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ABSTRACT Indoor positioning systems are facing to the demand of large-scale industrial applications in
mobile robotics. It is still challenging to create an indoor positioning system that is easily embeddable,
accurate, robust and power efficient. We constructed an easily embeddable, low-power optical sensor named
InLock without lens to localize a mobile robot indoors moving at 0.20 m/s with an accuracy inferior to
10cm for the position and 0.1rad for the heading by using only three photo-detectors (PDs) and two infrared
Light-Emitting Diodes (LEDs). (i) We modelled the optical sensor based on only three photo-detectors and
two infrared LEDs by taking into account radiometric properties. (ii) We constructed the optical sensor
by optimizing the geometry of the beacon and the receiver. (iii) We implemented and validated online
estimation algorithms for an operating range at a height up to 3m by using an extended Kalman filter and
a complementary filter. Our results showed that modelling the optical sensor so that it takes into account
radiometric properties and it optimizes the geometry of the beacon can enhance the accuracy of the indoor
positioning system.

INDEX TERMS Indoor positioning system, infrared light communication, LED, complementary filter,
Kalman filter, robot’s localization.

I. INTRODUCTION
Global Positioning System (GPS) makes outdoors track-
ing and navigation reliable and easily embeddable for real-
time applications. However, in confined environments, GPS
positioning and navigation are inaccurate due to the strong
degradation of the satellite signals which are attenuated by
clouds, walls and obstructions [1]. The attenuated signal
provides an unsatisfactory accuracy of localization that led to
the development of Indoor Positioning Systems (IPS). There
are two classes of localization scheme using PD or image
sensor [2]. Accurate IPS presents multiple challenges such as
risk of collision, variations on lighting conditions, congestion
of the building infrastructure and limitations on embedded
computer resources. How can we model and construct an
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accurate IPS for a mobile robot taking into account these
constraints?
Literature survey shows that the most popular IPS are

based on (i) Simultaneous Localization And Mapping
(SLAM) [3], (ii) inertial sensors [4], [5] and (iii) signal
communication by using emitters and receivers. The commu-
nication signal changes in values as the receiver moves inside
the indoor environment. For instance, the communication link
can be based on WiFi [6], Bluetooth Low Energy (BLE) [7],
Radio Frequency Identification (RFID) [8] and Ultra Wide
Band (UWB) [9].
The studies reported in [10] and [11] have explored the sub-

ject of Indoor Visible Light Communication (VLC) technolo-
gies since visible light spectrum (380nm-780nm) is freely
available. In VLC systems, the transmitter is usually a Light-
Emitting Diode (LED), which performs some additional
functions besides its primary use as a lighting source. Visible
light LED-based IPS can estimate indoor position with the
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help of ceiling LED lamps acting as beacons [12]. How can
we reach the standard level of accuracy of 20cm for the indoor
localization of the industrial Internet of Things by using a
LED-based IPS?
The main challenge for the LED-based IPS is to esti-

mate its own position from the optical signals received from
the beacon. Any visible LED-based IPS aims at exploiting
the received signal characteristics. Received Signal Strength
(RSS), Time of Flight (TOF) or Angle of Arrival (AOA)
by using photodiodes (PD) or cameras are combined with a
positioning algorithm [13], [14]. In [15] and [16], trilateration
and triangulation algorithms compute the position estimation.
For optical communications in free space under fog and

smoke conditions, Ijaz et al. showed that near infrared light
sources are the most robust wavelengths to link failure [17].
In [18], we proposed a minimalistic optical sensor without
lens that estimates the relative position between the sensor
and active markers using amplitude modulated infrared light.
We showed that the sensor was able to estimate the position
x and y at a distance of 2m with an accuracy as small as 2cm
at a sampling rate of 100Hz. We implemented the sensor in
a position feedback loop for indoor robotic applications in
GPS-denied environment.
We aim at constructing a robust sensor for indoor position

and heading estimations of a mobile robot for an operat-
ing range at a height up to 3m. We also aim at reaching a
positioning accuracy inferior to 10cm limiting infrastructures
modifications.We aim at using off-the-shelf PDs without lens
instead of specific PDs as proposed in [19]. The IPS aims at
accurately estimating the pose (position and orientation) of a
robot in a set of critical areas such as near edges, near entrance
and exit of corridors using a fixed beacon and a embedded
receiver while the repeated unit cells of LEDs define the
visual light positioning system in [20], [21].
In this paper, we modelled an optical sensor without lens

based on only three PDs and two infrared LEDs by taking
into account radiometric properties. We constructed the opti-
cal sensor by optimizing the geometry of the beacon and
the receiver. Finally, we implemented and validated online
estimation algorithms for an operating range at a height up to
3m by using an extended Kalman filter and a complementary
filter.

II. SYSTEM OVERVIEW
We constructed an optical sensor without lens that we called
InLock by optimizing the geometry of the beacon and the
receiver.
The system overview is presented in Fig. 1. Figure 1a)

describes the system configuration with one beacon. The
beacon is composed of two infrared LEDs: LED 1 and LED
2. Lens can introduce strong distortions on the LED emission
patterns that would add complexity to the overall system,
as seen in [22]. To simplify the system, instead of using a
lens, each LEDwas placed behind an optical diffuser. Optical
diffuser is cheaper than lens, simpler to use, and homogenize
the emission pattern to a smooth Gaussian emission pattern

FIGURE 1. a) Perspective view of the sensing device. It is composed of 3
photodiodes (3 pixels) and a custom made analog demodulation board.
It is embedded on the TurtleBot3 Burger for the experiments. b) Model of
the mobile robot. The vehicle’s body frame is shown in red and the earth
frame of reference is shown in black. The velocity in the x-direction is v
and the vehicle’s heading is �.

FIGURE 2. Picture of the infrared light beacon. It is composed of two
infrared LEDs oriented in a specific direction of emission.

with useful mathematical properties. The latter allowed us
to model the system as detailed in appendix B. The LEDs
emit a modulated infrared signal at two distinct frequencies
f1 = 5kHz and f2 = 17kHz. The receiver is composed of
three photodiodes PDA, PDB and PDC organized in a plane
right-angle triangle and mounted on the commercial mobile
robot TurtleBot3. Figure 1b) presents the mobile robot in top
view. The vehicle’s body frame {B} is shown in red and the
earth frame of reference {E} is shown in black. The velocity
in the x-direction is v and the vehicle’s heading is �. The
vehicle’s velocity in {E} is (v cos(�), v sin(�)).

A. INFRARED LIGHT BEACON
The beacon is composed of two infrared LEDs as presented
in Fig. 2. The LEDs flicker at the frequencies f1 = 5kHz and
f2 = 17kHz. Each LED is oriented in a specific direction
of emission. The angle of emission of each LED provides
mathematical properties for the algorithm of position and
heading estimations.

B. INFRARED LIGHT RECEIVER
The infrared light receiver is composed of only three pixels
without optics as shown on Fig. 3. It measures the demodu-
lated infrared signals. It provides an analog signal which is
the input for the digital processing.

III. SYSTEM MODEL
We modelled an optical sensor based on only three PDs
and two infrared LEDs by taking into account radiometric
properties.
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FIGURE 3. Picture of the infrared light receiver. It is composed of only
three pixels without optics. It is embedded on the commercial mobile
robot TurtleBot3.

FIGURE 4. Side view of the optical wireless channel model. The model
gives a nonlinear expression of the voltage amplitude VPD,i for each
frequency fi . It depends on the angle of emission ✓E

PD,i , the angle of
reception ✓R

PD,i and the distance DPD,i from the beacon to the
photodiode.

Figure 4 gives an illustration in side view of the system
for indoor positioning. The system model is composed of
an infrared light beacon and a photodiode sensitive to the
infrared light. It aims at modelling the voltage amplitude
VPD,i taking to account radiometric properties.
The infrared LED i flickers at frequency fi just as in [20],

[21], [23]. Each photodiode receives the infrared signal at
each frequency. Consequently, the optical sensor composed
of 3 photodiodes receives 6 signals (2 LEDs ⇥ 3 photodi-
odes). The signal is demodulated with an analog circuit and
converted for digital processing. The voltage amplitude VPD,i
is modelled by:

VPD,i = ↵i

D2
PD,i

exp

0

@�
 

✓EPD,i

�i

!2
1

A cos(✓RPD,i) (1)

We explain the expression of (1) as the product of three
different gains:
i ↵i
D2
PD,i

, models the variation over the distance DPD,i

between the LED and the photodiode on the received
signal strength,

ii exp

0

@�
 

✓EPD,i
�i

!2
1

A, models the gain of the LED’s radi-

ation over the angle of emission ✓EPD,i,
iii cos(✓RPD,i), models the gain of the photodiode with respect

to ✓RPD,i, the angle of reception. We used the photodiode
OSRAM BPW 34 FAS whose the radiant sensitive area
is 7.02mm2. The angular sensitivity of the photodiode is

FIGURE 5. Computer Aided Design of the beacon. a) The distance
between the LEDs is 4cm. b) Since the distance between the beacon and
the receiver is greater than 3m, we assume that DPD,1 ' DPD,2.

FIGURE 6. Illustration of the direction of emission of each LED with
respect arbitrary angles �1 for LED 1 (a) and �2 for LED 2 (b).

modelled by a cosine-like angular sensitivity by taking to
account the datasheet. The use of photo-detectors (PDs)
is advantageous in terms of speed, sensitivity, energy
consumption and system complexity [24].

The constant ↵i is defined by the input voltage and elec-
tronic gains of both the emitter and the receiver circuits, and
we found ↵1 = 15, ↵2 = 13 in our experiments. The constant
�i is defined by the optical diffuser’s characteristic curve.
�1 = �2 = 0.3 according to both the diffuser’s datasheet
and our experiments.
As shown in Fig. 5, the distance that separates the LEDs

mounted on the beacon is 4cm. Therefore the distances from
each LED to the photodiode PD are practically the same:

DPD = DPD,1 ' DPD,2 (2)

Since the angles of reception depend on the distances,
we assume they are the same:

✓RPD = ✓RPD,1 ' ✓RPD,2 (3)

Taking these two approximations into account, we find the
following relationship (see Appendix A):

(✓EPD,1)
2 � (✓EPD,2)

2 = �2 ln
✓

↵1VPD,2

↵2VPD,1

◆
(4)

Assuming the beacon is mounted horizontally on the ceil-
ing of a room, we define the direction of emission of each
LED with the angles �1, �2 and the vectors EN {E}

1 and EN {E}
2 as

described in Fig. 6. The vector components of EN {E}
1 and EN {E}

2
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are written in the earth frame of reference OE � {xE , yE , zE }:

EN {E}
1 =

0

@
+ sin �1

0
� cos �1

1

A

EN {E}
2 =

0

@
+ sin �2

0
� cos �2

1

A (5)

We define s1 and c1 as the sine and cosine of �1. s2 and c2 are
the sine and cosine of �2.
We also define in the body fixed frame attached to the

robot L{B} = (xL yL zL)T which is the position vector of the
beacon and PD{B} = (xPD yPD zPD)T which is the position
vector of the photodiode PD. Considering the voltage ratio
provided by (4) and the system’s configuration, we introduce
the variable rPD:

rPD := c�(xL � xPD)� s�(yL � yPD)
zL � zPD

(6)

The angle � is the heading of the robot introduced in Fig. 1b).
Taking into account the geometry of the beacon, the expres-
sion of rPD becomes (see Appendix B for the mathematical
development):

rPD = (c1 � c2)� (c1 + c2)�PD
(s1 � s2)� (s1 + s2)�PD

(7)

where

�PD := �2

4
ln
✓

↵1VPD,2

↵2VPD,1

◆

= �2

4

✓
ln
✓
VPD,2

VPD,1

◆
� ln

✓
↵2

↵1

◆◆
(8)

The expression of rPD gives:
(i) a mathematical expression of the robot’s position with

xPD, yPD, zPD and the heading with c� , s� in (6),
(ii) a mathematical model of the measurements. This model

takes into account the geometry of the beacon (c1, s1, c2
and s2) and the radiometric properties with VPD,1 and
VPD,2 in (7).

�PD stands for a variable of measurement which takes into
account the optical properties of the beacon and the voltage
amplitudes provided by the sensor.

IV. SENSOR CALIBRATION
We calibrated the sensor in order to estimate the robot’s
heading and the robot’s position along x and y.
From (7) and the expression of �PD in (8), we defined the

variable �⇤PD = ln
⇣VPD,2
VPD,1

⌘
. Substituting the expression of

�PD given by (8) in (7), we write rPD as follows:
rPD = a0 + a1 �⇤PD

a2 + a3 �⇤PD
(9)

where:

a0 = (c1 � c2) + (c1 + c2)
�2

4
ln
✓

↵2

↵1

◆

a1 = �(c1 + c2)
�2

4

FIGURE 7. Calibration result. We found the optimized gains k0, k1 and k2
such that the mathematical expression of rPD in (11) fits the
measurements.

a2 = (s1 � s2) + (s1 + s2)
�2

4
ln
✓

↵2

↵1

◆

a3 = �(s1 + s2)
�2

4
(10)

and ↵1 = 15, ↵1 = 13, � = 0.3. The robot is controlled
using the motion capture system VICON. The position and
the heading are recorded. When we plotted rPD from (6)
versus �⇤PD obtained from the measurements, we observed
from Fig. 7, a linear shape. We decided to approximate rPD
with a second order polynomial function of �⇤PD:

rPD ⇡ fPD
�
�⇤PD

�
= k0 + k1 �⇤PD + k2 (�⇤PD)

2 (11)

The calibration step aims at determining the values of the
gains k0, k1 and k2 by using a least squares regression. The
aim is to fit the expression of rPD in (11) to the expression of
rPD in (6) given by the measured position and heading.

A. HEADING ESTIMATION
The use of LED1 and LED2with chosen orientations allowed
us to estimate the heading of the robot.
Performing a calibration step for each photodiode A,

B and C embedded in the receiver, we compute rA, rB and rC
from (9). Moreover, the position coordinates are given in the
robot’s frame of reference. The positions of the photodiodes
are known and correspond to their fixed position on the
receiver. From (6), we can write the following equations for
each photodiode:

rA zL � zA rA = c�(xL � xA)� s�(yL � yA)
rB zL � zB rB = c�(xL � xB)� s�(yL � yB)
rC zL � zC rC = c�(xL � xC )� s�(yL � yC ) (12)

Computing the differences rA � rB and rA � rC , we write
the following matrix equation:

1PD·
✓
c�/zL
�s�/zL

◆
=
✓
rA � rB
rA � rC

◆
� 1
zL

✓
rAzA � rBzB
rAzA � rCzC

◆
(13)

where:

1PD =
✓
xA � xB yA � yB
xA � xC yA � yC

◆
(14)
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Since in our case of zA = zB = zC = 0, it gives:
✓
c�/zL
�s�/zL

◆
= 1PD�1 ·

✓
rA � rB
rA � rC

◆
(15)

Equation (15) allows us to find both c�
zL

and s�
zL
. Since the

height zL is a positive and constant value, we estimated the
heading � as follows:

� = a tan 2(s�, c�) = a tan 2
✓
s�
zL

,
c�
zL

◆
(16)

We can remark from (15) that we can estimate the heading
even if the height is unknown. Once the heading calculated,
one can use � in (12) to estimate zL . In our case, we assumed
that the height zL was known and constant. We found exper-
imentally that this method gives a very good estimate of the
heading.

B. ESTIMATION OF THE ROBOT’s POSITION ALONG THE
X-AXIS
The use of LED1 and LED2with chosen orientations allowed
us to estimate the robot’s position along the x-axis.
We want to find the robot’s position in the earth frame of

reference {E} along the x-axis. We know that the relationship
between the robot’s position X = X{E} = (x y z)T in {E} and
the beacon’s positionL = L{B} in the body frame of reference
{B} is given by:

X = �R · L (17)

We can also write:
X + R · PD = �R · (L� PD) (18)

Developing the left side of the equation for photodiode A,
we write:

X + R · PD =

0

@
x
y
z

1

A+

0

@
c� �s� 0
s� c� 0
0 0 1

1

A

0

@
xA
yA
zA

1

A

=

0

@
x + c�xA � s�yA
y+ s�xA + c�yA

z+ zA

1

A (19)

And developing the right side of (18):

�R · (L� PD) = �

0

@
c� �s� 0
s� c� 0
0 0 1

1

A

0

@
xL � xA
yL � yA
zL � zA

1

A

= �

0

@
c�(xL � xA)� s�(yL � yA)
s�(xL � xA) + c�(yL � yA)

zL � zA

1

A (20)

We can note from (20) that z = �zL . We can also note that:
c�(xL � xA)� s�(yL � yA) = �(x + c�xA � s�yA) (21)

Using (21) and the definition of rPD in (6), we can write rA as
follows:

rA = x + c�xA � s�yA
z+ zA

x = (z+ zA) · rA � (c�xA � s�yA) (22)

FIGURE 8. Illustration of the direction of emission of each LED mounted
on the beacon. The angle �1 is equal to zero and �2 < 0.

FIGURE 9. Illustration of LED1 and the photodiode PD for the estimation
of the robot’s position along the y-axis.

Equation (22) gives an expression of x with respect rA.
As described in (10), rA depends on the direction of emission
of LED1 and LED2. In Fig. 8, we set �1 = 0 and �2 < 0.
The use of LED1 and LED2 installed with two tilted angles

�1 and �2 allowed us to estimate the robot’s heading and the
robot’s position along the x-axis.
We can remark that y does not appear in (22) making

impossible the estimation of the position along the y-axis.
The reason is the use of only two LEDs instead of three.
In future works, we will construct a beacon endowed with
three infrared LEDs. The use of three infrared LEDs implies
the construction of two new circuits boards for both the
beacon and the receiver.

C. ESTIMATION OF THE ROBOT’s POSITION ALONG
THE Y -AXIS
LED1 allowed us to estimate the robot’s position along the
y-axis. We assume that the height zL is known and
constant and the robot only rotates in yaw. We have
✓EPD,1 = ✓RPD,1 = ✓1 as presented in Fig. 9.
Since DPD,1 = zL

cos(✓1)
, substituting in (1), we write VPD,1

as follows:

VPD,1 = ↵i

D2
PD,1

exp

 

�
✓

✓1

�

◆2
!

cos(✓1)

= ↵i

z2L
exp

 

�
✓

✓1

�

◆2
!

cos(✓1)3
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Assuming zL is known and constant, the voltage amplitude
VPD,1 is a bijective function of ✓1. We defined the function
uPD(.) such that:

VPD,1 = uPD(✓1) (23)

Or, equivalently:

✓1 = u�1PD(VPD,1) (24)

since the mathematical expression of tan ✓1 is:

tan ✓1 =
p
(xL � xPD)2 + (yL � yPD)2

zL
(25)

To simplify the calculation, we defined the function gPD(.)
such that:

(tan ✓1)
2 ⇡ gPD(VPD,1) (26)

And we approximated the function gPD(.) by a second-order
polynomial function. The aim of the calibration is to find by
using a least squares regression, the optimal values of the
gains b0, b1 and b2 as the following:

gPD(VPD,1) = b0 + b1 VPD,1 + b2 (VPD,1)2 (27)

For the sensor calibration, the distance between each photo-
diode and the beacon is accurately measured with the motion
capture system. We used a trilateration-based algorithm to
compute the robot’s full position given by the following
equation:

z2L (tan ✓1)
2 = (xL � xPD)2 + (yL � yPD)2 (28)

And then, from (28) and (26):

z2L gPD(VPD,1) = (xL � xPD)2 + (yL � yPD)2 (29)

We programmed the robot to follow a reference trajectory.
In Fig. 10, for each frequency f1 = 5kHz and f2 = 17kHz,
we plotted the voltage amplitude measured for each PD used
for the sensor calibration.
In Fig. 11, we plotted the results of the sensor calibration

for the estimations of the heading and the robot’s position
along the x-axis. The plot in Fig. 11 a), b) and c) define
the calibration functions useful for the estimations. For each
photodidode A, B and C, the fitting curves obtained by using
a least squares regression are linear.
The plot in Fig. 12 a), b) and c) allowed us to define

the calibration functions for the estimation of the robot’s
position along the y-axis. For each photodiode A, B and C,
the fitting curves obtained by using a least squares regression
are second-order polynomial functions.
Figure 13 presents the algorithm flowchart that allows us

to calculate the heading and the positions in x and y of the
mobile robot.

FIGURE 10. Plots of voltage measurements of the demodulated infrared
signal for each frequency f1 = 5kHz and f2 = 17kHz and for each PD.

FIGURE 11. Plots of the sensor calibration results. The plots a), b) and c)
define the calibration functions in black for the estimations of the
heading and the robot’s position along the x-axis.

V. ALGORITHMS FOR HEADING AND POSITION
ESTIMATIONS
We implemented online estimation algorithms for an oper-
ating range at a height up to 3m by using a complementary
filter for the heading and an extended Kalman filter for the
position.
Instead of using Angle of Arrival (AOA) based methods,

we developed an algorithm based on (22) takes into account
the radiometric properties of the optical diffuser and the
geometry of the emitter. We present (i) the algorithm that

VOLUME 8, 2020 87495
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FIGURE 12. Plots of the sensor calibration results. The plots a), b) and c)
define the calibration functions for the estimation of the robot’s position
along the y-axis.

FIGURE 13. The algorithm flowchart describes the calculation of the
heading and the positions in x and y of the mobile robot.

gives the heading estimation of the robot. A complementary
filter optimizes the accuracy fusing the sensor measurements
and the angular velocity provided by a gyroscopic sensor,
(ii) the algorithm that estimates the positions in x and y using
an Extended Kalman Filter (EKF).

A. INITIALIZATION
We initialized the algorithms by using the IMUand the optical
sensor.

1) TILTING
First, we use use the IMU’s accelerometer to calculate a
first estimate of the robot’s tilt. We define the orientation
quaternion as q = qz⌦ qxy where⌦ is the Hamilton product.
Here we note quaternions as 4x1 matrixes, where the fourth
element is the quaternion’s real part:

q = qw + iqx + jqy + kqz =

0

BB@

qx
qy
qz
qw

1

CCA (30)

Using the normalized accelerometer vector Ea =
(ax ay az)T , we can use the methods defined in [25] to
determine that:

qxy =

0

BBB@

+ay
p
2(az + 1)

�ax
p
2(az + 1)
0q
az+1
2

1

CCCA
(31)

2) HEADING
We use Equation (11) to get the values of rA, rB and rC . With
the method described in Sec. IV, we initialize the value of the
heading �. We can define the heading quaternion as:

qz =

0

BB@

0
0

sin(�/2)
cos(�/2)

1

CCA (32)

The Hamilton product q = qz ⌦ qxy gives the initial orienta-
tion of the robot.

3) x ESTIMATE
Assuming that we know the (constant) height zL and that we
have already calculated the orientation quaternion, we com-
pute the yaw angle � and use (22) to get three expressions for
x:

x = zL rA � c�xA � s�yA
x = zL rB � c�xB � s�yB
x = zL rC � c�xC � s�yC (33)

We initialize the first value of x taking the mean of these three
values.

4) y ESTIMATE
From 18, we write the following equations:

(xL � xPD)2 = (x + c� xPD � s� yPD)2
(yL � yPD)2 = (y+ s� xPD + c� yPD)2

z2L = z2 (34)

From 29, we can write the following equations for each
photodiode:
z2L gA(VA,1) = (x + c�xA � s�yA)2 + (y+ s�xA + c�yA)2

z2L gB(VB,1)= (x + c�xB � s�yB)2 + (y+ s�xB + c�yB)2

z2L gC (VC,1) = (x + c�xC � s�yC )2 + (y+ s�xC + c�yC )2

(35)

87496 VOLUME 8, 2020



E. Bernardes et al.: Three-PD Optical Sensor Accurately Localizes a Mobile Robot Indoors by Using Two Infrared LEDs

We find the unknown y in each equation and we compute the
mean value.

B. HEADING ESTIMATION WITH A COMPLEMENTARY
FILTER
We filtered the orientation quaternion q by using a comple-
mentary filter to prevent the robot’s heading estimation from
noise. The complementary filter that we implemented is taken
from [25]. Instead of using the magnetometer to find the
heading, we used the optical sensor InLock.

1) GYROSCOPE PREDICTION
The gyroscope gives a very precise measurement of the
robot’s angular velocities in every axis, defined here as ! =
(!x , !y, !z). We defined the quaternion q! as:

q! =

0

BB@

!x
!y
!z
0

1

CCA

Its time derivative q̇k is given by:

q̇k = qk ⌦ q!

2
(36)

We used it to calculate the prediction quaternion:
qpred,k = qk�1 + 1t q̇k�1 (37)

Then we normalized this prediction to make sure it contin-
ues to be a rotation quaternion. The pure integration of the
gyroscope can lead to errors after some time, so after each
prediction step we must correct it with the accelerometer and
InLock sensor.

2) ACCELEROMETER CORRECTION
Assuming that the quaternion 1qacc corrects the prediction
qpred to the real quaternion, we can write:

q0k = 1qacc ⌦ qpred,k (38)

In order to find 1qacc, we compute the modified
accelerometer vector Eg:

Eg = R(qpred,k ) Ea =

0

@
gx
gy
gz

1

A (39)

Then we define:

1qacc =

0

BBB@

+gy
p
2(gz + 1)

�gx
p
2(gz + 1)
0q
gz+1
2

1

CCCA
(40)

We combine the data from both the accelerometer and the
gyroscope using linear interpolation by (i) defining the gain
↵ between [0, 1], (ii) updating the correction:

1qacc = ↵ · 1qacc + (1� ↵) ·

0

BB@

0
0
0
1

1

CCA (41)

We normalized 1qacc and defined the corrected quaternion
as:

q0k = 1qacc ⌦ qpred,k (42)

In our experiments, ↵ = 0.1 produced the best results.

3) InLock CORRECTION
We implemented the heading correction with the InLock
sensor by using a correction quaternion 1qz.
We applied first the accelerometer corrected prediction

rotation to the positions of the photodiodes:

A0 = R(q0k ) A
B0 = R(q0k ) B
C 0 = R(q0k ) C (43)

The rotated positions A0, B0 and C 0 of the photodiodes result
in a non-zero value for their z-component (z0A 6= 0, z0B 6= 0
and z0C 6= 0). We write (13) as follows:

1PD0 ·
✓
c1�/zL
�s1�/zL

◆
=
✓
rA � rB
rA � rC

◆
� 1
zL

✓
rAz0A � rBz0B
rAz0A � rCz0C

◆

(44)

where:

1PD0 =
✓
x 0A � x 0B y0A � y0B
x 0A � x 0C y0A � y0C

◆
(45)

Then we can calculate 1� by first finding both c1�/zL
and s1�/zL from Equation 45. Then, the heading correction
quaternion is defined as:

1qz =

0

BB@

0
0

sin(1�/2)
cos(1�/2)

1

CCA (46)

We defined the gain � between [0, 1] and defined the
quaternion:

1qz = � · 1qz + (1� �) ·

0

BB@

0
0
0
1

1

CCA (47)

The quaternion 1qz is normalized. The fully corrected
quaternion is given by:

qk = 1qz ⌦ q0k (48)

In our experiments, � = 0.1 produced the best results.

C. POSITION ESTIMATION WITH AN EKF
We implemented an EKF to estimate the robot’s position
in x and y.
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1) MEASUREMENT VECTOR
In this case, the measurement vector Y is defined as:

Y =

0

BBBBBBBBBBBB@

fA

✓
ln
✓
VA,2

VA,1

◆◆

fB

✓
ln
✓
VB,2

VB,1

◆◆

fC

✓
ln
✓
VC,2

VC,1

◆◆

gA(VA,1)
gB(VB,1)
gC (VC,1)

1

CCCCCCCCCCCCA

(49)

With rPD = f
⇣
ln
⇣
VPD,1
VPD,2

⌘⌘
and tan2(✓PD,1) = gPD(VPD,1),

where the functions f and g are defined as polynomial
functions.

2) EKF STATE VECTOR AND MEASUREMENT VECTOR
We defined the state vector X as:

X =

0

BB@

x
vx
y
vy

1

CCA (50)

3) EKF STATE PREDICTION
vx and vy are defined as the velocities of the robot in its
own frame. We wrote a 1st order approximation for the state
transitions as following:

x  x + 1t
�
c�vx � s�vy

�

y  y+ 1t
�
s�vx + c�vy

�
(51)

where s� and c� were calculated from q as:
s� = 2(qwqz + qxqy)

c� = 1� 2(q2x + q2y) (52)

Studying the kinematics of the commercial TurtleBot3,
the state transition matrix is written as:

F(1T ) =

0

BB@

1 +c�1t 0 �s�1t
0 1 0 0
0 +s�1t 1 +c�1t
0 0 0 1

1

CCA (53)

4) EKF OBSERVATION MODEL
We defined the observation model as:

h(X ) =

0

BBBBBBB@

rA(X )
rB(X )
rC (X )
hA(X )
hB(X )
hC (X )

1

CCCCCCCA

(54)

where the functions rPD and hPD are:
rPD(X ) = x + c� xPD � s� yPD

z+ zPD

hPD(X ) = (x + c�xPD � s�yPD)2 + (y+ s�xPD + c�yPD)2

(z+ zPD)2
(55)

5) EKF OBSERVATION MATRIX
The observation matrix is defined as the Jacobian matrix of
the observation vector in the state vector:

Hk = @h(X )
@X

=

0

BBBBBBBBBBBBBBBBB@

@rA(X )
@x

@rA(X )
@ ẋ

@rA(X )
@y

@rA(X )
@ ẏ

@rB(X )
@x

@rB(X )
@ ẋ

@rB(X )
@y

@rB(X )
@ ẏ

@rC (X )
@x

@rC (X )
@ ẋ

@rC (X )
@y

@rC (X )
@ ẏ

@hB(X )
@x

@hA(X )
@ ẋ

@hA(X )
@y

@hA(X )
@ ẏ

@hB(X )
@x

@hC (X )
@ ẋ

@hB(X )
@y

@hB(X )
@ ẏ

@hC (X )
@x

@hC (X )
@ ẋ

@hC (X )
@y

@hC (X )
@ ẏ

1

CCCCCCCCCCCCCCCCCA

(56)

Computing all the partial derivatives:

Hk=

0

BBBBBBBBBBBBBBBBBB@

1
z+z⇤A

0 0 0

1
z+z⇤B

0 0 0

1
z+z⇤C

0 0 0

2
(x+c�x⇤A � s�y⇤A)

(z+z⇤A)2
0 2

(y+s�x⇤A+c�y⇤A)
(z+z⇤A)2

0

2
(x+c�x⇤B � s�y⇤B)

(z+z⇤B)2
0 2

(y+s�x⇤B+c�y⇤B)
(z+z⇤B)2

0

2
(x+c�x⇤C � s�y⇤C )

(z+z⇤C )2
0 2

(y+s�x⇤C+c�y⇤C )
(z+z⇤C )2

0

1

CCCCCCCCCCCCCCCCCCA

(57)

We observed experimentally that the last three states in the
measurement vector are very sensitive to small variations of
height, pitch and roll.We decided to replace all the derivatives
of the last three measurements in x, forcing the x estimate to
only take into account the first three states in themeasurement
vector:

Hk =

0

BBBBBBBBBBBBBBBBBB@

1
z+ z⇤A

0 0 0

1
z+ z⇤B

0 0 0

1
z+ z⇤C

0 0 0

0 0 2
(y+ s�x⇤A + c�y⇤A)

(z+ z⇤A)2
0

0 0 2
(y+ s�x⇤B + c�y⇤B)

(z+ z⇤B)2
0

0 0 2
(y+ s�x⇤C + c�y⇤C )

(z+ z⇤C )2
0

1

CCCCCCCCCCCCCCCCCCA

(58)
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VI. RESULTS
We validated the online estimation algorithms for an operat-
ing range at a height up to 3m by using a complementary filter
and an extended Kalman filter.

A. THE OPTICAL SENSOR IS EASILY EMBEDDABLE ON
MOBILE ROBOTS AND CONSUMES LITTLE ENERGY
We previously proposed in [18] a minimalistic optical sensor
in terms of small size and low power consumption (0.4W for
the sensor and the analog demodulation board). The sensor
enabled us to localize a mobile robot indoors (x and y posi-
tions) in operating range at a height of 2 meters. We asked
whether we could construct an easily embeddable optical
sensor for indoor localization of mobile robots (x, y and
heading ').
The mobile robot is a commercial TurtleBot3 Burger. It is

equipped with the optical sensor as presented in Fig. 3. The
position and heading estimations are compared to the refer-
ence using the motion capture system Vicon. We used ROS
(Robot Operating System) to combined both the software
(the algorithms for motion control) and the hardware com-
ponents (the optical sensor equipped with the analog demod-
ulation board, an IMU BNO055, an arduino Teensy 3.2, the
TurtleBot3 motherboard).
The robot’s velocity was about 0.20 m/s (the

TurtleBot3 Burger’s maximum velocity is around 0.22 m/s,
according to the specifications). This value is coherent with
the average velocity of the automatic guided vehicles used
for industrial applications in warehouses (1 m/s) depending
on their shape and their weight. Moreover, the InLock system
is currently limited at a refresh rate of 33 Hz which is not an
issue as regards of the robot’s velocity. Since each LED emits
alternatively during 15ms, the receiver has to wait for 30 ms
to process the signal.
ROS is embedded in a raspberry pi 3 board which was

mounted on the robot. We implemented using ROS the algo-
rithms which regulated the robot’s motion along a reference
trajectory. We implemented the online algorithms (i) for the
heading estimation by using a complementary filter, (ii) for
the position estimation by using an Extended Kalman Filter
detailed in Sec. V in an arduino Teensy 3.2 board (CPU 32 bit
ARM Cortex-M4 at 72MHz).

B. THE OPTICAL SENSOR REACHED AN ACCURACY
INFERIOR TO 0.1RAD FOR THE HEADING ESTIMATION OF
THE MOBILE ROBOT
In [18], we succeeded in estimating the positions x and y
of the mobile robot, but the heading was missing. We asked
whether it was necessary to revise the geometry of the beacon
and of the sensor to combine two flickering infrared LEDs.
Two flickering infrared LEDs are placed in the beacon as
presented in Fig. 2 and only three PDs are placed in the
receiver.
Figure 14 a) gives a comparison of the heading estimation

(in red) to the actual heading of the robot (in black).

FIGURE 14. Estimation of the heading. a) Comparison of the heading
estimation (in red) to the actual heading of the robot (in black) versus
time. b) Histogram of the localization error in 2D using InLock sensor.

Figure 14 b) presents the histogram of the heading error.
The mean error is µ' = �0.03rad and the standard deviation
is �' = 0.07rad. These results show the great accuracy of the
heading estimation achieved using the optical sensor.

C. THE OPTICAL SENSOR REACHED AN ACCURACY
INFERIOR TO 10cm FOR THE INDOOR LOCALIZATION OF
THE MOBILE ROBOT
The sensor provided an accurate estimation of the position by
using an Extended Kalman Filter.
Figure 15 a) presents a comparison of the position esti-

mation along x-axis (in red) to the actual position of the
robot versus time (in black). The estimate is closed to the
actual position of the robot. Figure 15 b) gives the mean error
µx = �0.036cm and the standard deviation is �x = 1.1cm.
This result enables us to state that the optical sensor can reach
an accuracy very much lower than 10cm as targeted.
Figure 16 a) presents a comparison of the position esti-

mation along y-axis (in red) to the actual position of the
robot versus time (in black). The estimate is closed to the
actual position of the robot. Nevertheless, one can remark that
the estimation differs from the reference at the lowest values.
The estimation position along the y-axis is less accurate than
the one along the x-axis because it is sensitive to the varia-
tions of height, pitch and roll. The reason is the use of only
LED1 for the estimation of position. Figure 15 b) gives the
mean error µy = �2.1cm and the standard deviation is �y =
3.2cm. This result enables us to state that the optical sensor
can reach an accuracy inferior to 10cm as targeted. Table 1
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FIGURE 15. Estimation of position along x-axis. a) Comparison of the
position estimation (in red) to the actual position of the robot (in black)
versus time. b) Histogram of the localization error in 2D using In-Lock
sensor.

FIGURE 16. Estimation of position along y-axis. a) Comparison of the
position estimation (in red) to the actual position of the robot (in black)
versus time. b) Histogram of the localization error in 2D using In-Lock
sensor.

gives a comparison of the position and angular performances
with a non-exhaustive list of indoor localization schemes.

TABLE 1. Non-exhaustive list of indoor localization schemes.

With an accuracy inferior to 10cm for the position and 5� for
the heading in experiments, InLock can be considered of great
interest for robotic applications.

VII. DISCUSSION
The main conclusion of this work is that we constructed an
easily embeddable, low-power optical sensor without lens
that localizes amobile robot indoors with an accuracy inferior
to 10cm by using only three PDs and two infrared LEDs.
Our results showed that modelling the optical sensor so that
it takes into account radiometric properties and it optimizes
the geometry of the beacon can enhance the accuracy of the
indoor positioning system.
In order to prove the robustness of the positioning system,

we programmed the robot to successively repeat the same
trajectory ten times.
Figure 17 presents in 2D the actual trajectory X versus Y

of the robot (in black). The estimated trajectory is plotted in
red. The optical InLock sensor estimated the robot’s position
without drift.
As limitations, we noted in the results that the position

estimation along the y-axis is less accurate than the one along
the x-axis because of the sensor’s sensitivity to the variations
of height, pitch and roll. The sensor’s sensitivity is due to the
use of only one infrared LED for the estimation of the robot’s
position along the y-axis. In future work, we will construct a
beacon composed of three infrared LED’s in order to improve
the accuracy of the position estimation. It will be necessary
to construct analog modulation and demodulation boards.
One further limitation of InLock is the current refresh rate.

Since each LED emits alternatively during 15ms, the receiver
has to wait for 30ms to process the signal. Since InLock aims
at localizing faster robots in the future, the refresh rate will be
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FIGURE 17. Comparison in 2D of the actual robot’s trajectory (in black) to
the position estimation (in red). The trajectory is repeated ten times. The
robot’s position is robustly estimated without drift by using the optical
InLock sensor.

increased with an improved design of the modulation board
driving the LEDs.
As benefit of our work, we provided a model of the optical

sensor taking into account radiometric properties.

APPENDIX A
DERIVATION OF VOLTAGE RATIO RELATIONSHIP
Taking VPD,1 and VPD,2 the voltage values perceived by pho-
todiode PD from LEDs 1 and 2, respectively, and taking the
approximations of (2) and (3) into account:

VPD,2

VPD,1
=

↵2
D2 exp

 

�
✓

✓EPD,2
�

◆2
!

cos(✓RA )

↵1
D2 exp

 

�
✓

✓EPD,1
�

◆2
!

cos(✓RA )

) VPD,2

VPD,1
=

↵2 exp

 

�
✓

✓EPD,2
�

◆2
!

↵1 exp

 

�
✓

✓EPD,1
�

◆2
!

) VPD,2

VPD,1
= ↵2

↵1
exp

 

�
(✓EPD,2)

2 � (✓EPD,1)
2

�2

!

The relation between the angles of emission and the voltage
ratio for the photodiode A is given as:

(✓EPD,1)
2 � (✓EPD,2)

2 = �2 ln
✓

↵1VPD,2

↵2VPD,1

◆
(59)

The same deduction is used to find similar expressions for the
other photodiodes.

APPENDIX B
DERIVATION OF THE SYSTEM MODEL
We develop the mathematical equations that give the position
and heading of the sensor InLock. We assume that the beacon
is mounted horizontally on the ceiling.

FIGURE 18. Illustration of the vector EDPD with respect the coordinates of
the LEDi and the photodiode PD in {B}.

We model the equations in {B} which is the robot’s frame
of reference. We also assume that the robot can only rotate
around the z axis by an angle � from the beacon’s frame of
reference. Defining c� = cos(�) and s� = sin(�), we use the
heading � to write the following rotation matrix:

R{E}
{B} = R =

0

@
c� �s� 0
s� c� 0
0 0 1

1

A (60)

And the inverse rotation matrix is given by:

R{B}
{E} = RT =

0

@
c� s� 0
�s� c� 0
0 0 1

1

A (61)

Defining the distance vector EDPD as shown in Fig. 18,
we write:

EDPD = �(L� PD) = �

0

@
xL � xPD
yL � yPD
zL � zPD

1

A (62)

Noting that RT EN {E}
i gives the normal vector ENi in the local

frame of reference {B}, we find the angle of emission ✓EPD,i
by calculating the dot product between the normal and the
distance vectors:

cos(✓EPD,i) = �R
T EN {E}

i · (L� PD)

| EDPD|
(63)

Moreover, the sum and difference of the cosines of both
angles are given by:

cos(✓EPD,1) ± cos(✓EPD,2)

= �

⇣
RT
⇣
EN {E}
1 ± EN {E}

2

⌘⌘
· (L� PD)

| EDPD|
and, dividing the difference by the sum of the cosines, we get:
cos(✓EPD,1)� cos(✓EPD,2)

cos(✓EPD,1) + cos(✓EPD,2)

=

⇣
RT
⇣
EN {E}
1 � EN {E}

2

⌘⌘
· (L� PD)

⇣
RT
⇣
EN {E}
1 + EN {E}

2

⌘⌘
· (L� PD)

(64)
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⇣
RT
⇣
EN {E}
1 � EN {E}

2

⌘⌘
· (L� PD)

⇣
RT
⇣
EN {E}
1 + EN {E}

2

⌘⌘
· (L� PD)

= c�(s1 � s2)(xL � xPD)� s�(s1 � s2)(yL � yPD)� (c1 � c2)(zL � zPD)
c�(s1 + s2)(xL � xPD)� s�(s1 + s2)(yL � yPD)� (c1 + c2)(zL � zPD)

(68)

�2

4
ln
✓

↵1VPD,2

↵2VPD,1

◆
= c�(s1 � s2)(xL � xPD)� s�(s1 � s2)(yL � yPD)� (c1 � c2)(zL � zPD)
c�(s1 + s2)(xL � xPD)� s�(s1 + s2)(yL � yPD)� (c1 + c2)(zL � zPD)

(69)

Using the properties of the trigonometric functions, the left
side of (64) can be written as follows:
cos(✓EPD,1)� cos(✓EPD,2)

cos(✓EPD,1) + cos(✓EPD,2)

= tan

 
✓EPD,1 + ✓EPD,2

2

!

tan

 
✓EPD,1 � ✓EPD,2

2

!

(65)

For small angles, the approximation tan(x) ' x gives:

tan
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2
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2

!

'
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2
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2

!

=
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2 � (✓EPD,2)
2

4
(66)

Using the relationship found in (59) in (66), we have:
cos(✓EPD,1)� cos(✓EPD,2)

cos(✓EPD,1) + cos(✓EPD,2)
' �2

4
ln
✓

↵1VPD,2

↵2VPD,1

◆
(67)

Calculating the dot products on the right side of (64) and
defining sin(�1) = s1, sin(�2) = s2, cos(�1) = c1 and
cos(�2) = c2 (68), as shown at the top of this page.
Using the left side of (64) and the right side (67), we replace

in (68). It leads to (69), as shown at the top of this page.
Dividing the nominator and the denominator of the right

side of (69) by zL � zPD and regrouping the elements,
we write:
�2

4
ln
✓

↵1VPD,2

↵2VPD,1

◆

=
(s1�s2)

✓
c�(xL�xPD)�s�(yL�yPD)

zL�zPD

◆
�(c1�c2)

(s1+s2)
⇣
c� (xL�xPD)�s� (yL�yPD)

zL�zPD

⌘
�(c1+c2)

(70)

Using the definitions of rPD and �PD in (6) and (8) leads to:

�PD = (s1 � s2)rPD � (c1 � c2)
(s1 + s2)rPD � (c1 + c2)

(71)

Isolating rPD shows that (71) is equivalent to (7).
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