N

N

Power profiling and monitoring in embedded systems: A
comparative study and a novel methodology based on
NARX neural networks
Oussama Djedidi, Mohand Djeziri

» To cite this version:

Oussama Djedidi, Mohand Djeziri. Power profiling and monitoring in embedded systems: A compara-
tive study and a novel methodology based on NARX neural networks. Journal of Systems Architecture,
2020, 111, pp.101805. 10.1016/j.sysarc.2020.101805 . hal-02740661

HAL Id: hal-02740661
https://amu.hal.science/hal-02740661

Submitted on 4 Jun 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

https://amu.hal.science/hal-02740661
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Power Profiling and Monitoring in Embedded Systems:
A Comparative Study and a Novel Methodology Based on NARX Neural
Networks

Oussama Djedidi*, Mohand A. Djeziri
Aiz-Marseille University, Université de Toulon, CNRS, LIS, Marseille, France

Abstract

Power consumption in electronic systems is an essential feature for the management of energy autonomy,
performance analysis, and the aging monitoring of components. Thus, several research studies have been
devoted to the development of power models and profilers for embedded systems. Each of these models is
designed to fit a specific usage context. This paper is a part of a series of works dedicated to modeling
and monitoring embedded systems in airborne equipment. The objective of this paper is twofold. Firstly,
it presents an overview of the most used models in the literature. Then, it offers a comparative analysis of
these models according to a set of criteria, such as the modeling assumptions, the necessary instrumentation
necessary, the accuracy, and the complexity of implementation.

Secondly, we introduce a new power estimator for ARM-Based embedded systems, with component-level
granularity. The estimator is based on NARX neural networks and used to monitor power for diagnosis pur-
poses. The obtained experimental results highlight the advantages and limitations of the models presented
in the literature and demonstrate the effectiveness of the proposed NARX, having obtained the best results
in its class for a smartphone (An online Mean Absolute Percentage Error = 2.2%).

Keywords: Data fitting, Embedded Systems, Machine learning, Modeling, NARX, neural Networks,
Power Consumption, Power profiling, Smartphone

1. Introduction

Since the introduction of the modern smartphone in 2007, there has been a great deal of research dealing
with the duality performance-battery life in these systems [1]. One of the earliest challenges in mobile devices’
power consumption was to predict the remaining battery life [2]. This decade-old question is still generating
studies aiming to enhance accuracy while accounting for newly released technologies [3]. Furthermore, with
the emergence of new factors, such as the Internet of Things (IoT), and the ubiquity of embedded systems
in general, the interest in power consumption is no longer limited to just mobile devices, and now includes
most embedded electronics [4, 5].

The main issue is how to increase the performance of the system while maintaining sustainable—if
not minimal—power consumption levels. Hence, both the scientific and industrial communities have been
working actively to improve power efficiency [6, 7]. Most solutions focused on the optimization of resource
utilization and varied widely. For instance, some of the proposed solutions were algorithmic like the Dynamic
Voltage and Frequency Scaling (DVFS) for CPUs [8] and GPUs [9], and new scheduling and task distribution
algorithms [10]. Alternatively, other works focused on empirical approaches in reducing power consumption,
like reducing screen resolutions [11], or using large-scale statistical methods to study the impact of the

*Corresponding author
Email addresses: oussama.djedidi@lis-lab.fr (Oussama Djedidi), mohand.djeziri@lis-lab.fr (Mohand A. Djeziri)

Preprint submitted to Journal of Systems Architecture June 4, 2020

user’s behavior on power consumption [12]. The interest in power consumption went even further than just
improving efficiency. Researchers have studied power consumption to detect and solve energy bugs [13],
create energy-aware software [14], and even to creatively deal with cyber-security issues [15, 16] and detect
anomalies [17, 18].

This paper is a continuation of our previous works on the modeling and monitoring of mobile and
embedded systems [19]. In this work, the main focus is on building a power model and profiler for the online
monitoring of onboard embedded systems [18].

Power profilers are tools that allow for the measurement or the estimation of power consumption on a
system-wide level [20] or down to components [21] or applications [22]... Moreover, not only these tools
allow users to estimate the power consumption or the remaining battery life, but they also help developers
decrease energy loss [12] and create energy-friendly [23] or reliability-aware algorithms [24].

The specialized literature is rich with power profilers and models that were indexed into several surveys
[1, 25, 26]. These surveys included profilers made by software and hardware companies [27], as well as
those made by researchers like PowerBooter [28] and Sesame [29]. While these surveys are relatively recent,
the generational differences between components (and hence their power profiles [30]), coupled with the
changes in user-device interactions, deprecate the use of old models [31]. Thus, the continuing trend in
power profiling and the flux of new power models [20, 32, 33, 34, 35]. Some of these models offered more
accessible construction and implementation [36], while others focused on accuracy [33].

As it will be demonstrated hereafter, all these models and profilers differ in their purposes and techniques.
Thus, explaining why there are so many of them). The aim behind this work is to complement the available
research by compiling and comparing the methods and ideas found in the literature and then offering a step-
by-step methodology on how to build power profilers, then, use this methodology to build a new accurate
profiler that uses a Nonlinear AutoRegressive eXogenous (NARX) neural network model. The profiler,
which is called N3, is built to be used as a power consumption monitoring tool to detect anomalies in power
consumption. In the results section, it will be shown how N3 improves upon the accuracy reported in the
literature while maintaining low power and computational overhead.

In the next section, the main steps of building a power profiler are outlined. The differences between
each type of profilers are also highlighted with examples from the literature alongside the different design
choices to be made. Then, in the following sections, the use of these steps to design and build a neural
network-based power profiler is detailed. Henceforth, this work will serve as both a tutorial to building
power profilers and a paper presenting a novel work. In the last section, the obtained results are discussed,
validating the profiler.

2. Design and Construction of Power Profilers

All power profilers found in the literature or the industry share the common task of delivering power
consumption values, whether by measurement or estimation. Through this commonly shared task, some
other standard features and techniques that these profilers use to achieve their results may be outlined. In
the following paragraphs, these features are streamlined into manageable steps through which the design
choices to be made are explained, starting with the goal of building the profiler.

2.1. Defining the purpose of the profiler

Power profilers are built to accomplish a very specific task energy-wise. For instance, they might be
used to measure the consumed energy of the device [37], or some specific component [38], or monitor the
device for anomalies [16, 39]. Therefore, the granularity—the level at which the profiler can deliver power
measurement or estimation [25]—would differ from one case to another.

Accordingly, to choose the type and the structure of the profiler, the first step in building one, is to
state the goal that the profiler has to achieve, which will also indicate how fine the granularity should be.
For instance, if the profiler is built to help developers estimate the amount of energy consumed by their
applications, it should have an application-level granularity [40, 41] or even higher [42].

Design choices:
e Purpose: Monitoring, diagnosis, software optimization...

e Granularity: Device-level, component-level, application-level...

2.2. Defining the profiling scheme and measurements source

Once the purpose of the profiler is defined, the next step is to set which profiling scheme to use. There
exist two main ones: the hardware-based method and its software counterpart [25].

As their name suggests, hardware-based profilers use external sensors and equipment to collect and
report measurements [43]. They generally use multimeters or power monitors, which requires the device
to be opened and connected at all times to the monitoring equipment. On the other hand, software-based
profiling uses a program to collect power measurements or generate estimations. These profilers rely on
several techniques such as self-metering [1], or the state of charge of the battery, or the battery Application
Programming Interface (API) [25].

The use of hardware-based power profiling has dwindled over the years since their main advantage
(accurate power measurement) no longer outweighs their main drawback (physical intrusion of the device).
Furthermore, with recent advancements, software power metering is reaching the accuracy of hardware
measurements [41] and has thus gained popularity, since its delivering estimations that are comparable to
hardware-based profiling with no physical intrusion.

The purpose of the profiler and the needed level of granularity would also dictate which scheme the profiler
will use to deliver power estimations. If the purpose is to observe the power consumption of the whole device,
there would be no need for a fine level of granularity, and the physical recordings measurement would be
sufficient [43]. However, if the purpose is to monitor a specific component—such as the CPU—then a finer
granularity is needed [24]. Moreover, since obtaining physical measurements of the individual components
is not always possible, it would be wiser to use a power model to generate estimations. These profilers are
called model-based profilers [1]. An even finer granularity, such function-level, would require models based
on techniques such as code analysis [40]. The latter is mainly used to help developers optimize their code
and avoid energy hogs [44].

Design choices:
e Scheme: Hardware-based or software-based profiling

e Measurements source: Instruments or battery API or discharging curve...

e Measurements generation: Code Analysis-based estimation, or Model-based estimation, or physical
measurement recording

2.8. Model-based profilers

2.8.1. Modeling scheme

White-box modeling of power consumption in embedded systems would result in the building of a model
generating accurate power estimation. Such a model would typically use finite state machines [45], or
simulate differential equations [46], which would require design level knowledge of all the inner components
of the chip [1].

Alternatively, black-box modeling techniques—such as identification and regression—train the model to
fit its outputs to observations [1]. In this type of model, the expertise of the factors influencing the output
is appreciated, but not required, nor is the formal theoretical proof of the relation between the inputs and
outputs [28]. However, these methods require large amounts of data for training and validation to obtain
satisfactory results [1].

Grey-box models are the middle ground between white-box models and black-box models, where a part
of the model is built through physical knowledge, and the rest is identified using black-box methods [47].
For instance, in a first step, PowerBooter defines the power usage of a set of determined states in an FSM,
then it uses regression to determine the power consumption of each of these states [48].

3

2.8.2. Choice of inputs

Hoque et al. [1] state that there exist two types of inputs: Utilization-based and event-based ones.
Utilization-based models focus on the direct correlation between the usage of a peripheral or a component
and the consumed power. For instance, to account for the power consumed by the Wi-Fi module, its data
rate transfer is observed. Event-based models, on the other hand, would instead observe the status of the
component (On/Off) [45]. Nevertheless, recent works proved to not stick with either one type for each have
their limitation [49], but instead rely on a mixture of them [33, 50, 51, 52].

The choice of inputs depends on two major factors: The available sensors and data on the device and
the desired granularity. The most basic model-based profilers need to include at least data from the most
relevant components, such as the processors, the communication components, and the most used sensors [26].
In this line of research, Chen et al. [53] demonstrate, in their study, how much each hardware component
contributes to the total energy count. Additionally, Ardito et al. [30] also shows the gap between the different
generations of materials and technologies in terms of energy consumption.

Finally, finer granularity requires more data to estimate the power correctly. For instance, when profiling
the power use of an application, one might call upon code analysis, or use timestamps and systems traces.
These two are crucial for estimating software components power consumption—Ilike an application or a
function, which encourages the use of time series [54, 55].

2.8.8. Model construction and implementation

Hardware-based profilers, by design, are built to deliver measurements and estimations on the fly.
Software-based profilers, on the other hand, can either work online and provide direct estimations of the
power consumed by the device or generate estimations from previously gathered data. For instance, for a
large-scale study, offline estimation is better suited for the task [12]. However, if the purpose of the profiler
is to monitor the device debug and its energy consumption, online estimation is the better solution [19, 56].

Models are also characterized by where they are constructed and trained. Those constructed and trained
on the profiled device, require no additional training or tuning [28]. They accurately estimate power con-
sumption and adapt to the device’s specific power profile [1]. However, they require a data gathering and a
training time that might come at a high computational cost. Models constructed and trained offline would
avoid the drawbacks of the first category [18, 57], but they are always device-specific and their accuracy
varies from one device to the other.

The last category is off-device profilers which are constructed and trained off-device [58]. These profilers
deliver accurate estimation, notably in fine granularity cases, but require a permanent link to the profiled
device.

Design choices:
e Modeling scheme: White-box, or grey-box, or black box

e Estimations availability: Online or offline

e Model implementation: On-device or off-device

2.4. Profiler evaluation and tuning

In the case of model-based profilers, once the model is built and trained, it goes through the valida-
tion process. In this process, the model is tested by comparing its estimations or predictions y with the
measurements y. To validate the model, one should evaluate the goodness of fit, study the accuracy of the
estimations, and analyze the residuals.

The goodness of fit is a direct comparison between model estimations and the measurements. It is
evaluated through the linear regression of estimations and measurements (R) or the calculation of the
coefficient of determination (R?) [59]. For a test set of n samples, R? is equal to:

B2 k) —9(k)* SSE
D oh=1 (y(k) = py)? D ohr (k) = y)?

4

(1)

where i, is the mean value of the measurements y(k) n, and SSE is the Sum of Squared Errors :

SSE = S (y(k) — (k)2 (2)
k=1

In an ideal case, y = 4. Hence, R and R? will be equal to 1. In practice, however, the nearer the value of

these indicators is to 1, the better are the estimations of the model.
The calculation of R or R? is an indicator of the latter, but the accuracy of the model has to be further

evaluated by calculating estimation errors:

e(k) = y(k) —g(k) (3)

The study of these residuals makes it possible to conclude if (k) fit y(k) well. These residuals must have
a random profile. Their randomness indicates that the inputs and outputs of the model are correlated.
Therefore, their distribution must be tested. Among the different tests possible to determine if the residues
are random, the most used are the normality test [59] and the Kolmogorov-Smirnov test (K-S test) [60].
These two tests make it possible to deduce if the residuals are normally distributed and centered around
an average [with a standard deviation o.. This variable is also affected by the heteroscedasticity, which
indicates the existence of a relationship between the variance (¢2) and the samples size of the input variables.
Thus, in order to verify the homoscedasticity of the residuals, several tests like that of White [59] or Engle’s
ARCH test [61] can be used.

Once the goodness of fit is satisfactory, the residuals are analyzed, and the estimation errors are suffi-
ciently small to satisfy the requirements of the designers (MAE lower than the resolution of the sensors, for
instance), the model is validated. If the model can not be validated, then the designer must repeat the steps
from the choice of the modeling approach. This was the case of this work, where the accuracy of the model
has been considerably improved, by changing the type of the model, compared to its first version [19].

In the last step, the performance is also observed to be satisfied or not. During this step, one should
look at the time needed to generate estimations, and whether the adoption of some choices outweighs the
drawbacks—fine granularity against slower estimations, for instance. Additionally, tweaks can be made to
obtain the optimum desired results. For instance, the influence of each input can be observed favoring some
inputs to others, leading sometimes to the elimination of some as their influence is marginal. Once the

model is validated satisfying all design and performance constraints, the process ends.

2.5. Summary
In figure 1, the general algorithm describing the building of a power profiler is shown. It shows all the

steps to follow. It also shows, in case of unsatisfactory results which steps should be revisited according to
the constraints underhand. For instance, if the accuracy of the model is not sufficient, one has to review
the modeling scheme and onward, until the desired results come through. Furthermore, table 1 displays
a compilation of profilers and models found in the literature categorized according to the steps explained

above in this section.

Table 1: Summary of some of the profilers available in the literature. —: Information not available or not applicable.
§
~ 12 o
g -
N g 2§ 3
T w £o ") FF 5
g9) [}
3 g g2 55 oo = CH: £ g
« S H] g5 55 vy B 73 g g
o 2 g & o % @ T 0 vg gy 5 N
5 & g S5 o on o5 0 g &
5]] L =5 =4 5 & g
A (¢] R, @ Q2 1) & ~
Snap-Dragon | Power estimation | Device Software API Yes Linear (Re- | On-line Off-line Off-device
Profiler [58] |and logging N gression)
@ System traces
Trepn Power estimation | Device Software API Yes Linear (Re- | On-line Off-line On-device
[27, 62] and logging ° gression)
e System traces

5

§
el 2] o—
-
. 5 25 :
3’ ~ »
z) 58 4 33 §
1 g £¢ 55 Y -g g g8 go g
y : i £§ 0 g7 3y 5% 55 5 5
& 2 g & o a g T o o2 g’ n) ~
o & @ og @ [*l]] < [} a _
g 5 5 55 4 g T, 2] g
q <] A @ g b b 5 g 5
Ahmad et al. | Estimation of | Instruction set | Mixed Hardware Yes Linear Off-line Off-line Off-device
[40] energy con-
sumption of
Application code
Huang et al. | Energy consump- | CPU Software | System traces | Yes Polynomial Off-line Off-line Off-device
[23] tion optimization (non-linear)
Niu and Zhu | Improving opti- | CPU Software System traces | Yes Linear Off-line Off-line —
[24] mization
Bokhari Energy consump- | Application Software Battery API Yes Application | On/Off- On/Off- | On/Off-
et al. [6, 63] | tion optimization specific line line device
Alawnah and | Power estimation | Device Software Yes ANN Off-line Off-line Off-device
P o API
Sagahyroon and prediction
[51] @ System traces
Yoon et al.|Power modeling | Application Software System traces | Yes Linear (Re-|— — —
[31] and estimation processors gression)
Walker et al. | Power modeling | CPU Software System traces | Yes Linear (Re- | On-line On-line On-device
[35] and estimation (PMC) gression)
PETrA [33] Power estimation | Application Software System traces | Yes Linear (Re- | Off-line On-line On-device
gression)
Djedidi et al. | SoC Monitoring SoC (CPU, | Software System traces | Yes Neural net- | On-line Off-line Off-device
[19] GPU, RAM) works
Deep Green | Energy consump- | Device Mixed System traces | Yes RNN (SVR) | Off-line Off-line Off-device
[54] tion prediction + Green-
Miner|[64]
pProf [20] Power profiling | Device Software | API Yes Linear (Re- | On-line Off-line On-device
with reduced gression)
overhead
B(?khari and Energy 'cox?s?n?p— e Device Software e Battery API No
Wagner [65] | tion optimization _ .
e Applications @ System traces
Carvalho Prediction of | Device Mixed Yes Off-line Off-line Off-device
) e Hardware o ANN
et al. [66] power consump-
tion @ System traces o k-NN re-
gression
Kim et al. [3] | Prediction of re- | Application Software System traces | Yes AppScope On-line Off-line On-device
maining battery [67]
Lu et al. [68] | Improving Screen Software | System Traces | Yes Linear On-line On-line On-device
screens power
models
Caviglione Malaware detec- | Device Software Batt § Yes Modified On-line On-line On-device
et al. [15] tion ° - @ ‘ ery sen- version of
sors PowerTutor
@ System traces (28, 69]
Chowdhury Modeling soft- | Application Software B Yes SVR On-line On-line On-device
and Hindle | ware energy ® Battery sen- ®)
. . sors e Linear
[34] consumption .
@ System traces regression
Green-Oracle | Software energy | Applications Software System Traces | Yes . Off-line Off-line Off-device
" .) e Linear
[34] estimation and calls .
Regression
(Ridge)
® Lasso
e SVR
e Bagging
Dzhagaryan | Energy consump- | Applications Hardware | — No — On-line — Off-device
et al. [37] tion measure-
ment
Linares- Device power | CPU Software Systems traces | No — On-line — Off-device
Vasquez measurement
et al. [11]
Li et al. [70] | Device power | CPU Software | Systems traces | No — On-line — On-device
measurement
Altamimi Estimating Mixed Yes Linear — — Off-device
. o CPU
and Naik | energy consump- S o Hardware
[44] tion ® Storage (Power read-
ing)
e System traces
PowerTap Estimating Components Software Yes Linear On-line Off-line Off-device
[46] energy consump- e Hardware
tion (Power read-
ing)
e System traces

§
el 2] o—
5 b £§ 5
¥ w go % FE g
00 Q
% g g0 [N So gg go g
3 5 =g 55 TS s g = .5 - 5
~ 2 g [~ 29 57 o 9 g8 g ~
o & g o< 3 S8 o A g 2
g 5 5 55 4 g T, 2] g
q, O q @ s S8 b N & 5
WattsOn [21] | Estimation of Devi Software | Systems traces | Yes Linear On-line Off-line Off-device
energy app |® Device
) . e Components
consumption
Li et al. [71] | Wi-Fi power | Wi-Fi Software Yes FSM Off-line Off-line Off-device
. o Hardware
modeling
@ System traces
Merlo et al. | Intrusion detec- | Device Software System traces | Yes PowerTutor | On-line On-line On-device
[16] tion [28, 69]
Jin et al. [72] | GPU power mod- | GPU Software | System traces | Yes Linear (Re-|— — —
eling gression)
Kim et al.|GPU power mod- . Software System read- | Yes Linear (Re- | On-line — On-device
[32] eling ® Device ings gression)
o GPU
Demirbilek Improving bat- | Device Hardware | — No — On-line — Off-device
et al. [7] tery performance
Martinez IoT nodes power | Device Software System read- | Yes Linear On-line — —
et al. [5] modeling ings
Sun et al. | Modeling Wi-Fi| Wi-Fi Software System traces | Yes Linear — — —
[38] power consump-
tion
Lee et al. [73] | Automated Application Software System traces | Yes — — —
. e Power Doc-
power modeling
tor [74]
e Lincar (Re-
gression)
FEPMA [36] | Power metering Applications Software System traces | Yes ANN On-line — —
Kamiyama Test the energy- | Application Software Yes Linear (Re- | On-line On-device
et al. [52] efficiency gression)
Park et al.|Improving energy | Components Hardware No On-line Off-line — Off-device
. e System traces
[9] efficientcy
® Power meter
Arpinen Dynamic power | Components Software System traces | Yes FSM On-line On-line On-device
et al. [75] management
Holleis et al. [Power mea- | Device Hardware | — No — On-line — Off-device
[43] surement and
logging
Konig et al. | Power measure- | Sensors Hardware | — No — On-line — Off-device
[76] ment
Shin et al. | Battery life esti- | System Traces Software Components Yes Regression On-line Off- Off-device
[56] mation (Nonlinear) device
eLens [77] Power estimation | Code level Software Application Yes Regression On-line On-line On-device
Nacci et al.| Adaptive power | Software System Yes Linear On-line On-line On-
[78] modling traces (ARX) device
Kim and | GPU power mod- | Components Software System traces | Yes Linear (Re-|— — —
Chung [79] eling gression)
Ardito et al. | Power profiling Components Hardware | — No — Off-line — Off-device
[30]
V-edge [55] Power profiling Components Software System traces | Yes Linear (Re- | On-line On-line On-device
gression)
Kim et al.|Power modeling . Software | System traces | Yes Linear (Re- [On-line — —
® Device .
[80] gression)
e Components
AppScope Energy metering . Software Yes DevScope On-line On-line On-device
[67] e Device e System traces [57]
e Components
ﬁzz]uer Doctor | Power Modeling e CPU Software o API Yes Regression On-line On-line On-device
@ Screen @ System traces
Murmuria Measurement of Software System traces | Yes Linear (Re- | Off-line On-line On-device
e Component .
et al. [81] power consump- Don gression)
i e Application
ion
DevScope Online power | Components Software . Yes Linear (Re- | On-line Off-line On-device
. e Battery inter- A
[57] analysis gression)
face
® System traces
Minyong Pnline power es- | Components Software System traces | Yes Linear (Re- | On-line — —
Kim et al.|timation gression)
[82]
eProf Fined grained | Threads and | Software System traces | Yes FSM On-line On-line On-device
[45, 42] power modeling | systems traces
Sesame [29] | Automated Device Software | Battery inter-| Yes Linear (Re- | On-line Off-line Off-device
power modeling face gression)

§
el 2] o—
g > 5 =
> 2 £3 3
D=t [}) = I
5) g0 Qg 0
g g S 5 & N So gg gl; g
o 3 5 =g 55 TS s g = .5 - 5
a g & g g9 L K g5 g 2
& > 3 53 o @] < S =] 2
9 5 b4 2 [} o 07 <0 o
S & s S8 S 5 5 g
A @) R @ Q o i3] ~
Power- Automated Devi Software B Yes PowerTuTor | On-line On-line On-device
Booter [28] power modeling |* -eVice ® Battery sen- (Regression
e Components sors with varying
e System traces . .
parameters)
Zhang et al.
[28]
Yusuke et al. | Power consum- Devi Software System traces | Yes Linear (Re- | On-line Off-line On-device
[83] tion monitoring |* M?Vlce gression)
and analysis ® Micro-
processor
Gurun and | Energy consum- Software Yes Regression On-line Off-line On-device
Krintz [84] tion estimation |® P Y ® HMPs (Linear,
@ Networks e BMU dynamic)

3. Case study devices
The systems on which N3 is validated are a smartphone and a development board running Android.

These systems were chosen for three main reasons. Firstly, these devices are available on a wide scale and

are easily programmable, making all the developed programs easily transferable between them. Secondly,
these devices run on the kernel used by most of the embedded systems in the world—Linux—extending

the portability of the N3 profiler to, virtually, all devices running this kernel (with some device-specific
adjustments). Finally, these devices are well-instrumented and need no external or invasive measurement

schemes.

Table 2 shows all the significant specifications of both the development board and the smartphone. The
board is a system used to develop prototypes. The one used in this work has only one core CPU and no extra
peripheral making a perfect case study for basic systems. Figure 2 shows the board alongside a multimeter

used to measure its power consumption.

4. Constructing the power profiler
In the previous section, the steps and the design choices for building a power profiler were outlined. The

paragraphs in this section demonstrate how those steps are to be undertaken, starting with the purpose of
the profiler.

4.1. Purpose of the profiler
The N3 power profiler is meant to serve as a power monitor for an embedded or a mobile device and its
components. It is meant to be a component of an incremental model and a monitoring framework previously
presented by Djedidi et al. [18], it is also an improvement and a generalization of their previous works [19].
The profiler will collect data, generate power estimation with its incorporated power model for the system
as a whole, and its components individually, then log this data. Hence, the granularity is chosen to be at

the components’ level. The monitored components are:
The system on chip (SoC): In most embedded systems, it is composed of the CPU and a Graphics

Processing Unit (GPU) when needed.
The Random Accesss Memory (RAM)

e The LTE module

1The Vivante GC400T and GC320 are modules handling 3D and 2D graphics. However, they does not fall under the modern

definition of a GPU [87].

Figures/General_Algorithm_of_Profiler_Construction-eps-converted-to.pdf

Figure 1: A general algorithm for constructing a power profiler for embedded and mobile devices.

Table 2: Highlights of the specifications of the smartphone and the development boards used in this study [85, 86]. —: Not
Applicable.

‘ Mobile Device

Development board

0Ss | Android 8.0.1 (Oreo) | Android 6.0.1 (Marshmallow)
SoC Exynos 8895 MCIMX6SX
e CPU Octa-core (big.LITTLE) One core + microcontroller
e 4 x 2.3 GHz Mongoose M2 e 1GHz ARM Cortex-A9
e 4 x 1.7GHz Cortex-Ab53 e 0.2GHz ARM Cortex-M4
e GPU Mali-G71 MP20 3D : Vivante GC400T / 2D : Vi-
vante GC320!
RAM | 4GB | 1GB
Communication
e Cellular GSM/HSPA/LTE —
e Wi-Fi Wi-Fi 802.11 a/b/g/n/ac —
e Blutooth 5.0 —
e GPS Yes —
1/0
e Touchscreen QHD+ Super AMOLED HD LCD
e Speakers 2 Speakers —
e Camera 2 (Front and back) —
e Microphone Yes —
e Vibration Yes —
Power supply ‘ Battery 3500 mA h ‘ plugged

The GPS module

The wireless module: Wi-Fi and Bluetooth.

The touchscreen

The speakers and the microphone

e The camera module containing the font facing camera, the rear facing camera(s), and the flash.

These components are the major factors when it comes to power consumption [26]. The smartphone
contains other peripherals, but their power draw is considered to be marginal [88] and a part of the static
power consumed by the device. For instance, the capacitive touch layer on the screen is considered to be
consuming a marginal and static amount of power [89].

This assumption was tested and confirmed experimentally. In figure 3, the measured power consumption
is drawn during multiple stages. In the first stage (Blue dots), the frequency is set to its minimum, and
the screen is kept off by a custom app. During the second stage (Plain magenta), the fingerprint sensor is
activated and used. Nevertheless, the power draw is unchanged. The same draw is observed in the third
stage (Red dashes), during which the heartbeat sensor was used instead. The power draw significantly
increased in the last stage (Green dashes), when the frequency was no longer limited, and the screen was
turned on again.

4.2. The profiling scheme and measurements source

Modern smartphones are abundantly available, and developing applications for them is relatively cost
and risk-free. The N3 profiler is software-based that will rely on system files system and traces for its power

10

Figure 2: The development board alongside the multimeter and the monitoring PC.

Figures/Power

ConsumptionWithMarginalSensors-eps-converted-to.pd

Figure 3: The measured overall power consumption of the device during multiple stages with different components activated

and deactivated at each stage.

11

System

(v 3\
Data logger
g
©
e Inputs
® v
P
Model
N\ J
Estimations
v
Storage

Figure 4: General architecture of the N3 profiler.

readings and inputs’ readings. This profiling scheme and measurement source are adequate for the chosen
level of granularity in this work. Moreover, the results obtained with these methods are on par with the
accuracy of hardware-based measurements [41].

Accordingly, the profiler will be composed of two parts: a data logger and a model (Figure 4). Firstly,
the data logger will collect relevant information from the device. Then, the model will use these pieces of
information as inputs to generate power estimation.

4.3. Data logging

The operating system (OS) generates traces and logs to indicate its current state and the status of the
peripherals. Thus, instead of encumbering the system with queries for the values of the inputs, the system
files are read in parallel. Data from experimentation also showed that it is also faster to read the system
files than to use system APIs (Table 3).

Table 3: The mean time needed to access the value of some variables through Android APIs and through system files, on the
smartphone.

Variable System APIs (ms) System files (ms)

CPU core frequency — ~ 2
GPU frequency — >2
Screen status 8 2
Screen brightness 8 >2

On call status 15 ~ 2
Battery voltage 15 5
Battery current 10 2

An application was constructed to read and organize the necessary data. In order to have a correct
correlation between the inputs and output, the application reads the data concurrently to minimize the
reading time. It divides the reading queries into two halves and lunches two threads. Each of the threads
reads the current time and then proceeds to get the readings from the systems files. Once the reading is
finished, each of the threads queries for the time again and add it to the end of the data array (Figure 5).

To ensure the sanity of the data, the application compares the starting time of each of the threads and
its ending time (TS3 - TS1 and TS4 - TS2). Then, it compares the start of the thread that started first

12

TS1 R(1) R(2) R(n/2) | TS3

TS2 |R(n/2 +1)|R(n/2 +2) R(n) TS4

Figure 5: Concurrent readings (R) of n pieces of data with timestamps (TS).

with the end of the second one, to compute the time of the whole process. The process should not take
more than 20 ms (the average is around 10 ms), with each thread taking at most 10 ms. Otherwise, the data
is considered corrupted and discarded.

The choice of 10 ms for each thread is based on the time the Linux Kernel gives to each process before
pausing it and changing to another (Multitasking). The 20ms limit is imposed to be able to follow the
fastest-changing variable, i.e. the CPU frequency [90]. Hence, the sampling time is 20 ms to follow this
variable.

TS3—-TS1 < 10ms
TS4—TS2 < 10ms (4)
TS4—-TS1 < T, T,=20ms

To keep the model as simple as possible—and consequently as computationally optimized as possible,
only the most characterizing and directly influential inputs for each of the components were included.

4.4. The choice of inputs
e The SoC

CPU power consumption is a function of its frequency and voltage [44]. Moreover, the voltage in processors
with dynamic voltage and frequency scaling (DVFS) is also a function of the frequency [19]. Thus, the input
used to estimate power consumption is the frequency f of each CPU core. However, the CPU on the smart-
phone was configured to use one frequency for each of the quad-core blocks in its big.Little configuration.
Therefore, there will only be two frequency readings for that device [91]. The same input—the frequency—is
used for the GPU since it correlates directly with its power consumption [32].

e The RAM

The RAM consumes around 10% of the total system power [92]. To account for the power used by the RAM,
in the first trials, the value of the occupied RAM was used as an input characterizing the power draw of the
RAM. However, that value on its own does not factor the maximum and the minimum possible values of

the RAM on the system. Henceforth, the ratio of the occupied RAM over its maximum value is used and
called the Memory Occupation Rate (MOR).

e The communication peripherals

The communication peripherals are the phone’s LTE module, the wireless chip (Wi-Fi and Bluetooth), and
the GPS. Power consumption for these peripherals is mostly characterized by their state of connection and
data transfer [52, 83]. For the LTE chip, the inputs are the On-call status (Off, 2G, 3G, LTE), the signal
strength, and the connection and data transfer mode. Similarly, for the Wi-Fi and Bluetooth, as their power
consumption is heavily influenced by their state of activity and the bandwidth [70], the inputs are the status
(On/Off) and the data transfer. Finally, for the GPS, only the status was used.

e The input and output peripherals

13

To account for the power draw of the touchscreen, the status of the screen (On/Off) and its brightness are
used as inputs [80, 89], since for modern AMOLED screens, consumed power is a quadratic function of the
brightness [89, 52]. The power consumed by the screen is also dependent on the used resolution and scaling
[11]. However, since in the case of this work, the resolution will be fixed to the maximum possible value
without any scaling, it will be a constant that won’t affect the model.

For the speakers, the status (On/Off) and the volume are used as inputs for the model [81]. As for the
microphone, only the status was used. Finally, for the cameras and the LED flashlight, the status of the
camera its recording status (Camera recording or not) alongside the flash (On/Off) are used.

4.5. The modeling scheme

Microprocessors-based SoCs are very complex and contain a large number of sub-modules. White-box
techniques would require the modeling of all those components, making the process of constructing one
arduous [25, 42].

The availability of the traces provided by the OS, alongside the complexity of the system, leads us
towards the use of black-box modeling techniques. In this modeling scheme, there is a choice between either
regression-based identification techniques or correlation and classification ones. Regression-based power
models have been thoroughly studied in the literature [28, 29, 80, 32, 20, 55], especially for smartphones.
Nevertheless, their accuracy was undermined by the fact that most of them used linear-regression, which
led to an increased estimation error when the power dynamics were not as linear.

Nonlinear models like artificial neural networks (ANN) avoid these shortcomings [19, 51, 66]. However,
Classic ANN do not account for the sampling time or the different timestamps associated with data. They
are also not built to account for feedback loops, where previous values of the output influence the value of
the next output. One alternative was recently explored by Romansky et al. [54] who used times series and
deep learning to predict energy consumption in their model Deep Green.

The solution implemented in this work is the Nonlinear Autoregressive Network with eXogenous inputs
(NARX) neural networks. These networks are recursive neural networks build to predict the output of time
series [93]. Equation 5 gives their mathematical representation.

y(k) ng[y(k—l),-“ 7y<k_dy)>u(k_n)7u(k_n_1)7"' ’u<k_n_du)] (5)

y(k) and u(k) are the output to be predicted and the input at the time step k, respectively. ¢ is the
characteristic function. The term n is the process dead-time, whereas d, and d, are the orders of time
delays for the input and output, also called input and output memory. Since the power changes react pretty
quickly with changes in the characteristics (inputs), d, d,,, and n were all set to the value of 1, giving:

y(k) = ¢ ly(k —1),y(k = 2), u(k — 1), u(k — 2)] (6)

The NARX model is composed of two layers: a hidden layer and an output layer. The neurons in
the hidden layer have sigmoids (¢) as activation functions. The output layer contains a single neuron,
representing the total consumed power by the device Psygsiem, with a linear transfer function (Figure 6).

The first advantage of using these neural networks is their capacity to estimate nonlinear dynamics while
still keeping a relatively simple and computationally light form (2-layers). The second advantage is the
component-level granularity.

To illustrate the capacity of the model to reach this level of granularity, Figure 7 describes the distribution
of the total power consumed by a typical device as the sum of the power consumed by each individual
component (CPU, Wi-Fi, ...), plus a minimum amount of base still consumed by the device [80], and
a negligible amount consumed by the rest of the components whose consumption is marginal (see 4.1).
Assuming that the power consumed the components whose consummation is marginal and the base power
represents a single static power, the power consumed by the device becomes:

PTotal = PStatic + Z Pi (7)

=1

14

ulk) —» <z

A 4

(0, - (k) S
oLy y e Y(K-
ulk), ..., u(k-1))

A 4
A 4

Z-‘I

Figure 6: The general structure of N3 NARX model.

Where i denotes the component number (CPU, GPU, RAM...), and n is the total number of these compo-
nents. The power consumed by each of these components can be correlated with one of its characteristics.
These characteristics will be used as inputs to the power model.

The level of granularity can be ensured by configuring the neurons of the hidden layer so as to achieve
component decoupling, by disabling the training of the weights w linking the neurons of the different com-
ponents. Figure 8 shows the configuration of the power model for an embedded system and showcases the
interconnection of the neurons related to three components: the SoC, Camera 1 and the screen. Since the
output layer is a linear neuron, the power consumed by the system becomes:

PSystem = w161 + -+ wpSy + Wpn+1Sn+1 + Wn+2Sn+2 +--+
WinSm + Wit 1Sm41 + Wimg2Gma2 + - +wis; + wit1641 +wis; (8)
by disabling all the components except the SoC, as this is the component required for system operation,

and training the model with data from this configuration, the power consumption of the system becomes
(from Equation 7):

PSystéme = PStatique + Psoc (9)
whereas for the NARX model (Equation 8), this translates into:

PSystéme = w161 + -+ WwpSy + Wn+1Sn+1 + Wn+2Sn+2 + w;g; (]-0)

Psiatique + Psoc

In order to quantify the individual contribution of each component, the training set is constructed as
follows. At first, only the SoC is active for a period of time. Then the components are activated one after
the other. Each component is kept active for a duration of time, after which it is deactivated for a period
of time before activating the next component. Finally, All the components are returned to their automatic
operating state.

Thus, the NARX model gives estimates of the power consumed by the system as a whole, as well as the

Figures/Power| Consumption_Destribution-eps-converted-to.pdf

Figure 7: Power consumption distribution in a typical mobile phone.

15

SoC 4

StatuSOn/off_>

Cameral Recording —»

Flash—»

StatusOn/off_>

Screen

Brightness——|

[
»

Figure 8: The configuration of the interconnections of neurons in the hidden layer in the NARX power model to ensure the
components’ level granularity.

power consumed by the components individually:

PSystem = w161 + -+ wpSy, + Wn41Sn+1 + Wn+2Sn+2 + w;S;

Pstatique + Psoc

WinSm + Wm+1Sm+1 + Wm42Sm+y2 + -+ W56 (11)
~

Pcameral Pscreen

4.5.1. Model construction and Implementation

NARX neural networks require relatively large amounts of data and resources to be trained into accuracy.
Mobile CPU are not yet capable of doing such training. In fact, during experimentation, it took around 45
minutes to train N3 on the device with 8 x 10* data points, and when the number of data points exceeded
1.2 x 10°, the device would just shut down.

The evident solution to these limitations is to do the training on a separate device. Therefore, the model
construction process would start with data gathering. The data will then be transferred to a separate device
to train N3. Once the training process finished, N2 will be installed on the profiled device to generate online
estimations.

4.6. Summary

In Table 4, all of the previously described and detailed points are summarized.

16

Table 4: Summarized description of the profiler.

Purpose Monitoring

Granularity Components level

Source measurement System traces

Device Smartphone Development board
Model name N3

Modelling scheme Neural network

Number of layers 2

e Hidden layer: 26 neurons ‘ e Hidden layer: 5 neurons
e Output layer: 1 neuron

Inputs SoC
[] f1: CPU073 [] fZ CPUO
[] fQZ CPU477 L MOR
o foru
e MOR

Cellular radio
e Connection status:
Off/2G/3G/LTE
e On-Call status: On/Off
e Signal strength (%)
e Data transfer mode :
e LTE: idle/DRX/...
e 3G: DCH/FACH...
e Data transfer rate
Wi-Fi
e Status: On/Off
e Data transfer: 0/1
Bluetooth
e Status: On/Off
e Data transfer: 0/1
GPS
e Status: On/Off
Screen
e Status: On/Off e Status: On/Off
e DBrightness: (%) e Brightness: (%)
Speakers
e Status: On/Off
e Volume: (%)
Microphone
e Recording: 0/1
Cameras
e Status: On/Off
e Recording: 0/1
o flashlight: On/Off

Modelling construction Off-device
Modelling Implementation On-device
Sampling time 20 ms

5. Experimental results and discussion

5.1. Model training

For the best training results, the gathered data need to cover as much of the usage scenarios as possible.
To do so, the experimentation use case covers several standard benchmarks and then typical tasks performed
by devices. It goes as follows. Firstly, a set of benchmarks is launched successively: AnTuTu [94], Geekbench

17

Table 5: The training time needed for different numbers of samples alongside the resulted mean absolute percentage error
(MAPE), the mean squared error (MSE), and the regression (R) for the test set.

Smartphone Development board
Total Training Training
number of . A MAPE (%) MSE R A R MAPE (%) MSE R
samples time (min) time (min)
~ 8 x 10% 7 5 7.56 x 10~ 3 0.986 1 2.9 4.72 x 1073 0.942
~ 2 x 10° 12 3 7.23 X 107 3 0.986 6 2.9 4.68 X 107 3 0.942
~ 4 X 10° 14 2.9 7.18 x 107 3 0.986 10 2.8 3.67 x 107 3 0.942
~ 8 x 10° 20 2.4 7.60 x 107 4 0.987 12 2.8 3.56 x 107 3 0.963
~ 1.2 x 106 32 2.2 7.48 X 107 4 0.987 15 2.8 3.61 x 10— 3 0.961
~ 1.8 X 106 57 2.2 7.09 X 10 4 0.987 19 2.8 3.54 X 107 3 0.961

4 [95], PCMark [96], and 3DMark [97]. These benchmarks are used to test the maximum performance of
the systems through multiple calculation tests, 3D renderings... The successive launch of these benchmarks
would generate data describing the system under heavy workloads. It would also stress the system and
account for its behavior under thermal throttling (if present).

Then, the system—when appropriate, as the development board lacks multimedia and communication
functionality—is put through more common tasks: A phone call, an internet video call, local video playback,
video streaming, audio playback, file download over the cellular network, then over Wi-Fi, taking a picture
without flash, with flash, and recording a 30s video, and finally leaving the phone idle for a while. This
data-gathering experiment is repeated multiple times with variations in the order of the benchmarks as well
as the tasks.

The gathered data is then divided into three sets: a training set (60%), and a validation set (20%) to
train the model, and a test set (20%) to evaluate its performance. The results of the test sets for different
sizes of training sets are shown in Table 5. These results demonstrate how the inputs correlate with the
output (R ~ 1). Moreover, the predictions fit the output, with very low errors (MAPE = 2.2% for the
smartphone and 2.8% for the board), indicating the accuracy of the model. Thus, N? is validated.

Nevertheless, Table 5 also shows the limitations of using neural networks. Indeed, the MAPE went down
from 5% to 2.2% by adding more samples, but it came at the cost of longer training times. Additionally,
after a certain number of samples (1.8 x 10° for the smartphone and 2 x 10%), the MAPE no longer improved.

5.2. Real-time usage validation

In the model construction process, the profiler was set to generate estimations online. Having validated
the model through the test sets, it is, then, incorporated alongside the data logging program into the ap-
plication and directly deployed onto the device. Then, its accuracy and performance are tested through a
non-scripted randomized normal usage of the device. This test, which is set to mimic day-to-day activities,
includes making cellular and video calls through applications, sending messages through SMS and applica-
tions services (Smartphone only), video playback and streaming, taking and sending pictures (Smartphone
only), browsing the web, and finally playing two different games (Smartphone only).

Table 6 highlights the online performance of the model on both devices, while in figure 9 and figure 11,
the measured power consumption of the smartphone is drawn against values estimated by N3 for the
smartphone and the development board, respectively. For the smartphone, the model accurately predicts
the power consumed by the phone with minimal estimation errors. It has an estimation MAPE of only
2.82%, and the recorded Mean Absolute Error (MAE) is 0.0168 W, whereas the Mean Squared Error (MSE)
is 7.04 x 10~*. Moreover, 97% of the estimation sample made by the model had an error value of zero
(or less than the precision of the measurements which is 107%). Furthermore, the errors are normally
distributed for both devices (verified by K-S test, Figure 10). For the smartphone, the estimation errors
had a mean . = 1,178 x 10~*W and standard deviation 0. = 0,0265. Whereas for the development board,
te = 0.0116W and o. = 0,037. Both residuals present no heteroskedasticity (Engle’s ARCH test).

Finally, on the development board, as can be seen in figure 11, the estimations had a delay (of about
0.2s). This delay is a result of the wait time needed by the board to receive the measurements from the
external multimeter to the device. Once accounted for this delay, the model performance results were
practically the same as they were on the smartphone.

18

Table 6: Online testings results of the model on both devices.

Development
Smartphone board
Test Duration 2.25h 1.5h
Number of Samples ~ 403 x 10° ~ 280 x 10°
MAE (W) 0.0168 0.038
MAPE (%) 2.82 2.88
MSE 7.04 x 1077 574 x 1077
Perfect fits (%) 97 96.6

Figures/PowerModel_A-eps-converted-to.pdf

Figure 9: Online N3 Power estimation against the measurements for the smartphone.

Figures/PowerModel_A_Error_Values-eps-converted-to.pdf

Figure 10: N3 Online estimation error distribution for the smartphone.

5.8. Performance evaluation and comparison

Performance-wise, the average sampling time was 19.8 ms which satisfies the previously stated design
constraint. Additionally, N3 caused no issues or bottlenecks for the system, as indicated by its overhead.
The overhead is computed by running the system with the profiler and then comparing its power consumption
and load to data from instances that had no profiling [37]. N2 it had only a 3% load overhead during the
test. As for the power overhead, it only amounted to a 5% increase in the same test.

Finally, we compared the results of N3 with the publicly available power models and models of which
the MAPE was reported in the literature. Table 7 shows the accuracy of these models compared to the
power model presented in this paper.

While we are pleased that our model performed better than or on par with established works, it is also
worth noting that some of these profilers have higher levels of granularity than our model does. Furthermore,
some works, like PowerBooter, have not been updated for several years.

6. Conclusion

Given the great importance of estimating power consumption in embedded systems and smartphones,
the literature has seen a great deal of research devoted to this subject. In this paper, we have presented,
through an in-depth study of the literature, a generic methodology for building power profilers by adapting
the profiling process to their context of use. The method is streamlined into a set of manageable steps,
explaining the design choices to be made through each of them, starting with the goal of building the
profiler. Then, we presented a compilation of profilers and models found in the literature and categorized
them according to the steps explained in the proposed methodology.

19

Figures/PowerModel_DB-eps-converted-to.pdf

Figure 11: Online N3 Power estimation against the measurements for the development board.

Table 7: Comparison of the accuracy of several power models and profilers.

Profiler / Model MAPE (%) Source Year
N? 2.88 Measured 2019
Snapdragon Profiler 4.8 Measured 2018
Trepn 5.5 Measured 2018
Yoon et al. [31] 5.1 [31] 2017
PETrA 4 [33] 2017
Walker et al. [35] 3.8 [35] 2017
Djedidi et al. [19] 4.4 [19] 2017
Kim et al. [32] 2.9 [32] 2015
eLens ~ 10 [77] 2013
Kim et al. [80] 3.8~ 7.2 [80] 2012
Power Doctor 10 [74] 2012
eProf 10 [74] 2011
Sesame 5 [29] 2011
PowerBooter 4.1 / 24 [28]/Measured 2010/2018

The proposed methodology is then applied in this work to build a new accurate profiler, based on a

NARX neural network model, and used as a monitoring tool to detect anomalies in power consumption. In
the results section, the proposed model has been implemented and validated with outstanding results—best
in its class—that highlight how the accuracy reported in the literature is improved while maintaining low
power and computational overhead.

Thus, N? is a profiler capable of generating accurate online power estimation for mobile and embedded

devices, making it the optimal tool for power monitoring and debugging, and using the power profile to
detect anomalies in the system. Finally, thanks to its accuracy and performance, N3 has been implemented
in an online monitoring framework for safety-critical avionic systems [18].

(1]
2]

(3]
[4]

M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, S. Tarkoma, Modeling, Profiling, and Debugging the Energy Consump-
tion of Mobile Devices, ACM Computing Surveys 48 (3) (2015) 1-40, ISSN 03600300, doi:10.1145/2840723.

J.-M. Kang, C.-K. Park, S.-S. Seo, M.-J. Choi, J. W.-K. Hong, User-Centric Prediction for Battery Lifetime of Mobile
Devices, in: CHALLENGES FOR NEXT GENERATION NETWORK OPERATIONS AND SERVICE MANAGEMENT,
PROCEEDINGS, vol. 5297, Springer, Berlin, Heidelberg, ISBN 978-3-540-88622-8, ISSN 0302-9743, 531-534, doi:10.1007/
978-3-540-88623-5_69, 2008.

D. Kim, Y. Chon, W. Jung, Y. Kim, H. Cha, Accurate Prediction of Available Battery Time for Mobile Applications,
ACM Transactions on Embedded Computing Systems 15 (3) (2016) 1-17, ISSN 15399087, doi:10.1145/2875423.

A. Kanduri, M. H. Haghbayan, A. M. Rahmani, P. Liljeberg, A. Jantsch, H. Tenhunen, N. Dutt, Accuracy-Aware Power
Management for Many-Core Systems Running Error-Resilient Applications, IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 25 (10) (2017) 2749-2762, ISSN 10638210, doi:10.1109/TVLSL2017.2694388.

B. Martinez, M. Montén, I. Vilajosana, J. D. Prades, The Power of Models: Modeling Power Consumption for IoT Devices,
IEEE Sensors Journal 15 (10) (2015) 5777-5789, ISSN 1530437X, doi:10.1109/JSEN.2015.2445094.

M. A. Bokhari, B. Alexander, M. Wagner, In-vivo and offline optimisation of energy use in the presence of small en-
ergy signals, in: Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services - MobiQuitous 18, ACM Press, New York, New York, USA, ISBN 9781450360937, 207-215,
doi:10.1145/3286978.3287014, 2018.

E. Demirbilek, J.-C. Grgoire, A. Vakili, L. Reyero, Modelling and improving the battery performance of a mobile phone
application: A methodology, in: 5th International Conference on Energy Aware Computing Systems and Applications,
ICEAC 2015, IEEE, ISBN 9781479917716, 1-4, doi:10.1109/ICEAC.2015.7352165, 2015.

20

http://dx.doi.org/10.1145/2840723
http://dx.doi.org/10.1007/978-3-540-88623-5_69
http://dx.doi.org/10.1007/978-3-540-88623-5_69
http://dx.doi.org/10.1145/2875423
http://dx.doi.org/10.1109/TVLSI.2017.2694388
http://dx.doi.org/10.1109/JSEN.2015.2445094
http://dx.doi.org/10.1145/3286978.3287014
http://dx.doi.org/10.1109/ICEAC.2015.7352165

(8]
(9

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17)

(18]

19]

20]

(21]

[22]

23]

[24]

[25]

[26]

27)

(28]

29]

(30]

(31]

J. M. Kim, Y. G. Kim, S. W. Chung, Stabilizing CPU frequency and voltage for temperature-aware DVFS in mobile
devices, IEEE Transactions on Computers 64 (1) (2015) 286-292, ISSN 00189340, doi:10.1109/TC.2013.188.

J. G. Park, C. Y. Hsieh, N. Dutt, S. S. Lim, Quality-aware mobile graphics workload characterization for energy-efficient
DVFS design, in: 2014 IEEE 12th Symposium on Embedded Systems for Real-Time Multimedia, ESTIMedia 2014, IEEE,
ISBN 9781479963072, 70-79, doi:10.1109/ESTIMedia.2014.6962347, 2014.

S. Li, S. Mishra, Optimizing power consumption in multicore smartphones, Journal of Parallel and Distributed Computing
95 (2015) 124-137, ISSN 07437315, doi:10.1016/j.jpdc.2016.02.004.

M. Linares-Vasquez, G. Bavota, C. E. B. Cardenas, R. Oliveto, M. Di Penta, D. Poshyvanyk, Optimizing energy consump-
tion of GUIs in Android apps: a multi-objective approach, in: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering - ESEC/FSE 2015, ACM Press, New York, New York, USA, ISBN 9781450336758, 143-154,
doi:10.1145/2786805.2786847, 2015.

Y. Guo, C. Wang, X. Chen, Understanding application-battery interactions on smartphones: A large-scale empirical study,
IEEE Access 5 (2017) 13387-13400, ISSN 21693536, doi:10.1109/ACCESS.2017.2728620.

A. M. Abbasi, M. Al-tekreeti, Y. Ali, K. Naik, A. Nayak, N. Goel, B. Plourde, A framework for detecting energy bugs in
smartphones, in: 2015 6th International Conference on the Network of the Future (NOF), IEEE, ISBN 978-1-4673-8386-8,
1-3, doi:10.1109/NOF.2015.7333297, 2015.

J. Koo, K. Lee, W. Lee, Y. Park, S. Choi, BattTracker: Enabling energy awareness for smartphone using Li-ion battery
characteristics, in: Proceedings - IEEE INFOCOM, vol. 2016-July, IEEE, ISBN 9781467399531, ISSN 0743166X, 1-9,
doi:10.1109/INFOCOM.2016.7524422, 2016.

L. Caviglione, M. Gaggero, J. F. Lalande, W. Mazurczyk, M. Urbanski, Seeing the unseen: Revealing mobile malware
hidden communications via energy consumption and artificial intelligence, IEEE Transactions on Information Forensics
and Security 11 (4) (2016) 799-810, ISSN 15566013, doi:10.1109/TIFS.2015.2510825.

A. Merlo, M. Migliardi, P. Fontanelli, Measuring and estimating power consumption in Android to support energy-based
intrusion detection, Journal of Computer Security 23 (5) (2015) 611-637, ISSN 0926227X, doi:10.3233/JCS-150530.

G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, S. Pastrana, Power-aware anomaly detection in smartphones: An analysis
of on-platform versus externalized operation, Pervasive and Mobile Computing 18 (2015) 137-151, ISSN 15741192, doi:
10.1016/j.pmcj.2014.10.007.

O. Djedidi, M. A. Djeziri, N. K. M’Sirdi, Data-Driven Approach for Feature Drift Detection in Embedded Electronic
Devices, IFAC-PapersOnLine 51 (24) (2018) 1024-1029, ISSN 24058963, doi:10.1016/j.ifacol.2018.09.714.

O. Djedidi, M. A. Djeziri, N. K. M’Sirdi, A. Naamane, Modular Modelling of an Embedded Mobile CPU-GPU Chip for
Feature Estimation, in: Proceedings of the 14th International Conference on Informatics in Control, Automation and
Robotics, vol. 1, SciTePress, Mardrid, Spain, ISBN 978-989-758-263-9, 338-345, doi:10.5220,/0006470803380345, 2017.

N. K. Shukla, R. Pila, S. Rawat, Utilization-based power consumption profiling in smartphones, in: Proceedings of the
2016 2nd International Conference on Contemporary Computing and Informatics, IC3I 2016, IEEE, ISBN 9781509052554,
881886, doi:10.1109/IC31.2016.7919046, 2016.

E. Rattagan, E. T. Chu, Y. D. Lin, Y. C. Lai, Semi-online power estimation for smartphone hardware components,
in: 2015 10th IEEE International Symposium on Industrial Embedded Systems, SIES 2015 - Proceedings, IEEE, ISBN
9781467377119, 174-177, doi:10.1109/SIES.2015.7185058, 2015.

R. Mittal, A. Kansal, R. Chandra, Empowering developers to estimate app energy consumption, in: Proceedings of the
18th annual international conference on Mobile computing and networking - Mobicom 12, ACM Press, New York, New
York, USA, ISBN 9781450311595, 317, doi:10.1145/2348543.2348583, 2012.

J. Huang, R. Li, J. An, D. Ntalasha, F. Yang, K. Li, Energy-Efficient Resource Utilization for Heterogeneous Embedded
Computing Systems, IEEE Transactions on Computers 66 (9) (2017) 1518-1531, ISSN 00189340, doi:10.1109/TC.2017.
2693186.

L. Niu, D. Zhu, Reliability-aware scheduling for reducing system-wide energy consumption for weakly hard real-time
systems, Journal of Systems Architecture 78 (2017) 30-54, ISSN 1383-7621, d0i:10.1016/J.SYSARC.2017.06.004.

R. W. Ahmad, A. Gani, S. H. A. Hamid, F. Xia, M. Shiraz, A Review on mobile application energy profiling: Taxonomy,
state-of-the-art, and open research issues, Journal of Network and Computer Applications 58 (2015) 42-59, ISSN 10958592,
doi:10.1016/j.jnca.2015.09.002.

E. Benkhelifa, T. Welsh, L. Tawalbeh, Y. Jararweh, A. Basalamah, Energy Optimisation for Mobile Device Power Con-
sumption: A Survey and a Unified View of Modelling for a Comprehensive Network Simulation, Mobile Networks and
Applications 21 (4) (2016) 575-588, ISSN 15728153, doi:10.1007/s11036-016-0756-y.

I. Qualcomm Innovation Center, Trepn Profiler - Android Apps on Google Play, URL https://play.google.com/store/
apps/details?id=com.quicinc.trepn&hl=fr_CH, 2019.

L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, L. Yang, Accurate online power estimation and auto-
matic battery behavior based power model generation for smartphones, in: Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis - CODES/ISSS ’10, ACM Press, New York,
New York, USA, ISBN 9781605589053, 105, doi:10.1145/1878961.1878982, 2010.

M. Dong, L. Zhong, Self-constructive high-rate system energy modeling for battery-powered mobile systems, in: MobiSys,
ACM Press, New York, New York, USA, ISBN 9781450306430, ISSN 10769757, 335, doi:10.1145/1999995.2000027, 2011.
L. Ardito, G. Procaccianti, M. Torchiano, G. Migliore, Profiling Power Consumption on Mobile Devices, in: Proceedings of
The Third International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies, IARIA,
Lisbon, 101-106, 2013.

C. Yoon, S. Lee, Y. Choi, R. Ha, H. Cha, Accurate power modeling of modern mobile application processors, Journal of
Systems Architecture 81 (2017) 17-31, ISSN 13837621, doi:10.1016/j.sysarc.2017.10.001.

21

http://dx.doi.org/10.1109/TC.2013.188
http://dx.doi.org/10.1109/ESTIMedia.2014.6962347
http://dx.doi.org/10.1016/j.jpdc.2016.02.004
http://dx.doi.org/10.1145/2786805.2786847
http://dx.doi.org/10.1109/ACCESS.2017.2728620
http://dx.doi.org/10.1109/NOF.2015.7333297
http://dx.doi.org/10.1109/INFOCOM.2016.7524422
http://dx.doi.org/10.1109/TIFS.2015.2510825
http://dx.doi.org/10.3233/JCS-150530
http://dx.doi.org/10.1016/j.pmcj.2014.10.007
http://dx.doi.org/10.1016/j.pmcj.2014.10.007
http://dx.doi.org/10.1016/j.ifacol.2018.09.714
http://dx.doi.org/10.5220/0006470803380345
http://dx.doi.org/10.1109/IC3I.2016.7919046
http://dx.doi.org/10.1109/SIES.2015.7185058
http://dx.doi.org/10.1145/2348543.2348583
http://dx.doi.org/10.1109/TC.2017.2693186
http://dx.doi.org/10.1109/TC.2017.2693186
http://dx.doi.org/10.1016/J.SYSARC.2017.06.004
http://dx.doi.org/10.1016/j.jnca.2015.09.002
http://dx.doi.org/10.1007/s11036-016-0756-y
https://play.google.com/store/apps/details?id=com.quicinc.trepn&hl=fr_CH
https://play.google.com/store/apps/details?id=com.quicinc.trepn&hl=fr_CH
http://dx.doi.org/10.1145/1878961.1878982
http://dx.doi.org/10.1145/1999995.2000027
http://dx.doi.org/10.1016/j.sysarc.2017.10.001

32]

33]

(34]

(35)

(36]

37)

(38]

(39]

[40]

[41]

42]

[43]

[44]

[45]

[46]

(47)

(48]

[49]

[50]

[51]

[52]

Y. G. Kim, M. Kim, J. M. Kim, M. Sung, S. W. Chung, A novel GPU power model for accurate smartphone power
breakdown, ETRI Journal 37 (1) (2015) 157-164, ISSN 22337326, doi:10.4218/etrij.15.0113.1411.

D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, A. De Lucia, PETrA: A Software-Based Tool for Estimating
the Energy Profile of Android Applications, in: 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), IEEE, ISBN 978-1-5386-1589-8, 3-6, doi:10.1109/ICSE-C.2017.18, 2017.

S. A. Chowdhury, A. Hindle, GreenOracle: Estimating Software Energy Consumption with Energy Measurement Corpora,
in: Proceedings of the 13th International Workshop on Mining Software Repositories - MSR ’16, ACM Press, New York,
New York, USA, ISBN 9781450341868, 49-60, doi:10.1145/2901739.2901763, 2016.

M. J. Walker, S. Diestelhorst, A. Hansson, A. K. Das, S. Yang, B. M. Al-Hashimi, G. V. Merrett, Accurate and Stable
Run-Time Power Modeling for Mobile and Embedded CPUs, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 36 (1) (2017) 106-119, ISSN 02780070, doi:10.1109/TCAD.2016.2562920.

K. Kim, D. Shin, Q. Xie, Y. Wang, M. Pedram, N. Chang, FEPMA: Fine-Grained Event-Driven Power Meter for Android
Smartphones Based on Device Driver Layer Event Monitoring, in: Design, Automation 1& Test in Europe Conference
and Exhibition (DATE), IEEE Conference Publications, New Jersey, ISBN 9783981537024, ISSN 15301591, 1-6, doi:
10.7873/DATE.2014.380, 2014.

A. Dzhagaryan, A. Milenkovi¢, M. Milosevic, E. Jovanov, An Environment for Automated Measuring of Energy Consumed
by Android Mobile Devices, in: PECCS 2016 - Proceedings of the 6th International Joint Conference on Pervasive
and Embedded Computing and Communication Systems, SCITEPRESS - Science and Technology Publications, Lisbon,
Portugal, ISBN 978-989-758-195-3, 28-39, doi:10.5220,/0005950800280039, 2016.

L. Sun, R. K. Sheshadri, W. Zheng, D. Koutsonikolas, Modeling WiFi active power/energy consumption in smartphones,
in: Proceedings - International Conference on Distributed Computing Systems, IEEE, ISBN 9781479951680, ISSN 1063~
6927, 41-51, doi:10.1109/ICDCS.2014.13, 2014.

O. Djedidi, M. A. Djeziri, N. K. M’Sirdi, A. Naamane, A Novel Easy-to-construct Power Model for Embedded and Mobile
Systems Using Recursive Neural Nets to Estimate Power Consumption of ARM-based Embedded Systems and Mobile De-
vices, in: Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics (ICINCO
2018), vol. 1, INSTICC, SciTePress, Porto, Portugal, ISBN 978-989-758-321-6, 541-545, doi:10.5220,/0006915805410545,
2018.

R. W. Ahmad, A. Gani, S. H. Ab Hamid, A. Naveed, K. O. Kwangman, J. J. Rodrigues, A case and framework for
code analysis—based smartphone application energy estimation, International Journal of Communication Systems 30 (10)
(2017) 3235, ISSN 10991131, doi:10.1002/dac.3235.

D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, A. De Lucia, Software-based energy profiling of Android
apps: Simple, efficient and reliable?, in: SANER 2017 - 24th IEEE International Conference on Software Analysis,
Evolution, and Reengineering, vol. 15, IEEE, ISBN 9781509055012, ISSN 15399087, 103-114, d0i:10.1109/SANER.2017.
7884613, 2017.

A. Pathak, Y. C. Hu, M. Zhang, Where is the Energy Spent Inside My App?7: Fine Grained Energy Accounting on
Smartphones with Eprof, in: Proceedings of the 7th ACM European Conference on Computer Systems, EuroSys ’12,
ACM, New York, NY, USA, ISBN 978-1-4503-1223-3, ISSN 15361268, 29-42, doi:10.1145/2168836.2168841, 2012.

P. Holleis, M. Luther, G. Broll, B. Souville, A DIY Power Monitor to Compare Mobile Energy Consumption in Situ,
Proceedings of the 15th international conference on Human-computer interaction with mobile devices and services, ACM
(2013) 416-421d0i:10.1145/2493190.2494087.

M. L. Altamimi, K. Naik, A Computing Profiling Procedure for Mobile Developers to Estimate Energy Cost, in: Proceed-
ings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems -
MSWiM ’15, ACM Press, New York, New York, USA, ISBN 9781450337625, 301-305, doi:10.1145/2811587.2811627, 2015.
A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, Y.-M. Wang, Fine-Grained Power Modeling for Smartphones Using System
Call Tracing, in: Proceedings of the sixth conference on Computer systems EuroSys 11, ISBN 9781450306348, 153, doi:
10.1145/1966445.1966460, 2011.

M. J. Dousti, M. Ghasemi-Gol, M. Nazemi, M. Pedram, ThermTap: An online power analyzer and thermal simulator for
Android devices, in: Proceedings of the International Symposium on Low Power Electronics and Design, vol. 2015-Septe,
IEEE, ISBN 9781467380096, ISSN 15334678, 341-346, doi:10.1109/ISLPED.2015.7273537, 2015.

Y. Fu, L. Li, K. Wang, C. Zhang, Kalman Predictor-Based Proactive Dynamic Thermal Management for 3-D NoC Systems
with Noisy Thermal Sensors, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 36 (11)
(2017) 1869-1882, ISSN 02780070, doi:10.1109/TCAD..2661808.

N. Zhang, P. Ramanathan, K.-H. Kim, S. Banerjee, PowerVisor: A Battery Virtualization Scheme for Smartphones, in:
Proceedings of the third ACM workshop on Mobile cloud computing and services - MCS 12, ACM Press, New York, New
York, USA, ISBN 9781450313193, 37, doi:10.1145/2307849.2307859, 2012.

J. Bornholt, T. Mytkowicz, K. S. McKinley, The model is not enough: Understanding energy consumption in mobile
devices, in: 2012 IEEE Hot Chips 24 Symposium (HCS), IEEE, ISBN 978-1-4673-8879-5, 1-3, doi:10.1109/HOTCHIPS.
2012.7476509, URL http://ieeexplore.ieee.org/document/7476509/, 2012.

O. Djedidi, M. A. Djeziri, N. K. M’Sirdi, A. Naamane, Constructing an Accurate and a High-Performance Power Profiler
for Embedded Systems and Smartphones, in: Proceedings of the 21st ACM International Conference on Modelling,
Analysis and Simulation of Wireless and Mobile Systems (MSWIM ’18), vol. 18, ACM Press, Montréal, Canada, ISBN
9781450359603, 79-82, doi:10.1145/3242102.3242139, 2018.

S. Alawnah, A. Sagahyroon, Modeling of smartphones’ power using neural networks, Eurasip Journal on Embedded
Systems 2017 (1) (2017) 22, ISSN 16873963, do0i:10.1186/s13639-017-0070-1.

T. Kamiyama, H. Inamura, K. Ohta, A model-based energy profiler using online logging for Android applications, in: 2014

22

http://dx.doi.org/10.4218/etrij.15.0113.1411
http://dx.doi.org/10.1109/ICSE-C.2017.18
http://dx.doi.org/10.1145/2901739.2901763
http://dx.doi.org/10.1109/TCAD.2016.2562920
http://dx.doi.org/10.7873/DATE.2014.380
http://dx.doi.org/10.7873/DATE.2014.380
http://dx.doi.org/10.5220/0005950800280039
http://dx.doi.org/10.1109/ICDCS.2014.13
http://dx.doi.org/10.5220/0006915805410545
http://dx.doi.org/10.1002/dac.3235
http://dx.doi.org/10.1109/SANER.2017.7884613
http://dx.doi.org/10.1109/SANER.2017.7884613
http://dx.doi.org/10.1145/2168836.2168841
http://dx.doi.org/10.1145/2493190.2494087
http://dx.doi.org/10.1145/2811587.2811627
http://dx.doi.org/10.1145/1966445.1966460
http://dx.doi.org/10.1145/1966445.1966460
http://dx.doi.org/10.1109/ISLPED.2015.7273537
http://dx.doi.org/10.1109/TCAD..2661808
http://dx.doi.org/10.1145/2307849.2307859
http://dx.doi.org/10.1109/HOTCHIPS.2012.7476509
http://dx.doi.org/10.1109/HOTCHIPS.2012.7476509
http://ieeexplore.ieee.org/document/7476509/
http://dx.doi.org/10.1145/3242102.3242139
http://dx.doi.org/10.1186/s13639-017-0070-1

(53]

[54]

[55]

[56]

[57)

(58]
[59]

[60]

(61]
(62]

[63]

[64]

[65]

(6]

[67]

(68]

[69)
[70]

[71]

[72]

(73]

[74]

[75]

7th International Conference on Mobile Computing and Ubiquitous Networking, ICMU 2014, IEEE, ISBN 978-1-4799-
2231-4, 7-13, d0i:10.1109/ICMU.2014.6799050, 2014.

X. Chen, Y. Chen, M. Dong, C. Zhang, Demystifying Energy Usage in Smartphones, Design Automation Conference
(DAC) (2014) 1-5ISSN 0738100X, doi:10.1109/DAC.2014.6881397.

S. Romansky, N. C. Borle, S. Chowdhury, A. Hindle, R. Greiner, Deep Green: Modelling Time-Series of Software Energy
Consumption, in: 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), IEEE, ISBN
978-1-5386-0992-7, 273-283, doi:10.1109/ICSME.2017.79, 2017.

F. Xu, Y. Liu, Q. Li, Y. Zhang, V-edge: fast self-constructive power modeling of smartphones based on battery voltage
dynamics, in: nsdi’l3 Proceedings of the 10th USENIX conference on Networked Systems Design and Implementation,
USENIX, Lombard, IL, ISBN 978-1-931971-00-3, 43-55, 2013.

D. Shin, K. Kim, N. Chang, W. Lee, Y. Wang, Q. Xie, M. Pedram, Online estimation of the remaining energy capacity
in mobile systems considering system-wide power consumption and battery characteristics, in: Proceedings of the Asia
and South Pacific Design Automation Conference, ASP-DAC, IEEE, ISBN 9781467330299, ISSN 2153-6961, 59-64, doi:
10.1109/ASPDAC.2013.6509559, 2013.

W. Jung, C. Kang, C. Yoon, D. D. Kim, H. Cha, DevScope: A Nonintrusive and Online Power Analysis Tool for Smart-
phone Hardware Components, Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis - CODES+ISSS ’12 (2012) 353doi:10.1145/2380445.2380502.

Qualcomm Technologies Inc, Snapdragon Profiler - Qualcomm Developer Network, URL https://developer.qualcomm.
com/software/snapdragon-profiler, 2019.

P.-A. Cornillon, E. Matzner-Lgber, Régression : Théorie et applications, Statistique et probabilités appliquées, Springer,
URL https://hal.archives-ouvertes.fr/hal-00955892, 2007.

F. J. M. Jr., The Kolmogorov-Smirnov Test for Goodness of Fit, Journal of the American Statistical Association 46 (253)
(1951) 68-78, doi:10.1080/01621459.1951.10500769, URL https://www.tandfonline.com/doi/abs/10.1080/01621459.1951.
10500769.

R. F. Engle, Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation,
Econometrica 50 (4) (1982) 987-1007, ISSN 00129682, 14680262, URL http://www.jstor.org/stable/1912773.

Qualcomm Inc, Trepn Power Profiler - FAQs - Qualcomm Developer Network, URL https://developer.qualcomm.com/
software/trepn-power-profiler /faq, 2019.

M. A. Bokhari, B. R. Bruce, B. Alexander, M. Wagner, Deep parameter optimisation on Android smartphones for energy
minimisation, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion on - GECCO 17,
ACM Press, New York, New York, USA, ISBN 9781450349390, 1501-1508, do0i:10.1145/3067695.3082519, 2017.

A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell, S. Romansky, GreenMiner: a hardware based mining
software repositories software energy consumption framework, in: Proceedings of the 11th Working Conference on Mining
Software Repositories - MSR 2014, ACM Press, Hyderabad, India, ISBN 9781450328630, 12-21, doi:10.1145/2597073.
2597097, 2014.

M. Bokhari, M. Wagner, Optimising Energy Consumption Heuristically on Android Mobile Phones, in: Proceedings of
the 2016 on Genetic and Evolutionary Computation Conference Companion - GECCO ’16 Companion, ACM Press, New
York, New York, USA, ISBN 9781450343237, 1139-1140, doi:10.1145/2908961.2931691, 2016.

S. A. Carvalho, D. C. Cunha, A. G. Silva-Filho, On the use of nonlinear methods for low-power CPU frequency prediction
based on Android context variables, in: Proceedings - 2016 IEEE 15th International Symposium on Network Computing
and Applications, NCA 2016, IEEE, ISBN 9781509032167, 250-253, doi:10.1109/NCA.2016.7778627, 2016.

C. Yoon, D. Kim, W. Jung, C. Kang, H. Cha, AppScope: Application Energy Metering Framework for Android Smartphone
Using Kernel Activity Monitoring, Presented as part of the 2012 USENIX Annual Technical Conference (USENIX ATC
12) (2012) 387-400URL https://dl.acm.org/citation.cfm?id=2342857& CFID=208795690& CFTOKEN=39036451.

Z. Lu, C. Cao, X. Tao, Improving screen power usage model on android smartphones, in: Proceedings - Asia-Pacific
Software Engineering Conference, APSEC, vol. 2016-May, IEEE, ISBN 9781467396448, ISSN 15301362, 167-173, doi:
10.1109/APSEC.2015.45, 2016.

M. Gordon, L. Zhang, B. Tiwana, PowerTutor, URL http://ziyang.eecs.umich.edu/projects/powertutor/index.html, 2011.
J. Li, J. Xiao, J. W. K. Hong, R. Boutaba, FSM-based Wi-Fi power estimation method for smart devices, in: Proceedings of
the 2015 IFIP/IEEE International Symposium on Integrated Network Management, IM 2015, IEEE, ISBN 9783901882760,
147-155, doi:10.1109/INM.2015.7140287, 2015.

D. Li, S. Hao, J. Gui, W. G. Halfond, An Empirical Study of the Energy Consumption of Android Applications, in: 2014
IEEE International Conference on Software Maintenance and Evolution, IEEE, ISBN 978-1-4799-6146-7, ISSN 1063-6773,
121-130, doi:10.1109/ICSME.2014.34, 2014.

T. Jin, S. He, Y. Liu, Towards Accurate GPU Power Modeling for Smartphones, in: Proceedings of the 2nd Workshop
on Mobile Gaming - MobiGames ’15, ACM Press, New York, New York, USA, ISBN 9781450334990, 7-11, doi:10.1145/
2751496.2751502, 2015.

J. Lee, H. Joe, H. Kim, Automated power model generation method for smartphones, IEEE Transactions on Con-
sumer Electronics 60 (2) (2014) 190-197, ISSN 00983063, doi:10.1109/TCE.2014.6851993, URL http://ieeexplore.ieee.
org/document/6851993/.

L. Jaymin, J. Hyunwoo, K. Hyungshin, Smart phone power model generation using use pattern analysis, in: 2012 IEEE
International Conference on Consumer Electronics (ICCE), IEEE, ISBN 978-1-4577-0231-0, 412-413, d0i:10.1109/ICCE.
2012.6161925, 2012.

T. Arpinen, E. Salminen, T. D. Hamaéldinen, M. Hénnikdinen, MARTE profile extension for modeling dynamic power
management of embedded systems, Journal of Systems Architecture 58 (5) (2012) 209-219, ISSN 13837621, doi:10.1016/

23

http://dx.doi.org/10.1109/ICMU.2014.6799050
http://dx.doi.org/10.1109/DAC.2014.6881397
http://dx.doi.org/10.1109/ICSME.2017.79
http://dx.doi.org/10.1109/ASPDAC.2013.6509559
http://dx.doi.org/10.1109/ASPDAC.2013.6509559
http://dx.doi.org/10.1145/2380445.2380502
https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.qualcomm.com/software/snapdragon-profiler
https://hal.archives-ouvertes.fr/hal-00955892
http://dx.doi.org/10.1080/01621459.1951.10500769
https://www.tandfonline.com/doi/abs/10.1080/01621459.1951.10500769
https://www.tandfonline.com/doi/abs/10.1080/01621459.1951.10500769
http://www.jstor.org/stable/1912773
https://developer.qualcomm.com/software/trepn-power-profiler/faq
https://developer.qualcomm.com/software/trepn-power-profiler/faq
http://dx.doi.org/10.1145/3067695.3082519
http://dx.doi.org/10.1145/2597073.2597097
http://dx.doi.org/10.1145/2597073.2597097
http://dx.doi.org/10.1145/2908961.2931691
http://dx.doi.org/10.1109/NCA.2016.7778627
https://dl.acm.org/citation.cfm?id=2342857&CFID=208795690&CFTOKEN=39036451
http://dx.doi.org/10.1109/APSEC.2015.45
http://dx.doi.org/10.1109/APSEC.2015.45
http://ziyang.eecs.umich.edu/projects/powertutor/index.html
http://dx.doi.org/10.1109/INM.2015.7140287
http://dx.doi.org/10.1109/ICSME.2014.34
http://dx.doi.org/10.1145/2751496.2751502
http://dx.doi.org/10.1145/2751496.2751502
http://dx.doi.org/10.1109/TCE.2014.6851993
http://ieeexplore.ieee.org/document/6851993/
http://ieeexplore.ieee.org/document/6851993/
http://dx.doi.org/10.1109/ICCE.2012.6161925
http://dx.doi.org/10.1109/ICCE.2012.6161925
http://dx.doi.org/10.1016/j.sysarc.2011.01.003
http://dx.doi.org/10.1016/j.sysarc.2011.01.003

[76]

[77)

(78]

[79]
(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87)
(88]
(89]
[90]
(91]

(92]

(93]

[94]
[95]
[96]

[97)

j.sysarc.2011.01.003, URL https://www-sciencedirect-com.lama.univ-amu.fr/science/article/pii/S1383762111000154.

I. Konig, A. Memon, K. David, Energy consumption of the sensors of Smartphones, in: 10th International Symposium on
Wireless Communications Systems (ISWCS), ISBN 9783800735297, ISSN 21540225, 723-727, 2013.

S. Hao, D. Li, W. G. J. Halfond, R. Govindan, Estimating Mobile Application Energy Consumption Using Program
Analysis, in: Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13, IEEE Press, Piscataway,
NJ, USA, ISBN 978-1-4673-3076-3, ISSN 02705257, 92-101, doi:10.1109/ICSE.2013.6606555, 2013.

A. A. Nacci, F. Trovo, F. Maggi, M. Ferroni, A. Cazzola, D. Sciuto, M. D. Santambrogio, Adaptive and flexible smartphone
power modeling, Mobile Networks and Applications 18 (5) (2013) 600-609, ISSN 1383469X, do0i:10.1007/s11036-013-0470-
v, URL http://link.springer.com/10.1007/s11036-013-0470-y.

M. Kim, S. W. Chung, Accurate GPU power estimation for mobile device power profiling, Digest of Technical Papers -
IEEE International Conference on Consumer Electronics (2013) 183-184ISSN 0747668X, doi:10.1109/ICCE.2013.6486850.
M. Kim, J. Kong, S. W. Chung, Enhancing online power estimation accuracy for smartphones, IEEE Transactions on
Consumer Electronics 58 (2) (2012) 333-339, ISSN 00983063, doi:10.1109/TCE.2012.6227431.

R. Murmuria, J. Medsger, A. Stavrou, J. M. Voas, Mobile application and device power usage measurements, in: Pro-
ceedings of the 2012 TEEE 6th International Conference on Software Security and Reliability, SERE 2012, IEEE, ISBN
9780769547428, 147-156, doi:10.1109/SERE.2012.19, 2012.

Minyong Kim, Joonho Kong, Sung Woo Chung, An online power estimation technique for multi-core smartphones with
advanced display components, in: 2012 IEEE International Conference on Consumer Electronics (ICCE), IEEE, ISBN
978-1-4577-0231-0, 666—667, do0i:10.1109/ICCE.2012.6162019, 2012.

K. Yusuke, T. Okuhira, I. Tohru, H. Kenji, K. Takeshi, K. Masaji, A run-time power analysis method using OS-observable
parameters for mobile terminals, in: Proc. of International Conference on Embedded Systems and Intelligent Technol-
ogy(ICESIT), vol. 2010, 1-6, doi:10.1109/ICMU.2014.6799050, 2010.

S. Gurun, C. Krintz, A run-time, feedback-based energy estimation model For embedded devices, in: Proceedings of the
4th international conference on Hardware/software codesign and system synthesis - CODES+ISSS 06, ACM Press, New
York, New York, USA, ISBN 1595933700, 28, doi:10.1145/1176254.1176264, 2006.

GSM Arena, Samsung Galaxy S8+ - Full phone specifications, URL https://www.gsmarena.com/samsung-galaxy_s8-+-
8523.php, 2016.

NXP Inc., i.MX 6SoloX Applications Processors — Arm® Cortex®-A9, Cortex-M4 —NXP, URL https:
//www.nxp.com/products/processors-and-microcontrollers/applications- processors/i.mx-applications- processors/i.mx-6-
processors/i.mx-6solox-processors-heterogeneous- processing-with-arm-cortex-a9-and-cortex-m4-cores:i. MX6SX, 2019.
Pcmag, GPU Definition from PC Magazine Encyclopedia, URL https://www.pcmag.com/encyclopedia/term/43886/gpu,
2019.

M. Ciman, O. Gaggi, An empirical analysis of energy consumption of cross-platform frameworks for mobile development,
Pervasive and Mobile Computing 39 (2017) 214-230, ISSN 15741192, doi:10.1016/j.pmc;j.2016.10.004.

Y. D. Lin, E. Rattagan, Y. C. Lai, L. P. Chang, Y. C. Yo, C. Y. Ho, S. L. Chang, Calibrating parameters and formulas
for process-level energy consumption profiling in smartphones, Journal of Network and Computer Applications 44 (2014)
106-119, ISSN 10958592, doi:10.1016/j.jnca.2014.04.014.

Samsung, Samsung Opensource Release Center, URL http://opensource.samsung.com/, 2019.

I. Samsung, Exynos 9 Series 8895 Processor: Specs, Features — Samsung Exynos, URL http://www.samsung.com/
semiconductor/minisite/exynos/products/mobileprocessor/exynos-9-series-8895/, 2017.

F. A. Almusalli, N. Zaman, R. Rasool, Energy efficient middleware: Design and development for mobile applications, in:
2017 19th International Conference on Advanced Communication Technology (ICACT), IEEE, ISBN 978-89-968650-9-4,
541-549, doi:10.23919/ICACT.2017.7890149, 2017.

H. Xie, H. Tang, Y. H. Liao, Time series prediction based on narx neural networks: An advanced approach, in: Proceedings
of the 2009 International Conference on Machine Learning and Cybernetics, vol. 3, IEEE, ISBN 9781424437030, ISSN
2160-133X, 1275-1279, d0i:10.1109/ICMLC.2009.5212326, 2009.

AnTuTu, AnTuTu Benchmark - Android Apps on Google Play, URL https://play.google.com/store/apps/details?id=com.
antutu.ABenchMark, 2019.

Primate Labs Inc., Geekbench 4 - Android Apps on Google Play, URL https://play.google.com/store/apps/details?id=
com.primatelabs.geekbench, 2019.

Futuremark Oy, PCMark for Android Benchmark - Android Apps on Google Play, URL https://play.google.com/store/
apps/details?id=com.futuremark.pcmark.android.benchmark, 2019.

Futuremark Oy, 3DMark - The Gamer’s Benchmark - Android Apps on Google Play, URL https://play.google.com /store/
apps/details?id=com.futuremark.dmandroid.application, 2019.

24

http://dx.doi.org/10.1016/j.sysarc.2011.01.003
http://dx.doi.org/10.1016/j.sysarc.2011.01.003
https://www-sciencedirect-com.lama.univ-amu.fr/science/article/pii/S1383762111000154
http://dx.doi.org/10.1109/ICSE.2013.6606555
http://dx.doi.org/10.1007/s11036-013-0470-y
http://dx.doi.org/10.1007/s11036-013-0470-y
http://link.springer.com/10.1007/s11036-013-0470-y
http://dx.doi.org/10.1109/ICCE.2013.6486850
http://dx.doi.org/10.1109/TCE.2012.6227431
http://dx.doi.org/10.1109/SERE.2012.19
http://dx.doi.org/10.1109/ICCE.2012.6162019
http://dx.doi.org/10.1109/ICMU.2014.6799050
http://dx.doi.org/10.1145/1176254.1176264
https://www.gsmarena.com/samsung_galaxy_s8+-8523.php
https://www.gsmarena.com/samsung_galaxy_s8+-8523.php
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-6-processors/i.mx-6solox-processors-heterogeneous-processing-with-arm-cortex-a9-and-cortex-m4-cores:i.MX6SX
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-6-processors/i.mx-6solox-processors-heterogeneous-processing-with-arm-cortex-a9-and-cortex-m4-cores:i.MX6SX
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-6-processors/i.mx-6solox-processors-heterogeneous-processing-with-arm-cortex-a9-and-cortex-m4-cores:i.MX6SX
https://www.pcmag.com/encyclopedia/term/43886/gpu
http://dx.doi.org/10.1016/j.pmcj.2016.10.004
http://dx.doi.org/10.1016/j.jnca.2014.04.014
http://opensource.samsung.com/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-9-series-8895/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-9-series-8895/
http://dx.doi.org/10.23919/ICACT.2017.7890149
http://dx.doi.org/10.1109/ICMLC.2009.5212326
https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
https://play.google.com/store/apps/details?id=com.primatelabs.geekbench
https://play.google.com/store/apps/details?id=com.primatelabs.geekbench
https://play.google.com/store/apps/details?id=com.futuremark.pcmark.android.benchmark
https://play.google.com/store/apps/details?id=com.futuremark.pcmark.android.benchmark
https://play.google.com/store/apps/details?id=com.futuremark.dmandroid.application
https://play.google.com/store/apps/details?id=com.futuremark.dmandroid.application

	Introduction
	Design and Construction of Power Profilers
	Defining the purpose of the profiler
	Defining the profiling scheme and measurements source
	Model-based profilers
	Modeling scheme
	Choice of inputs
	Model construction and implementation

	Profiler evaluation and tuning
	Summary

	Case study devices
	Constructing the power profiler
	Purpose of the profiler
	The profiling scheme and measurements source
	Data logging
	The choice of inputs
	The modeling scheme
	Model construction and Implementation

	Summary

	Experimental results and discussion
	Model training
	Real-time usage validation
	Performance evaluation and comparison

	Conclusion

