choice of 10 ms for each thread is based on the time the Linux Kernel gives to each process before
pausing it and changing to another (Multitasking). The 20ms limit is imposed to be able to follow the
fastest-changing variable, i.e. the CPU frequency [90]. Hence, the sampling time is 20 ms to follow this
variable.

TS3—-TS1 < 10ms
TS4—TS2 < 10ms (4)
TS4—-TS1 < T, T,=20ms

To keep the model as simple as possible—and consequently as computationally optimized as possible,
only the most characterizing and directly influential inputs for each of the components were included.

4.4. The choice of inputs
e The SoC

CPU power consumption is a function of its frequency and voltage [44]. Moreover, the voltage in processors
with dynamic voltage and frequency scaling (DVFS) is also a function of the frequency [19]. Thus, the input
used to estimate power consumption is the frequency f of each CPU core. However, the CPU on the smart-
phone was configured to use one frequency for each of the quad-core blocks in its big.Little configuration.
Therefore, there will only be two frequency readings for that device [91]. The same input—the frequency—is
used for the GPU since it correlates directly with its power consumption [32].

e The RAM

The RAM consumes around 10% of the total system power [92]. To account for the power used by the RAM,
in the first trials, the value of the occupied RAM was used as an input characterizing the power draw of the
RAM. However, that value on its own does not factor the maximum and the minimum possible values of

the RAM on the system. Henceforth, the ratio of the occupied RAM over its maximum value is used and
called the Memory Occupation Rate (MOR).

e The communication peripherals

The communication peripherals are the phone’s LTE module, the wireless chip (Wi-Fi and Bluetooth), and
the GPS. Power consumption for these peripherals is mostly characterized by their state of connection and
data transfer [52, 83]. For the LTE chip, the inputs are the On-call status (Off, 2G, 3G, LTE), the signal
strength, and the connection and data transfer mode. Similarly, for the Wi-Fi and Bluetooth, as their power
consumption is heavily influenced by their state of activity and the bandwidth [70], the inputs are the status
(On/Off) and the data transfer. Finally, for the GPS, only the status was used.

e The input and output peripherals
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To account for the power draw of the touchscreen, the status of the screen (On/Off) and its brightness are
used as inputs [80, 89], since for modern AMOLED screens, consumed power is a quadratic function of the
brightness [89, 52]. The power consumed by the screen is also dependent on the used resolution and scaling
[11]. However, since in the case of this work, the resolution will be fixed to the maximum possible value
without any scaling, it will be a constant that won’t affect the model.

For the speakers, the status (On/Off) and the volume are used as inputs for the model [81]. As for the
microphone, only the status was used. Finally, for the cameras and the LED flashlight, the status of the
camera its recording status (Camera recording or not) alongside the flash (On/Off) are used.

4.5. The modeling scheme

Microprocessors-based SoCs are very complex and contain a large number of sub-modules. White-box
techniques would require the modeling of all those components, making the process of constructing one
arduous [25, 42].

The availability of the traces provided by the OS, alongside the complexity of the system, leads us
towards the use of black-box modeling techniques. In this modeling scheme, there is a choice between either
regression-based identification techniques or correlation and classification ones. Regression-based power
models have been thoroughly studied in the literature [28, 29, 80, 32, 20, 55], especially for smartphones.
Nevertheless, their accuracy was undermined by the fact that most of them used linear-regression, which
led to an increased estimation error when the power dynamics were not as linear.

Nonlinear models like artificial neural networks (ANN) avoid these shortcomings [19, 51, 66]. However,
Classic ANN do not account for the sampling time or the different timestamps associated with data. They
are also not built to account for feedback loops, where previous values of the output influence the value of
the next output. One alternative was recently explored by Romansky et al. [54] who used times series and
deep learning to predict energy consumption in their model Deep Green.

The solution implemented in this work is the Nonlinear Autoregressive Network with eXogenous inputs
(NARX) neural networks. These networks are recursive neural networks build to predict the output of time
series [93]. Equation 5 gives their mathematical representation.

y(k) ng[y(k—l),-“ 7y<k_dy)>u(k_n)7u(k_n_1)7"' ’u<k_n_du)] (5)

y(k) and u(k) are the output to be predicted and the input at the time step k, respectively. ¢ is the
characteristic function. The term n is the process dead-time, whereas d, and d, are the orders of time
delays for the input and output, also called input and output memory. Since the power changes react pretty
quickly with changes in the characteristics (inputs), d, d,,, and n were all set to the value of 1, giving:

y(k) = ¢ ly(k —1),y(k = 2), u(k — 1), u(k — 2)] (6)

The NARX model is composed of two layers: a hidden layer and an output layer. The neurons in
the hidden layer have sigmoids (¢) as activation functions. The output layer contains a single neuron,
representing the total consumed power by the device Psygsiem, with a linear transfer function (Figure 6).

The first advantage of using these neural networks is their capacity to estimate nonlinear dynamics while
still keeping a relatively simple and computationally light form (2-layers). The second advantage is the
component-level granularity.

To illustrate the capacity of the model to reach this level of granularity, Figure 7 describes the distribution
of the total power consumed by a typical device as the sum of the power consumed by each individual
component (CPU, Wi-Fi, ...), plus a minimum amount of base still consumed by the device [80], and
a negligible amount consumed by the rest of the components whose consumption is marginal (see 4.1).
Assuming that the power consumed the components whose consummation is marginal and the base power
represents a single static power, the power consumed by the device becomes:

PTotal = PStatic + Z Pi (7)

=1
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Figure 6: The general structure of N3 NARX model.

Where i denotes the component number (CPU, GPU, RAM...), and n is the total number of these compo-
nents. The power consumed by each of these components can be correlated with one of its characteristics.
These characteristics will be used as inputs to the power model.

The level of granularity can be ensured by configuring the neurons of the hidden layer so as to achieve
component decoupling, by disabling the training of the weights w linking the neurons of the different com-
ponents. Figure 8 shows the configuration of the power model for an embedded system and showcases the
interconnection of the neurons related to three components: the SoC, Camera 1 and the screen. Since the
output layer is a linear neuron, the power consumed by the system becomes:

PSystem = w161 + -+ wpSy + Wpn+1Sn+1 + Wn+2Sn+2 +--+
WinSm + Wit 1Sm41 + Wimg2Gma2 + - +wis; + wit1641 +wis;  (8)
by disabling all the components except the SoC, as this is the component required for system operation,

and training the model with data from this configuration, the power consumption of the system becomes
(from Equation 7):

PSystéme = PStatique + Psoc (9)
whereas for the NARX model (Equation 8), this translates into:

PSystéme = w161 + -+ WwpSy + Wn+1Sn+1 + Wn+2Sn+2 + w;g; (]-0)

Psiatique + Psoc

In order to quantify the individual contribution of each component, the training set is constructed as
follows. At first, only the SoC is active for a period of time. Then the components are activated one after
the other. Each component is kept active for a duration of time, after which it is deactivated for a period
of time before activating the next component. Finally, All the components are returned to their automatic
operating state.

Thus, the NARX model gives estimates of the power consumed by the system as a whole, as well as the

Figures/Power| Consumption_Destribution-eps-converted-to.pdf

Figure 7: Power consumption distribution in a typical mobile phone.
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Figure 8: The configuration of the interconnections of neurons in the hidden layer in the NARX power model to ensure the
components’ level granularity.

power consumed by the components individually:

PSystem = w161 + -+ wpSy, + Wn41Sn+1 + Wn+2Sn+2 + w;S;

Pstatique + Psoc

WinSm + Wm+1Sm+1 + Wm42Sm+y2 + -+ W56 (11)
~

Pcameral Pscreen

4.5.1. Model construction and Implementation

NARX neural networks require relatively large amounts of data and resources to be trained into accuracy.
Mobile CPU are not yet capable of doing such training. In fact, during experimentation, it took around 45
minutes to train N3 on the device with 8 x 10* data points, and when the number of data points exceeded
1.2 x 10°, the device would just shut down.

The evident solution to these limitations is to do the training on a separate device. Therefore, the model
construction process would start with data gathering. The data will then be transferred to a separate device
to train N3. Once the training process finished, N2 will be installed on the profiled device to generate online
estimations.

4.6. Summary

In Table 4, all of the previously described and detailed points are summarized.
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Table 4: Summarized description of the profiler.

Purpose Monitoring

Granularity Components level

Source measurement System traces

Device Smartphone Development board
Model name N3

Modelling scheme Neural network

Number of layers 2

e Hidden layer: 26 neurons ‘ e Hidden layer: 5 neurons
e Output layer: 1 neuron

Inputs SoC
[ ] f1: CPU073 [ ] fZ CPUO
[ ] fQZ CPU477 L MOR
o foru
e MOR

Cellular radio
e Connection status:
Off/2G/3G/LTE
e On-Call status: On/Off
e Signal strength (%)
e Data transfer mode :
e LTE: idle/DRX/...
e 3G: DCH/FACH...
e Data transfer rate
Wi-Fi
e Status: On/Off
e Data transfer: 0/1
Bluetooth
e Status: On/Off
e Data transfer: 0/1
GPS
e Status: On/Off
Screen
e Status: On/Off e Status: On/Off
e DBrightness: (%) e Brightness: (%)
Speakers
e Status: On/Off
e Volume: (%)
Microphone
e Recording: 0/1
Cameras
e Status: On/Off
e Recording: 0/1
o flashlight: On/Off

Modelling construction Off-device
Modelling Implementation On-device
Sampling time 20 ms

5. Experimental results and discussion

5.1. Model training

For the best training results, the gathered data need to cover as much of the usage scenarios as possible.
To do so, the experimentation use case covers several standard benchmarks and then typical tasks performed
by devices. It goes as follows. Firstly, a set of benchmarks is launched successively: AnTuTu [94], Geekbench

17



Table 5: The training time needed for different numbers of samples alongside the resulted mean absolute percentage error
(MAPE), the mean squared error (MSE), and the regression (R) for the test set.

Smartphone Development board
Total Training Training
number of . A MAPE (%) MSE R A R MAPE (%) MSE R
samples time (min) time (min)
~ 8 x 10% 7 5 7.56 x 10~ 3 0.986 1 2.9 4.72 x 1073 0.942
~ 2 x 10° 12 3 7.23 X 107 3 0.986 6 2.9 4.68 X 107 3 0.942
~ 4 X 10° 14 2.9 7.18 x 107 3 0.986 10 2.8 3.67 x 107 3 0.942
~ 8 x 10° 20 2.4 7.60 x 107 4 0.987 12 2.8 3.56 x 107 3 0.963
~ 1.2 x 106 32 2.2 7.48 X 107 4 0.987 15 2.8 3.61 x 10— 3 0.961
~ 1.8 X 106 57 2.2 7.09 X 10 4 0.987 19 2.8 3.54 X 107 3 0.961

4 [95], PCMark [96], and 3DMark [97]. These benchmarks are used to test the maximum performance of
the systems through multiple calculation tests, 3D renderings... The successive launch of these benchmarks
would generate data describing the system under heavy workloads. It would also stress the system and
account for its behavior under thermal throttling (if present).

Then, the system—when appropriate, as the development board lacks multimedia and communication
functionality—is put through more common tasks: A phone call, an internet video call, local video playback,
video streaming, audio playback, file download over the cellular network, then over Wi-Fi, taking a picture
without flash, with flash, and recording a 30s video, and finally leaving the phone idle for a while. This
data-gathering experiment is repeated multiple times with variations in the order of the benchmarks as well
as the tasks.

The gathered data is then divided into three sets: a training set (60%), and a validation set (20%) to
train the model, and a test set (20%) to evaluate its performance. The results of the test sets for different
sizes of training sets are shown in Table 5. These results demonstrate how the inputs correlate with the
output (R ~ 1). Moreover, the predictions fit the output, with very low errors (MAPE = 2.2% for the
smartphone and 2.8% for the board), indicating the accuracy of the model. Thus, N? is validated.

Nevertheless, Table 5 also shows the limitations of using neural networks. Indeed, the MAPE went down
from 5% to 2.2% by adding more samples, but it came at the cost of longer training times. Additionally,
after a certain number of samples (1.8 x 10° for the smartphone and 2 x 10%), the MAPE no longer improved.

5.2. Real-time usage validation

In the model construction process, the profiler was set to generate estimations online. Having validated
the model through the test sets, it is, then, incorporated alongside the data logging program into the ap-
plication and directly deployed onto the device. Then, its accuracy and performance are tested through a
non-scripted randomized normal usage of the device. This test, which is set to mimic day-to-day activities,
includes making cellular and video calls through applications, sending messages through SMS and applica-
tions services (Smartphone only), video playback and streaming, taking and sending pictures (Smartphone
only), browsing the web, and finally playing two different games (Smartphone only).

Table 6 highlights the online performance of the model on both devices, while in figure 9 and figure 11,
the measured power consumption of the smartphone is drawn against values estimated by N3 for the
smartphone and the development board, respectively. For the smartphone, the model accurately predicts
the power consumed by the phone with minimal estimation errors. It has an estimation MAPE of only
2.82%, and the recorded Mean Absolute Error (MAE) is 0.0168 W, whereas the Mean Squared Error (MSE)
is 7.04 x 10~*. Moreover, 97% of the estimation sample made by the model had an error value of zero
(or less than the precision of the measurements which is 107%). Furthermore, the errors are normally
distributed for both devices (verified by K-S test, Figure 10). For the smartphone, the estimation errors
had a mean . = 1,178 x 10~*W and standard deviation 0. = 0,0265. Whereas for the development board,
te = 0.0116W and o. = 0,037. Both residuals present no heteroskedasticity (Engle’s ARCH test).

Finally, on the development board, as can be seen in figure 11, the estimations had a delay (of about
0.2s). This delay is a result of the wait time needed by the board to receive the measurements from the
external multimeter to the device. Once accounted for this delay, the model performance results were
practically the same as they were on the smartphone.
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Table 6: Online testings results of the model on both devices.

Development
Smartphone board
Test Duration 2.25h 1.5h
Number of Samples ~ 403 x 10° ~ 280 x 10°
MAE (W) 0.0168 0.038
MAPE (%) 2.82 2.88
MSE 7.04 x 1077 574 x 1077
Perfect fits (%) 97 96.6

Figures/PowerModel_A-eps-converted-to.pdf

Figure 9: Online N3 Power estimation against the measurements for the smartphone.

Figures/PowerModel_A_Error_Values-eps-converted-to.pdf

Figure 10: N3 Online estimation error distribution for the smartphone.

5.8. Performance evaluation and comparison

Performance-wise, the average sampling time was 19.8 ms which satisfies the previously stated design
constraint. Additionally, N3 caused no issues or bottlenecks for the system, as indicated by its overhead.
The overhead is computed by running the system with the profiler and then comparing its power consumption
and load to data from instances that had no profiling [37]. N2 it had only a 3% load overhead during the
test. As for the power overhead, it only amounted to a 5% increase in the same test.

Finally, we compared the results of N3 with the publicly available power models and models of which
the MAPE was reported in the literature. Table 7 shows the accuracy of these models compared to the
power model presented in this paper.

While we are pleased that our model performed better than or on par with established works, it is also
worth noting that some of these profilers have higher levels of granularity than our model does. Furthermore,
some works, like PowerBooter, have not been updated for several years.

6. Conclusion

Given the great importance of estimating power consumption in embedded systems and smartphones,
the literature has seen a great deal of research devoted to this subject. In this paper, we have presented,
through an in-depth study of the literature, a generic methodology for building power profilers by adapting
the profiling process to their context of use. The method is streamlined into a set of manageable steps,
explaining the design choices to be made through each of them, starting with the goal of building the
profiler. Then, we presented a compilation of profilers and models found in the literature and categorized
them according to the steps explained in the proposed methodology.
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Figures/PowerModel_DB-eps-converted-to.pdf

Figure 11: Online N3 Power estimation against the measurements for the development board.

Table 7: Comparison of the accuracy of several power models and profilers.

Profiler / Model MAPE (%) Source Year
N? 2.88 Measured 2019
Snapdragon Profiler 4.8 Measured 2018
Trepn 5.5 Measured 2018
Yoon et al. [31] 5.1 [31] 2017
PETrA 4 [33] 2017
Walker et al. [35] 3.8 [35] 2017
Djedidi et al. [19] 4.4 [19] 2017
Kim et al. [32] 2.9 [32] 2015
eLens ~ 10 [77] 2013
Kim et al. [80] 3.8~ 7.2 [80] 2012
Power Doctor 10 [74] 2012
eProf 10 [74] 2011
Sesame 5 [29] 2011
PowerBooter 4.1 / 24  [28]/Measured 2010/2018

The proposed methodology is then applied in this work to build a new accurate profiler, based on a

NARX neural network model, and used as a monitoring tool to detect anomalies in power consumption. In
the results section, the proposed model has been implemented and validated with outstanding results—best
in its class—that highlight how the accuracy reported in the literature is improved while maintaining low
power and computational overhead.

Thus, N? is a profiler capable of generating accurate online power estimation for mobile and embedded

devices, making it the optimal tool for power monitoring and debugging, and using the power profile to
detect anomalies in the system. Finally, thanks to its accuracy and performance, N3 has been implemented
in an online monitoring framework for safety-critical avionic systems [18].
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