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Abstract: We introduce an approach based on functional data analysis to identify patterns of malaria 

incidence to guide effective targeting of malaria control in a seasonal transmission area. Using 

functional data method, a smooth function (functional data or curve) was fitted from the time series 

of observed malaria incidence for each of 575 villages in west-central Senegal from 2008 to 2012. 

These 575 smooth functions were classified using hierarchical clustering (Ward’s method), and 

several different dissimilarity measures. Validity indices were used to determine the number of 

distinct temporal patterns of malaria incidence. Epidemiological indicators characterizing the 

resulting malaria incidence patterns were determined from the velocity and acceleration of their 

incidences over time. We identified three distinct patterns of malaria incidence: high-, intermediate-

, and low-incidence patterns in respectively 2% (12/575), 17% (97/575), and 81% (466/575) of villages. 

Epidemiological indicators characterizing the fluctuations in malaria incidence showed that 

seasonal outbreaks started later, and ended earlier, in the low-incidence pattern. Functional data 

analysis can be used to identify patterns of malaria incidence, by considering their temporal 

dynamics. Epidemiological indicators derived from their velocities and accelerations, may guide to 

target control measures according to patterns.  

Keywords: functional data analysis; time series clustering; malaria patterns; malaria dynamic 
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1. Introduction 

The development of technology has increasingly enabled the use of sophisticated tools to collect 

and store large amounts of complex data, particularly in scientific fields. These data are often 

continuous but observed over a finite number of points (discretization points) [1–3]. This is the case 

for meteorological data, electrocardiogram, time series, growth curves, for example. 

A functional data approach would be better adapted to handle these data by taking into account 

some of their particularities. Indeed, this approach is useful to handle a large sample of spatial units 

(villages) allowing comparison between them and to reduce data dimensions (number of observations) 

for long time series. In addition, the number of observations may be higher than the size of the sample 

making statistical analysis difficult. The observations are not always made at a regular time lag (every 

hour, every day etc.) and this latter may differ from one place to another [1,3]. Moreover, the use of 

functional data also allows the estimation of the velocity and acceleration of the time series. 

As a result, a considerable amount of research has been dedicated to the development of 

statistical methods and tools for analysis of functional data [1,2,4–6]. The works by Ramsay et al. have 

made these approaches popular, and R and MATLAB programs (The R Foundation for Statistical 

Computing, Vienna, Austria) have made the methods available to a wider group of researchers [5]. 

Applications in public health and biomedical sciences have been reviewed by Ullah and Finch (2013) 

[7]. 

In areas with low malaria transmission, because of the spatial heterogeneity of malaria incidence, 

World Health Organization (WHO) recommends the development of targeted control strategies 

adapted to the local epidemiological context [8]. Effective targeting requires identification of 

transmission foci or hotspots based on epidemiological data. Existing approaches used, to target 

malaria risk areas are based on aggregated incidence or prevalence rate, [9–15] in large discrete time 

sub-periods [16–20]. Thus, malaria risk areas were identified every rainy season or every year or 

another large sub-period and sometimes the status at malaria risk of areas between sub-periods can 

change. These approaches do not provide information about the trend or temporal dynamic of 

malaria and continuous time approaches are useful for dynamic analysis. 

Using the functional data approach, the observed malaria incidences can be described by 

estimated smooth functions (curves) in order to understand the underlying temporal trends of 

malaria. These smooth functions can be obtained for each of a large number of spatial units (villages), 

clustering algorithms can then be used to identify broad types of temporal patterns according to the 

characteristics of their dynamics (temporal trends). This would help to guide the development and 

implementation of targeted control strategies in the local context. 

In addition, for further understanding of malaria incidence dynamics, the velocity and the 

acceleration (velocity variation) are useful. Indeed, the velocity is the first derivative function which 

gives information over time about when the malaria incidence increases (growth phase period) or 

decreases (decline phase period). The acceleration, i.e., the variation of epidemic speed (velocity) is 

the second derivative function. This indicates how malaria incidence increases or decreases over time: 

quickly or slowly [21,22]. Thus, temporal variations of velocity and acceleration together provide 

information about the malaria dynamic. Moreover, key features of the malaria dynamic derived from 

velocity and acceleration functions as onsets, peaks, ends, and their lags between patterns are useful 

to refine targeted intervention schedules. 

In this paper, we introduced an approach based on functional data analysis to identify patterns 

of malaria incidence over a five-year period at village scale, in west-central Senegal. In addition, with 

the epidemiological indicators determined from the velocity and the acceleration of the resulting 

patterns, we investigated the spatiotemporal variation and features of malaria incidence in local 

context, in order to guide the targeted malaria control measures in a low transmission area and local 

context. 
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2. Methods 

2.1. Study Area and Dataset 

The data used for this study were collected between January 2008 and December 2012 during a 

field trial of Seasonal Malaria Chemoprevention (SMC) among children from 575 villages in west-

central Senegal [23,24]. This area is a part of the two national rural health districts, Bambey and Fatick, 

where the national malaria control program estimated the incidence under 5 cases/1000 person-years 

in 2018 [25]. The protocols for the field studies were approved by Senegal’s Conseil National pour la 

Recherche en Santé and the ethics committee of the London School of Hygiene and Tropical Medicine. 

The SMC trial [23] was registered number NCT00712374. The datasets analyzed during the current 

study are available from the corresponding author on reasonable request. 

Malaria surveillance was maintained in 38 health facilities serving a population of about 500,000 

living in 575 villages (single villages or groups of adjacent hamlets). Malaria cases were patients 

examined at health facilities with fever or history of fever, in the absence of evident alternative causes 

of the fever, who had a positive rapid diagnostic test (RDT). Date of diagnosis, village of residence, 

and other details were obtained for each case from facility registers. The surveillance system is 

described by Cissé et al. [23]. The population was counted through a census in 2008 and updated 

through visits to each household at approximately 10 months intervals from 2008 to 2012. The 

coordinates of each village center were obtained by Global Positioning System (GPS). 

For this analysis only aggregated data by villages were used. 

2.2. Statistical Analysis 

Our approach consisted of three stages. 

In the first stage, we estimated malaria incidence curves (smooth functions or functional data) 

from these 575 villages (from January 2008 to December 2012) using a basis functions representation 

(village-level temporal trends).  

In the second stage, hierarchical clustering was applied to the malaria incidence curves for 

classifying villages with similar temporal trends together. To obtain an optimal classification, several 

dissimilarity measures and validity indices were used. 

In the third stage, resulting patterns were characterized using predefined epidemiological 

indicators from their velocity and acceleration functions to describe the overall features of temporal 

patterns identified. 

2.2.1. Estimating the Smooth Function (Functional Data) for Each Time Series  

The time series of the observed weekly malaria incidence (i.e., the number of confirmed cases 

per week divided by the total population of the village at this week) was determined for each of the 

575 villages. A square root transformation was applied to these incidence rates to stabilize the 

variance [4]. The functional data method [4,5] states that the square root of observed malaria 

incidence rate for a village i at a week j is the sum of a function on the time continuous of week j and 

an error term (1). 

��� = ������ = ������ + ��� � = 1, … , 575, � = 1, … , 261 (1) 

where �� is a regular (smooth) function which describes the temporal pattern of malaria incidence in 

village i, tj is the continuous time of week j, and ���  is an error term representing the difference 

between the function value and the observed data for village i at week j. 

The function ��  is approximated by a finite sum of linear combination of basis functions (2): 

��(�) = � ��� ��

�

���

(�) (2) 
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where ��  are basis functions, K represents the total number of basis functions and ���  are the 

coefficients obtained by the least squares method by minimizing the penalized error sum of squares 

(3) after replacing in (3) the formula of ��(��) by Equation (2): 

���(��) = �(��� − ��(��)) �
�

���

+ � �|��
��(�)|� ��

�

, � = 1, … , 575 (3) 

where λ is the non-negative smoothing parameter, P the studied period expressed here as [1, 261] in 

which times are continuous and ��
�� the second derivative function with  

�|��
��(�)|� �� < ∞

�

 (4) 

The penalty term (4) controls the smoothness of the estimate for ��(�). Large values of lambda λ 

yield nearly linear curve estimates while small values of lambda yield wiggly curve estimates getting 

closer to observed data. 

To estimate the underlying smooth function or functional data ��, the family of basis functions 

�� , their total number K and the smoothing parameter λ should be chosen. The basis functions are 

families of known functions [4,5]. Several basis functions are possible (B-spline, Fourier, exponential 

etc.), but they have to be chosen according to the nature of the data. In this work, we used cubic B-

splines to avoid periodic smoothing [4,5,7]. Indeed, even if malaria incidence has a periodic nature, 

the level of intensity of incidence is not the same over seasons, in contrast with Fourier basis 

functions, which will show the same level intensity as that of seasonal incidence. 

While the choice of the smoothing parameter is very important, there is no universal rule for an 

optimal choice. However, a number of criteria are available, including the generalized cross-

validation (GCV), which we used in this study [26]. 

2.2.2. Dissimilarity Measures and Hierarchical Ascending Clustering on Smooth Functions  

Hierarchical ascending clustering [27] is one of the most popular unsupervised clustering 

algorithms grouping similar elements such that the elements in the same group are more similar to 

each other than the elements in the other groups. At the beginning, each element is a cluster, then 

elements are grouped according to a dissimilarity measure and aggregation criteria until having one 

cluster grouping all elements. The advantage with this clustering method is its ability to work 

without prior number of clusters, which can influence the results compared to the K-means method 

for example. Another advantage is its dendrogram tool showing different cluster possibilities. 

To perform a hierarchical ascending clustering on smooth functions (functional data or curves), 

a dissimilarity measure between them was necessary to assess their proximity before each grouping 

step. In the context of time series, several dissimilarity measures are proposed in the literature [28,29]. 

This work focused on those based only on the data value or level intensity, and those based, in 

addition, on the temporal evolution or behavior of data over time that would adapt to the functional 

data [26,28–30].  

For those based only on data values, we have selected four: the Euclidean distance [29] (����) 

based on the point-to-point differences between observations of the two curves, the Lp-metric [26] 

estimating the surface between two functional data (curves) (����), the dynamic time warping [31] 

(����) providing a measure of distance insensitive to local compression, stretching, and the optimal 

deformation of one of the two curves compared to the other, and the discrete wavelet transformation 

[29] (����) measuring the dissimilarity between the wavelet approximations associated with the 

observations of curves.  

For those based on data values and behavior [28,30] (����� ) (5), a temporal correlation (6) 

between two functional data (curves) was combined with each of the dissimilarity measures based 

only on data values. The contributions of the data value part and the temporal correlation part were 

adjusted by an adaptative function according to a value of a given non-negative parameter � (Table 

1). Table 1 comes from the original article [30], which developed the �����  dissimilarity measure. So 

a dissimilarity measure based on data values and behavior was obtained by combing one of the four 
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measures based only on data value (���� , ���� , ���� , ���� ) and the temporal correlation (6) 

according for each value of the parameter � in Table 1.  

Thus, a total of 20 dissimilarity measures were used in this analysis. For example, ��������� is 

the dissimilarity measure based on temporal correlation (CORT) and the Euclidean distance (����) 

(Equation (5)) when ξ is equal to 1 (Table 1), this considered 46.2% of behavior contribution (given 

by CORT) and 53.7% of values contribution (given by ����). The others dissimilarity measures were 

obtained in the same way, and when � = 0 (Table 1), we had the four dissimilarity measures based 

only on values. 

�����(��, ���) = ��[����(��, ���)] ∗ �(�� , ���) (5) 

����(��, ���) =
∑ (��(t + 1) − ��(t))(���(t + 1) − ���(t))���

���

�∑ (��(t + 1) −  ��(t))����
��� �∑ (���(t + 1) − ���(t))����

���

 (6) 

The adaptative function [30] ��(�) =
�

�����(��)
, � ≥ 0  is used to adjust the percentage of 

contribution of value and behavior according to the value of the parameter �.  

Table 1. The percentage of contribution in �����  dissimilarity measure according to the parameter �. 

� 
Behavior  

Contribution (%) 

Values  

Contribution (%) 

0 0 100 

1 46.2 53.7 

2 76.2 23.8 

3 90.5 9.4 

≥5 ~100 ~0 

 � is a non-negative parameter of the adaptative function ��(�) =
�

�����(��)
 in the ����� dissimilarity 

measure (5). 

At this stage only the Euclidean distance and the dynamic time warping distance were 

implemented in R package with this dissimilarity measure. We have written a R program to estimate 

the functional Euclidean distance and the discrete wavelet transformation dissimilarity based on 

valued and behavior with the same formula above.  

Thus, hierarchical ascending clustering (HAC) was performed on smooth functions using each 

dissimilarity measure with Ward aggregation method [32]. This was to find the most able 

dissimilarity measure to assess the difference between curves for reaching a better quality of 

classification. Thus, we obtained 20 HAC results. To assess the HAC results according to potential 

numbers of patterns (chosen after examination of dendrograms), four validity indices were used in a 

multidimensional space for functional data [33–35]: connectivity, Dunn, silhouette width, and the 

percentage of inertia explained by the number of patterns R2. The connectivity indicates the degree 

of connectedness of the clusters, as determined by the k-nearest neighbors (in this work k = 10). The 

connectivity has a value between 0 and infinity and should be minimized. Both the silhouette width 

and the Dunn index combine measures of compactness and separation of the clusters. The silhouette 

width is the average of each curve's silhouette value. The silhouette value measures the degree of 

confidence in a particular clustering assignment and lies in the interval [–1, 1] with well-clustered 

curves having values near 1 and poorly clustered curves having values near −1. The Dunn index is 

the ratio between the smallest distance between curves not in the same cluster to the largest intra-

cluster distance. It has a value between 0 and infinity and should be maximized. To choose the final 

or optimal number of malaria incidence patterns, we performed a principal component analysis 

(PCA) [36] on assessed HAC results to look for the one which showed the best criteria of validity 

indices, i.e., with connectivity index close to 0, high Dunn index, and silhouette width and R2 close to 

1.  
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In these two first steps, we worked on the functional data of the square root transformation of 

the observed time series, but for the following step, we applied square transformations to obtain the 

functional data corresponding to the observed time series, on which interpretations where based. 

Let Q be the number of patterns identified by the HAC, we defined the functional data of each 

pattern by ��(�), q = 1, …, Q being the cumulative weekly incidence of the villages belonging to the 

pattern q. Then, their 95% point-wise confidence intervals were computed by adding and subtracting 

two of the standard errors, that is, the square root of the sampling variances, to the actual fit [4]. 

2.2.3. Velocity and Acceleration  

To further describe the malaria incidence patterns, the first (velocity) and second (acceleration) 

derivative were determined for each functional data of a pattern. Their variations over time indicated 

the growth and decline phase periods in each pattern, and the degree of speed: quickly or slowly. 

Thus, with mathematical properties of univariate function optimization [21] and one-dimensional 

kinematics in physics [22], seven epidemiological indicators based on velocity and acceleration were 

defined (Figure 1, Table 2). These epidemiological indicators were as follows: the beginning of 

seasonal outbreaks and the start acceleration of the growth phase (A); the beginning of the pre-

slowdown of the growth phase (B); the deceleration’s beginning of growth phase (C); the peak (D) 

also corresponding after to the beginning of the acceleration of the decrease phase; the beginning of 

the deceleration of the decrease phase (E); the beginning of the tail (F); the end of the seasonal 

outbreaks (G). Finally, a PCA was performed on the durations: AB, AD, CE, DG, FG, BF, and AG to 

look for those that characterized patterns of seasonal outbreaks. 

 

Figure 1. A graphical example for the seven epidemiological indicators: the beginning of seasonal 

outbreaks and the start acceleration of the growth phase (A); the beginning of the pre-slowdown of 

the growth phase (B); the deceleration’s beginning of growth phase (C); the peak (D) also 

corresponding after to the beginning of the acceleration of the decrease phase; the beginning of the 

deceleration of the decrease phase (E); the beginning of the tail (F); the end of the seasonal outbreaks 
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(G); functional incidence in red line, functional velocity in black bold line (first derivative), and 

functional acceleration in black discontinuous line (second derivative). 

Table 2. The description of epidemiological indicators and the determination of their corresponding 

date for a functional data �� of pattern q. 

Epidemiological Indicators (EI) Determination of EI’s Dates 

Beginning of seasonal outbreaks and the start 

acceleration of the growth phase (A) 
�� = �

 
����� � ���ℎ ��

�(�) > 0 

             ��
��(�) > 0

�� 3 �����

  

Beginning of the pre-slowdown of the growth phase 

(B) 
�� = �

    

  argmax
� ���� ��

�(�)��

���
��(�)�  

 
  

Deceleration’s beginning of growth phase (C) �� = �

    

  argmax
� ���� ��

��(�)��

���
�(�)�  

 
 

Peak of seasonal outbreaks and beginning of the 

acceleration of the decrease phase (D) 
�� = �

 
��

�(�) = 0              

��
��(�) < 0             

 

Beginning of the deceleration of the decrease phase 

(E) 
�� = �

    

  argmin
� ���� ��

��(�)��

���
�(�)�  

 
 

Beginning of the tail of seasonal outbreaks (F) �� = �

    

  argmax
� ���� ��

�(�)��

���
��(�)�  

 
 

End of seasonal outbreaks (G) �� = �

 
����� � ���ℎ ��

�(�) = 0 

�� 3 �����
  

Statistical analyses were performed with R® software (The R Foundation for Statistical 

Computing, Vienna, Austria) R 3.4.2 version. Maps were produced using QGIS® software (Open 

Source Geospatial Foundation, Boston, MH, USA) QGIS 3.10.1 version. 

3. Results 

3.1. From Observed to Smoothed Malaria Incidence  

The observed time series of malaria incidence for each of the 575 villages from January 2008 to 

December 2012 were determined (Figure 2, Panel A). The observed malaria incidence ranged from 0 

to 183 cases/1000 person-years at the village level, and the median was 4 cases/1000 person-years with 

interquartile range (2, 9). At village and week levels, the observed malaria incidence ranged from 0 

to 17,000 cases/100,000 person-weeks (Figure 2, Panel A). 
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Figure 2. Weekly evolution of malaria incidence for each village from January 2008 to December 2012: 

observed time series (Panel A) and at the square root scale (Panel B), smoothed time series at the 

square root scale (Panel C) and at the scale of untransformed observations (Panel D). 

Because of the high variability, the transformation with square root function was applied to the 

time series of Figure 2, Panel A to obtain the observed time series of malaria incidence in square root 

scale (Panel B) as explained in the Methods section Equation (1). 

With the transformed observed time series (Panel B), the search for the optimal number of basis 

functions and the optimal smoothing parameter gave ���� = 110 and ���� = 103, which minimized 

the error by GCV equal to 11.8 with a standard deviation of � = 0.12. Using these optimal parameters, 

the smoothed transformed time series of malaria incidence for each village were determined (Figure 

2, Panel C).  

For epidemiological interpretation, we applied the square function (reciprocal function) to 

obtain the smoothed time series of malaria incidence corresponding to the observed time series 

(Figure 2, Panel D). 

3.2. Identification of Malaria Incidence Patterns 

Three patterns with the DTWCORT1 dissimilarity measure (3DTWCORT1 HAC result) were 

obtained with the application of HAC on the smoothed transformed times series (Figure 2, Panel C). 

Indeed, these patterns were chosen based on the PCA performed on assessed validity indices across 

the HAC results obtained with each of the 20 dissimilarity measures for 3 and 4 number patterns 

(Appendix A, Table A1, Figure A1).  
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In addition, the dimension 1 represented high Dunn index and silhouettes, and low connectivity 

(Figure 3, Panel A). The dimension 2 essentially represented the percentage of inertia explained by 

the patterns R2 (Figure 3, Panel A). The best classification should therefore be located in the upper 

right of the factorial plane of the dissimilarity measures and the number of patterns (Figure 3, Panel 

B). The DTWCORT1 dissimilarity measure took into account 46.2% of the temporal correlation 

between functional data and 53.7% of the geometric distance. 

 

Figure 3. Principal component analysis on validity indices and dissimilarity measures for 3 and 4 

number patterns: validity indices map (Variables, Panel A), dissimilarity measures map (Individuals, 

Panel B). 4DTWCORT3 is the assessed hierarchical ascending clustering (HAC) result with the 

potential number of patterns chosen as 4, and performed with DTWCORT3 dissimilarity measure 

(���������) taking into account the 9.4% of ���� (data value) and 90.5% CORT (data behavior) (Table 

1, � = 3), 3FDA is the assessed HAC result with the potential number of patterns chosen as 3, and 

performed with ���� dissimilarity measure taking into account 100% of data value, etc. 

The high-incidence pattern (high pattern) consisted of a set of 12 villages with the highest 

observed average incidence over the five-year study period (114 cases/1000 person-years), mainly 

located in the southern part of the study area (Figure 4). Its smoothed seasonal outbreaks peaks 

ranged from 227 (95% CI: [65, 487]) to 884 cases/100,000 person-weeks (95% CI: [420, 1518]) (Figure 5, 

Table 3).  
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Figure 4. The spatial distribution of malaria incidence pattern villages in the study area: Senegal map 

and the location of the study area pointed by the arrow, high-incidence pattern villages in red dot, 

intermediate-incidence pattern villages in blue dot, and low-incidence pattern villages in green dot. 

 

Figure 5. The smoothed functions (functional data) for each malaria incidence pattern between 

January 2008 to December 2012: high-incidence pattern in red line, intermediate-incidence pattern in 

blue line, and low-incidence pattern in green line. 
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Table 3. Incidence description of malaria incidence patterns: the type of pattern, their number of 

villages, and their ranges peaks of smoothed seasonal outbreaks with 95% CI and their observed 

cumulative incidence over the five years of the study period. 

Malaria 

Incidence 

Patterns 

Number of 

Villages 

Range Peaks of Smoothed Seasonal 

Outbreaks (Cases/100,000 Person-

Weeks) with [95% CI] 

Observed Cumulative 

Incidence over the Five 

Year-Study Period 

(Cases/1000 Person-Years) 

High  12 227 [65, 487]–884 [420, 1518] 114 

Intermediate 97 26 [7, 56]–131 [51, 248] 13 

Low  466 7 [2, 16]–34 [7, 81] 3 

The intermediate-incidence pattern (intermediate pattern) included 97 villages had 13 cases/1000 

person-years as observed average incidence over the study period, located in both the southern and 

northern part of the study area (Figure 4). Its smoothed seasonal outbreaks peaks ranged from 26 

(95% CI: [7, 56]) to 131 cases/100,000 person-weeks (95% CI: [51, 248]) (Figure 5, Table 3). 

The low-incidence pattern (low pattern) consisted of a set of 466 villages with the lowest average 

incidence over the study period (3 cases/1000 person-years), mainly located in the northern part of 

the study area (Figure 4). Its smoothed seasonal outbreaks peaks ranged from 7 (95% CI: [2, 16]) to 34 

cases/100,000 person-weeks (95% CI: [7, 81]) (Figure 5, Table 3). 

The two higher-incidence patterns (high and intermediate) correspond to 23% of the population 

and 19% of the villages. 

The observed incidence of the patterns, their smoothed incidence and their 95% point-wise 

confidence intervals of smoothing were highlighted for each malaria incidence pattern (Figure 6). In 

all patterns, the observed incidence rates were within the ranges except for a few peaks in the high 

pattern (Figure 6). 
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Figure 6. Weekly observed malaria incidence in black solid line, smoothed malaria incidence in color 

solid line, and smooth 95% point-wise confidence intervals in discontinuous color line: high-incidence 

pattern in red (Panel A), intermediate-incidence pattern in blue (Panel B), and low-incidence pattern 

in green (Panel C). 

3.3. Velocity and Acceleration of Malaria Incidence Patterns 

The velocities and accelerations (Figure A2) of the high pattern were higher, followed by those 

of the intermediate pattern, and those of the low pattern were the lowest (Figure A2). In both the 

growth and decline phase of malaria incidence patterns, when velocity and acceleration functions 

had the same sign in an interval, then malaria incidence patterns were in an acceleration situation; 

and when they had opposite signs, malaria incidence patterns, they were in a slowdown 

(deceleration) situation. For example, between the dates of the onset (A) and the slowdown (C) of 

seasonal outbreaks of patterns, velocity and acceleration functions were both positives, so malaria 

incidence patterns were increasing rapidly. Between the dates of slowdown (C) and the peak (D), 

velocity functions were positives while acceleration functions were negatives, malaria incidence 

patterns were also increasing but slowly until achieving the peak. 

Of the 3 malaria incidence patterns, there were a total of 15 seasonal outbreaks. Each pattern had 

five seasonal outbreaks, which corresponded to the seasonal outbreaks that started in each year of 

the study period (from 2008 to 2012). The dates corresponding to the seven epidemiological indicators 

derived from the velocity and acceleration functions (Figure 7), as described in the methodology, 
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were determined for all seasonal epidemics starting from 2008 to 2011. For the seasonal outbreak 

starting in the year 2012, the dates of the indicators characterizing the beginning of the end (F) and 

the end of the seasonal epidemics (G) were not determined because the study period ended in 

December 2012 (Table 4, Figure 7). 

The results (Table 4) showed that the low pattern was always the one that started (A) the latest. 

The high pattern started three times earlier during the five seasonal outbreaks and the intermediate 

pattern twice earlier. In addition, seasonal outbreaks of the high and intermediate patterns usually 

started between April and June with a lag between 1 and 3 weeks. Those of the low pattern started 

between June and July with a delay between 4 and 9 weeks after the intermediate pattern, and with 

a lag between 3 and 10 weeks after the high pattern (Table 4). 

The phases of pre-slowdown (B) and slowdown (C) of epidemic’s growth started mainly 

between August and September for all patterns with a lag between 1 and 2 weeks. Then, the peak (D) 

of seasonal outbreaks for all patterns, occurred between October and November almost at the same 

time or with a maximum of 1 week lag. The beginning of the deceleration phase of the decrease (E) 

occurred between November and December for all patterns, almost at the same time or with 

maximum 1 week of lag. The exception to the latter point was the E of seasonal outbreaks beginning 

in 2009 and 2010 of the high pattern, and those beginning in 2010 of the intermediate pattern began 

between January and February of their following years, respectively (Table 4). 

The tails (F) of seasonal outbreaks for low pattern were the earliest, starting in December; those of 

high pattern were the latest, starting between December and March. Those of the intermediate pattern 

followed those of the high pattern and started between December and February. Moreover, the lag 

between high and low pattern was from 1 to 11 weeks, those between high and intermediate pattern 

was from 1 to 9 weeks and those between intermediate and low pattern was from 0 to 7 weeks (Table 

4). 

The end of seasonal outbreaks (G) for the high and intermediate pattern occurred between 

March and May with a lag from 0 to 7 weeks; those of low pattern occurred the earliest between 

February and March with a lag from 3 to 13 weeks before high pattern and a lag from 3 to 9 weeks 

before the intermediate pattern. 

Table 4. The epidemiological indicators (EI) and their characteristics over seasonal outbreaks. 

Start Year 

Seasonal 

Outbreak 

EI DateHigh DateInter DateLow WeekHigh WeekInter WeekLow 

2008 A 13/05/2008 29/04/2008 17/06/2008 20 18 25 

2009 A 19/05/2009 26/05/2009 28/07/2009 21 22 31 

2010 A 08/06/2010 01/06/2010 29/06/2010 24 23 27 

2011 A 26/04/2011 10/05/2011 14/06/2011 18 20 25 

2012 A 03/04/2012 24/04/2012 29/05/2012 15 18 23 

2008 B 09/09/2008 02/09/2008 26/08/2008 37 36 35 

2009 B 25/08/2009 08/09/2009 25/08/2009 35 37 35 

2010 B 14/09/2010 31/08/2010 07/09/2010 38 36 37 

2011 B 23/08/2011 23/08/2011 23/08/2011 35 35 35 

2012 B 28/08/2012 28/08/2012 28/08/2012 36 36 36 

2008 C 30/09/2008 23/09/2008 23/09/2008 40 39 39 

2009 C 22/09/2009 22/09/2009 15/09/2009 39 39 38 

2010 C 05/10/2010 28/09/2010 28/09/2010 41 40 40 

2011 C 13/09/2011 20/09/2011 20/09/2011 38 39 39 

2012 C 18/09/2012 18/09/2012 25/09/2012 39 39 40 

2008 D 28/10/2008 21/10/2008 21/10/2008 44 43 43 

2009 D 27/10/2009 20/10/2009 20/10/2009 44 43 43 

2010 D 02/11/2010 26/10/2010 02/11/2010 45 44 45 

2011 D 11/10/2011 25/10/2011 18/10/2011 42 44 43 

2012 D 23/10/2012 23/10/2012 30/10/2012 44 44 45 

2008 E 02/12/2008 02/12/2008 25/11/2008 49 49 48 
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2009 E 16/02/2010 01/12/2009 08/12/2009 8 49 50 

2010 E 18/01/2011 18/01/2011 30/11/2010 4 4 49 

2011 E 29/11/2011 29/11/2011 22/11/2011 49 49 48 

2012 E 27/11/2012 20/11/2012 27/11/2012 49 48 49 

2008 F 06/01/2009 23/12/2008 23/12/2008 2 52 52 

2009 F 16/03/2010 12/01/2010 29/12/2009 12 3 1 

2010 F 15/02/2011 08/02/2011 21/12/2010 8 7 52 

2011 F 20/12/2011 13/12/2011 13/12/2011 52 51 51 

2008 G 12/05/2009 24/03/2009 10/02/2009 20 13 7 

2009 G 11/05/2010 04/05/2010 02/03/2010 20 19 10 

2010 G 26/04/2011 26/04/2011 22/03/2011 18 18 13 

2011 G 20/03/2012 03/04/2012 28/02/2012 13 15 10 

 

Figure 7. Smoothed incidence in color solid line, their velocity in black bold solid line, their 

acceleration in black discontinuous line, and the epidemiological indicator of their seasonal outbreaks 

(A: onset, B: near slowdown of growth, C: beginning slowdown of growth, D: peak, E: beginning 

acceleration of decline, F: beginning of tail, G: end): high-incidence pattern in red (Panel A), 

intermediate-incidence pattern in blue (Panel B), and low-incidence pattern in green (Panel C). 

The seasonal outbreaks for all patterns were further described with the PCA performed on the 

durations between selected relevant epidemiological indicators (Figure 8, Panel A). These were the 

duration of strict growth’s acceleration phase (AB); those between start and peak (AD); those between 
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slowdown of growth and decline (CE) indicating the width of the peak area; those between peak and 

the end (DG); those between the tail and the end of seasonal outbreaks (FG); those between pre-

slowdown and the tail (BF) indicating the intermediate width of epidemics; those between the start 

and the end of epidemic episodes (AG) indicating the duration of the seasonal outbreaks.  

The result of PCA (Figure 8, Table A2) showed that the seasonal outbreaks (Figure 8, Panel B) of 

high pattern starting since 2009 (2009H) and 2010 (2010H) and those of the intermediate pattern 

starting since 2010 (2010I) were mainly characterized by a high BF and CE, and also by a low FG.  

In addition, the seasonal outbreaks of low pattern were characterized by low AG, DG, AD, and 

AB. The seasonal outbreaks starting since 2008 and 2011 for high and intermediate patterns (2008H, 

2008I, 2011I, and 2011H) were mainly characterized on the one hand by high FG and on the other 

hand by low BF and CE. In addition, 2008H, 2009I, and 2011H were also characterized by a high AG, 

AD, AB, and DG. 

 

Figure 8. Principal component analysis on duration epidemiological indicators and seasonal 

outbreaks of the patterns: epidemiological indicator map (Variables, Panel A) (the duration of strict 

growth’s acceleration phase (AB); the duration between start and peak (AD); the duration between 

slowdown of growth and decline (CE) indicating the width of the peak area; the duration between 

peak and the end (DG); the duration between the tail and the end of seasonal outbreaks (FG); the 

duration between pre-slowdown and the tail (BF) indicating the intermediate width of epidemics; the 

duration between the start and the end of epidemic episodes (AG) indicating the duration of the 

seasonal outbreaks); seasonal outbreaks of the patterns map (Individuals, Panel B) (L=Low, 

I=Intermediate, H=High, 2009L is the seasonal outbreak starting in year 2009 in the malaria low-

incidence pattern ). 

4. Discussion 

The approach used here led to the identification of three distinct patterns for the time-course of 

malaria incidence in a village, by taking into account dynamics of malaria incidence over the whole 

study period. In addition, this work allowed the determination of epidemiological indicators based 

on the velocities and accelerations of these incidence patterns, characterizing the seasonal outbreaks 

of the patterns. 

The choice of dissimilarity measure for functional data is important before applying an 

unsupervised classification method, to have well-separated classes. Some other dissimilarity 

measures could be added [29]. We preferred to limit them on the measures less dependent to the 

autocorrelation structure. Indeed, the smoothing approach of functional data may impact the 
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autocorrelation structure. For the choice of validity indices, we preferred also to concentrate on a 

small number of those assessing the separability (Dunn), compactness (connectivity), the quality of 

clustering for villages in average (silhouette) [34,35], and percentage of inertia (R2).  

The detection methods of transmission foci or hotspots have been defined differently in the 

literature [37]. There are methods that define them from an incidence or prevalence threshold [15], 

others with biological parameter [38], and others from scanning algorithm [10] or geostatistical 

approaches [9]. In addition, spatial and temporal analyses were often based on the fragmentation of 

the study period. Indeed in some researches, these temporal divisions were based on the calendar 

(month, year) or the rainy seasons, in other works of temporal fragmentation, methods were based 

on algorithms such as change point analysis [15–19,39,40].  

In our study, patterns identification was made by taking into account not only the value of the 

incidence but also the dynamic of the malaria incidence over the whole study period, hence the 

malaria incidence pattern term. Consequently, this method can be used to distinguish two spatial 

units that have the same level of incidence or the same number of cases, but with different dynamics. 

Indeed, an epidemic that starts with a high intensity and declines over time is different from another 

that increases over time, leading to different control strategies. 

With our approach, characterizations of the seasonal outbreaks have been made using the 

velocities and accelerations of the malaria incidence pattern. This allowed us to define 

epidemiological indicators for which seasonal outbreaks were further described. The results showed 

that the low-incidence pattern was the latest to start and the earliest to end seasonal outbreaks, all 

incidence patterns reached their seasonal peaks almost at the same time. In the case of other countries, 

different results can be found with these epidemiological indicators where, for example, seasonal 

peaks would be reached at significantly different times.  

Furthermore, malaria control strategies are usually implemented at the beginning or middle of 

the rainy season [23,41–44]. In Senegal, the beginning of the rainy season is generally between May 

and June. However, our results showed that seasonal epidemics could start from April in the high 

and intermediate patterns. All these particularities could guide political actors on the priority to be 

given to the first dates and places of intervention to cushion the impact that the epidemic could have. 

In addition, knowledge of the other indicators and their durations, such as the peak area, could guide 

the refinement of strategies according to the characteristics of the patterns for a rapid decline and end 

of the epidemic. 

Moreover, the seasonal outbreaks 2009H, 2010H, and 2010I were remarkable. These seasonal 

epidemics were mainly characterized by a large peak area (CE) and a large intermediate width of the 

epidemic (BF) but also by a short end of epidemic phase (FG). An in-depth analysis of their velocities 

and accelerations showed that the acceleration of phase decline (DE) was not direct on these seasonal 

epidemics, since they were disrupted by a small slowdown phase indoors. Indeed, during the DE 

phases of these three particular seasonal epidemics, there was exceptionally a moment when the 

velocity was negative and the acceleration positive (which translates into a slowdown), then the 

acceleration became negative again (still while the velocity was negative) to continue its phase of 

acceleration of the decline. This would potentially partly explain these large widths. Despite this, 

their ends of epidemic phases were short, on the one hand, by a late onset of the beginning of the end 

of the epidemic (F). 

Furthermore, researches had focused on the search for epidemic thresholds and stratification 

into intensity levels of different epidemics, particularly in the field of influenza surveillance and acute 

respiratory infection in Europe [45–49]. However, as stated by numerous authors, there was no 

automatic and objective way to compare thresholds and intensity levels across the studied countries. 

Although the epidemiological contexts are not the same with malaria, we were able to introduce an 

approach based on functional data allowing the smoothing of the time series of the village incidence 

by a single smoothing parameter allowing a possible comparison between them since they had the 

same scale [4]. For this purpose, even if this was not our main objective, we could define the starting 

date of an outbreak as the time from which the velocity and acceleration functions are strictly positive 
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for at least three consecutive weeks (indeed, the first symptoms of malaria appear 1 to 4 weeks after 

infection [50]). Thus, this approach can be applied in other disease contexts. 

Moreover, this work had shown that villages belonging to the same pattern are not necessarily 

grouped geographically. This is not very surprising given that the identification of the patterns was 

based solely on their temporal dynamics. Thus, a relatively small number of high-incidence villages 

were adjacent to low-incidence villages. It may be useful to investigate social and environmental 

factors that may be associated with locally high incidence (e.g., proximity to water bodies, use of 

control measures, etc.). The two higher-incidence patterns correspond to 23% of the population. 

Awareness of these trends may assist district health teams to strengthen control in high-risk 

communities and guide targeted intervention, and our results suggest that a targeted strategy may 

need to include about 20% of the population. 

5. Conclusions 

The approach used here led to the identification of three distinct malaria patterns in west-central 

Senegal, by considering their temporal dynamics. Epidemiological indicators derived from the 

velocities and accelerations of these patterns, may be useful to guide targeted control measures 

according to the characteristics of the patterns.  

Appendix A  

Table A1. Validity indices performed on each hierarchical ascending clustering’s results for 3 and 4 

patterns: connectivity, Dunn, silhouette, and the percentage of inertia explained R2. 

HAC Results  

(with 3 and 4 Clusters) and  

Dissimilarity Measures 

Connectivity Dunn Silhouette R2 

3EUC 113.57 0.04 0.38 0.1 

3FDA 73.44 0.08 0.52 0.1 

3DTW 80.47 0.03 0.55 0.19 

3DWT 112.88 0.04 0.37 0.1 

3EUCCORT1 102.07 0.07 0.46 0.1 

3EUCCORT2 117.83 0.03 0.36 0.1 

3EUCCORT3 118.87 0.03 0.38 0.1 

3EUCCORT5 122.23 0.03 0.38 0.11 

3FDACORT1 121.69 0.04 0.36 0.1 

3FDACORT2 124.79 0.03 0.36 0.1 

3FDACORT3 118.93 0.03 0.36 0.11 

3FDACORT5 121.7 0.03 0.38 0.11 

3DWTCORT1 121.06 0.04 0.36 0.1 

3DWTCORT2 123.79 0.03 0.36 0.11 

3DWTCORT3 66.56 0.08 0.54 0.1 

3DWTCORT5 121.55 0.03 0.38 0.11 

3DTWCORT1 76.4 0.03 0.55 0.19 

3DTWCORT2 84.01 0.02 0.53 0.19 

3DTWCORT3 109.12 0.01 0.4 0.19 

3DTWCORT5 89.88 0.02 0.52 0.19 

4EUC 149.3 0.04 0.35 0.12 

4FDA 158.82 0.02 0.2 0.12 

4DTW 174.53 0.01 0.33 0.21 

4DWT 149.92 0.04 0.34 0.12 

4EUCCORT1 206.79 0.04 0.27 0.12 

4EUCCORT2 171.17 0.03 0.32 0.12 
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4EUCCORT3 173.47 0.03 0.33 0.12 

4EUCCORT5 156.54 0.03 0.34 0.12 

4FDACORT1 188.3 0.04 0.3 0.12 

4FDACORT2 181.55 0.03 0.32 0.12 

4FDACORT3 157.83 0.03 0.34 0.12 

4FDACORT5 156.44 0.03 0.35 0.12 

4DWTCORT1 187.75 0.04 0.3 0.12 

4DWTCORT2 180.55 0.03 0.32 0.12 

4DWTCORT3 163.1 0.02 0.22 0.12 

4DWTCORT5 156.27 0.03 0.35 0.12 

4DTWCORT1 177.8 0.01 0.31 0.21 

4DTWCORT2 126.73 0.02 0.44 0.21 

4DTWCORT3 151.85 0.01 0.38 0.22 

4DTWCORT5 166.42 0.01 0.23 0.21 

4DTWCORT5: hierarchical ascending clustering result with four clusters performed with dcort 

dissimilarity measure using dynamic time warping (DTW) and the temporal correlation (CORT) with 

ξ ≥ 5 (corresponding to approximately 100% of behavior contribution and 0% of value contribution, 

see Table 1). 

 

Figure A1. Dendrogram resulting of hierarchical clustering on smooth function with DTWCORT1 

dissimilarity measure: 12 villages with high-incidence pattern (red), 97 villages with intermediate-

incidence pattern (blue border), and 466 with a low-incidence pattern (green border). 
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Figure 2. The velocity (Panel A) and the acceleration (Panel B) dynamics of malaria incidence 

patterns: high-incidence pattern in red line, intermediate-incidence pattern in blue line, and low-

incidence pattern in green line. 

Table A2. The PCA results on epidemiological indicator (EI) durations (Variables) and seasonal 

outbreaks of the patterns (Individuals): the PCA indicators (correlation between EI durations and 

dimensions representing also the coordinates of EI durations on dimensions, cosinus2 measuring the 

quality of projection of EI durations or seasonal outbreaks on dimensions (or factorial axis), the 

percentage of contribution of EI durations or seasonal outbreaks on each dimensions (or factorial axis) 

, and the coordinates of seasonal outbreaks on each dimension (or factorial axis); Dim is dimension or 

factorial axis resulting on PCA on which EI durations and seasonal outbreaks were projected. 

PCA_Indicators Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

correlation_AB 0.9 −0.3 −0.31 −0.08 −0.06 

correlation _AD 0.9 −0.22 −0.37 0.08 0.05 

correlation _CE 0.35 0.92 0 0.13 −0.07 

correlation _DG 0.89 0.21 0.4 −0.09 −0.02 

correlation _FG 0.53 −0.74 0.39 0.11 0.01 

correlation _BF 0.39 0.92 0.03 −0.03 0.08 

correlation _AG 1 0 0.03 −0.01 0.02 

cosinus2_AB 0.8 0.09 0.1 0.01 0 

cosinus2_AD 0.81 0.05 0.14 0.01 0 

cosinus2_CE 0.13 0.85 0 0.02 0.01 

cosinus2_DG 0.79 0.04 0.16 0.01 0 

cosinus2_FG 0.28 0.55 0.15 0.01 0 

cosinus2_BF 0.15 0.84 0 0 0.01 

cosinus2_AG 1 0 0 0 0 

contribution_AB 20.32 3.71 17.59 13.75 19.18 

contribution _AD 20.38 2.03 24.91 13.5 12.86 

contribution _CE 3.16 35.1 0 31.09 30.65 

contribution _DG 19.98 1.75 29.12 17.03 1.6 

contribution _FG 7.15 22.74 27.98 23.24 0.42 

contribution _BF 3.77 34.68 0.2 1.22 33.84 

contribution _AG 25.24 0 0.2 0.17 1.43 
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2008H_ coordinates 2.32 −1.73 0.8 −0.13 0.15 

2008I_ coordinates 1.08 −1.28 −1.15 −0.01 −0.16 

2008L_ coordinates −2.91 0.06 −1.18 −0.3 0.21 

2009H_ coordinates 2.14 3.73 −0.21 0.11 0.13 

2009I_ coordinates 1.42 −0.9 1.1 −0.39 −0.01 

2009L_ coordinates −3.89 1.06 1.05 0.1 −0.13 

2010H_ coordinates 0.68 1.36 −0.15 −0.18 −0.15 

2010I_ coordinates 0.94 1.61 0.28 0.08 −0.03 

2010L_ coordinates −1.75 −0.99 0.36 0.2 −0.03 

2011H_ coordinates 1.06 −0.84 −0.74 0.01 −0.18 

2011I_ coordinates 0.97 −1.5 −0.05 0.52 0.11 

2011L_ coordinates −2.06 −0.58 −0.1 −0.02 0.09 

2008H_ cosinus2 0.59 0.33 0.07 0 0 

2008I_ cosinus2 0.28 0.4 0.32 0 0.01 

2008L_ cosinus2 0.85 0 0.14 0.01 0 

2009H_ cosinus2 0.25 0.75 0 0 0 

2009I_ cosinus2 0.48 0.19 0.29 0.04 0 

2009L_ cosinus2 0.87 0.06 0.06 0 0 

2010H_ cosinus2 0.19 0.77 0.01 0.01 0.01 

2010I_ cosinus2 0.25 0.73 0.02 0 0 

2010L_ cosinus2 0.73 0.23 0.03 0.01 0 

2011H_ cosinus2 0.46 0.29 0.23 0 0.01 

2011I_ cosinus2 0.27 0.65 0 0.08 0 

2011L_ cosinus2 0.92 0.07 0 0 0 

2008H_ contribution 11.38 10.3 9.79 2.57 11.82 

2008I_ contribution 2.48 5.64 20.16 0.01 12.25 

2008L_ contribution 17.84 0.01 21.49 14.11 21.09 

2009H_ contribution 9.66 47.62 0.69 1.96 7.92 

2009I_ contribution 4.24 2.79 18.69 24.31 0.1 

2009L_ contribution 31.88 3.84 16.96 1.68 8.4 

2010H_ contribution 0.98 6.32 0.34 5.15 10.77 

2010I_ contribution 1.85 8.91 1.22 1 0.52 

2010L_ contribution 6.47 3.33 1.94 6.11 0.5 

2011H_ contribution 2.35 2.42 8.51 0.01 16.01 

2011I_ contribution 1.97 7.68 0.04 43.06 6.39 

2011L_ contribution 8.92 1.13 0.17 0.04 4.23 
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