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Insect-inspired omnidirectional vision for autonomous localization
on-board a hexapod robot*

Julien Dupeyroux, Sean Lapalus, Ilya Brodoline, Stéphane Viollet and Julien R. Serres

Abstract— Navigating insects like desert ants are known to
robustly estimate their position from their nest while foraging
for food, for several hundred meters across hostile environ-
ments, by means of very low resolution visual information
processing. This tour de force stands for a great source of
inspiration to design smart, parsimonious and robust solutions
to make robots of any size navigate in global navigation satellite
systems-denied or in cluttered environments. In this study, we
introduce a new insect-inspired omnidirectional visual sensor
(640×120 pixels; 120 fps). The inter-pixel angle is equal to 0.6◦

and the acceptance angle is equal to 1.5◦, which is comparable
to those observed in predatory flying insects. This sensor was
embedded on-board the AntBot robot, a six-legged walking
robot mimicking desert ants at morphological, locomotive and
sensing levels. Despite the residual visual oscillations of the
field of view while walking, the robot successfully detected fixed
obstacles and was able to locate itself with an accuracy as low
as 25± 10 cm, which actually corresponds to an average error
of only 3 strides (hexapod stride length: 8.2 cm) after a 9m-long
journey. This suggests that low-acuity visual sensors, inherently
requiring few computational resources, are good candidates for
ant-like familiarity-based navigation in cluttered environments.

I. INTRODUCTION

Autonomous navigation is one of the leading contempo-
rary technological challenges for which the potential ap-
plications are many and various, in both mobile robotics
and means of transport. Among the current state-of-the-art,
the widely distributed civilian Global Navigation Satellite
System (GNSS) has yielded strong performances in urban
environments. Yet, the accuracy (5 − 30 m) of the GNSS
heavily depends on the meteorological conditions and the
urban infrastructures. Computer vision based methods also
provide localization cues for autonomous vehicles in highly
complex environments. However, data processing requires
important computational resources, and light changes often
result in navigation failure. The challenge here is to develop
an alternative navigation system that could be combined with
conventional techniques so that any vehicle equipped with
such solution would benefit from high precision and robust
navigation skills in more complex environments.

In recent years, we have developed an ant-inspired walking
robot, called AntBot (Fig. 1) [1], endowed with parsimonious
visual sensors mimicking the compound eye of the desert
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ants Cataglyphis fortis [2]. AntBot is equipped with a 2-
pixel celestial compass that detects the state of polarization
of the skylight in the ultraviolet (UV) range [3]. This
minimalist sensor provides an optical heading while nav-
igating outdoor with excellent performances regardless of
environmental conditions (cloud cover, haze, UV-index) [4],
[5]. Besides, AntBot comprises an optic flow (OF) sensor,
called the M2APix sensor (Michaelis-Menten Auto-adaptive
Pixels) [6]. This sensor includes 12 pixels that auto-adapt
up to 7 decades light changes just like photoreceptors in
vertebrates and invertebrates [7]. We combined ventral OF
measurements with stride counting to allow AntBot estimat-
ing its walked distance.

Fig. 1. The AntBot robot (mass: 2.3 kg, diameter: 45 cm). (a) The celestial
compass for the detection of the optical heading based on the polarization
pattern of UV skylight. (b) The M2APix sensor for the OF-based distance
estimation. (c) The low-resolution omnidirectional vision sensor for obstacle
avoidance and snapshot-based localization, used alone in this study.

According to the desert ants navigational toolkit [8], the
path integrator (PI) merges polarization cues (orientation)
and OF cues (distance) to estimate the localization with
respect to the departure point. This strategy has been suc-
cessfully tested on-board AntBot, resulting in a homing error
of 6.7 cm on average, which is lower than one robot’s stride
(8.2 cm), after a 15m-long journey [1]. In its current version,
AntBot is able to navigate autonomously in unknown outdoor
environments regardless of the meteorological conditions.
However, the PI approach is prone to cumulative error as
trajectory length increases. In addition to PI, desert ants rely
on visual-based navigation, i.e. visual guidance (VG) [9],
[10], [11]. For example, VG allows ants to return directly to
familiar terrain from novel locations [12]. VG helps foraging
insects to find their way home by comparing memorized
snapshots to the current view of the scene. This strategy is



mostly used when the insect is roaming in cluttered environ-
ments, as for the Australian desert ants Melophorus bagoti
[11]. In such a context, ants are expected to encounter several
trees, tussocks and rocks prominent enough to be further
used as visual landmarks for navigation purposes (odometry,
orientation) [13]. Although the relationship between VG
and PI remains unknown, it has been shown that both of
them can be active simultaneously [9], [11], and that PI is
never switched off [8]. Desert ants memorize a series of
snapshots along routes towards the nest [10]. These routes
mark out the so-called catchment area [14], [15]. The insect
compares what it sees with the images it has memorized. This
comparison provides a course to follow by angular difference
of the omnidirectional images. As the insect approaches the
nest, there is a decrease in image difference [16].

In this study, two additional ant-inspired navigation skills
have been implemented on-board the AntBot robot based on
low-acuity omnidirectional visual sensor: (i) OF-based obsta-
cle avoidance, and (ii) snapshot-based autonomous localiza-
tion. This study is structured as follows: section II provides
a brief overview of related work on visual-based navigation
applied to autonomous vehicles. The insect-inspired omni-
directional vision sensor is introduced in section III. Then,
obstacle avoidance is described in section IV, and snapshot-
based navigation in section V.

II. RELATED WORK

Over the past decades, omnidirectional vision [17] in the
context of localization has received significant attention. In
the late 1990s, Lambrinos et al. worked on the development
of a desert ant-inspired wheeled robot, called Sahabot 2 [18].
This robot was equipped with a sky compass for the es-
timation of its heading. It also included a wheel encoder
for the odometric estimation, and an omnidirectional vision
system. The snapshots were reduced to 1-D and used for
determining the homing vector direction of the robot. This
was performed by comparing the current retinal position of
landmarks to the 1-D omnidirectional image taken at the
goal location. Later, Stürzl and Mallot introduced a method
based on the Fourier transform to estimate the orientation of
their ground robot Khepera equipped with an omnidirectional
vision sensor [19]. Images were reduced to 1-D with a reso-
lution of 1◦ per pixel. Their approach successfully addressed
key elements like the memory usage and computational
requirements for embedded applications. Very promising
results have been suggested on-board the HECTOR hexapod
robot lately with a frontal fisheye lens [20]. Further studies
made use of omnidirectional vision to help determining
topological maps [21], [22] and converging towards SLAM
strategies [23], [24]. Recent studies have shown new oppor-
tunities coming with the event-based cameras, as reported
in [25], since they offer multiple advantages over regular
cameras, like asynchronous processing of motion, high tem-
poral resolution (few µs latency), and limited sensitivity to
light variations.

Other methods for image processing and localization are
based on neural approaches. In 2000, Gaussier et al. pro-

posed a neural network based on the PerAc (Perception–
Action) architecture to solve visual-based homing with a
wheeled robot [26]. According to this model, the robot was
able to learn different places and connect them to each others
to create a sort of cognitive map. More recently, Ran et
al. trained a convolutional neural network to predict the
possible path directions of a ground robot equipped with
a non-calibrated omnidirectional vision sensor [27]. Neural-
based strategies are inherently robust to modification of the
scene, like the addition, the displacement or the removal
of objects (i.e. visual landmarks). In that respect, the fast
developing field of spiking neural networks, particularly
when coupled with event-based cameras, will definitely
make super-efficient and optimized neuromorphic solutions
for omnidirectional vision-based autonomous navigation on-
board small ground robots, or even flying drones.

Omnidirectional vision in the context of autonomous lo-
calization has mostly been tested on-board wheeled robots.
The resolution of the sensors was, for the vast majority,
significantly much higher than in the insects’ compound
eye. Consequently, it would be of great interest to explore
the possibilities of autonomous localization on-board an
insectoid robot that is intrinsically prone to oscillatory visual
disturbances, and with a coarse visual resolution – which
will be further referred as visual acuity – similar to insects’
compound eye. Such an omnidirectional visual sensor will
make it possible to test insect-based VG models, especially
desert ants, by combining PI navigation and snapshot-based
localization on-board the AntBot robot.

Fig. 2. The GoPano™ omnidirectional lens mounted on the Raspberry
Pi NoIR camera. The mirrors are displayed in grey. An example of light
pathway through the omnidirectional lens is shown in green.

III. INSECT-INSPIRED LOW-ACUITY
OMNIDIRECTIONAL VISION

The omnidirectional visual sensor is embedded on top of
the AntBot robot (Fig. 1), with an overall weight of 32.4
g; it is composed of a Pi NoIR camera (8 megapixels; up
to 120 fps, Fig. 2) on which we mounted the GoPano™
lens, consisting of a curved mirror that reflects a panoramic



Fig. 3. Example of a snapshot captured with the omnidirectional visual system. A Original picture where the margin circles were detected using the
Hough transform. B Unwrapped snapshot showing the 360◦ omnidirectional view in our flying arena of the Mediterranean.

view to the camera. An example of panoramic snapshot is
presented in Fig. 3A.

We reproduce here the visual acuity, i.e. the interom-
matidial angle ∆φ, of insects like honeybees (1.9◦ [28]),
flies (1.5◦ [29]) and desert ants (4◦ [30]), which is known
to fluctuate depending on both the size and the type of
compound eye, but also on many other aspects including, for
example, whether the insect is a predator or not (see review
[31]). This was performed by increasing the distance between
the optical center of the camera, and the omnidirectional lens.
Therefore, the focal points of each lens (i.e. camera lens and
panoramic lens) are separated and introduce analog blur, i.e.
reduce the visual acuity.

Fig. 4. Characterization of the omnidirectional sensor’s visual acuity. A
Experimental setup showing the sensor in front of the monitor displaying the
calibration pattern. B Examples of pictures for varying spatial frequencies.
f represents the number of cycles.

The visual acuity V.A. of an optical system is defined as
the minimal resolution angle, and is inversely proportional to

the spatial frequency ν (in cycles/◦). We can find the spatial
cut-off frequency νco of the optical system in its Modulation
Transfer Function (MTF) [31]:

V.A. = ∆ρ =
1

νco
(1)

The experimental setup for the characterization of the
visual acuity (Fig. 4A) was composed of the omnidirectional
visual sensor placed in front of a square target (20 × 20
cm) at a distance of 23 cm. The target consisted of a series
of white-and-black stripes with varying spatial frequency
and displayed by a standard monitor. Multiple pictures were
taken with the omnidirectional sensor, and further processed
to determinate its acuity. During acquisitions, the position
of the camera remained fixed; only the spatial frequency
f was changed. The procedure consisted in taking pictures
while increasing f until it became impossible to distinguish
two consecutive lines (i.e., MTF = 0). Resulting examples
are plotted in Fig. 4B. The target’s frequency threshold was
found to be equal to fth = 31 cycles. Therefore, the sensor’s
cut-off spatial frequency νco can be computed as follows:

νco =
fth
2 · γ

≈ 0.66 cycles/◦ (2)

where γ = atan((20/2)/23) = 23.5◦ is the angular diameter
of the target in degrees. The visual acuity V.A. is therefore
equivalent to an acceptance angle ∆ρ of 1.5◦ (Eq. 1), which
is consistent with the ones of insects’ compound eyes, and
thus confirms the suitability of our omnidirectional sensor as
a robotic artifact of the visual system of insects.

An example of the snapshots recorded by the omnidirec-
tional camera is provided in Fig. 3A. By applying a double
Hough transform, the two margin circles were detected and
used in a custom-made unwrapping program (Fig. 3B). For
all the applications, pictures were captured with a resolution
of 640 × 480 pixels, and the resolution of the resulting
unwrapped snapshot was of 640 × 120 pixels (i.e. 76,800
pixels), then providing an inter-pixel angle of ∆φ = 0.6◦.

IV. OF-BASED DETECTION OF OBSTACLES

The computation of the OF was performed on the un-
wrapped snapshots by means of the Lucas-Kanade method



implemented within the OpenCV™ graphics programming
environment [32], [33]. As far as we know, the pyramidal
implementation of the Lucas-Kanade method is the fastest
algorithm in image processing to extract the OF. According
to the Lucas-Kanade method, we assume that the displace-
ment of objects in two consecutive snapshots is small and
approximately constant within a neighborhood of a selected
pixel. This hypothesis is consistent with the robot’s speed
that was set at 10 cm/s, producing small OF with respect to
both the visual acuity of the omnidirectional visual sensor
and the configuration of the environment (Fig. 5).

Fig. 5. The AntBot robot is walking straight forward in the direction of
the obstacle (i.e. cylinder).

A set of N points of interests (PoI) were first identified for
each snapshot within a predefined region of interest (RoI),
i.e. a fixed fraction of the field of view (FoV) centered
around the horizon line (e.g., middle of the FoV). Then, the
matching PoI between two consecutive snapshots found, thus
providing an estimate of the displacement vector used for the
computation of the OF. To limit the noise, only the PoI for
which the estimated OF was higher than an arbitrarily fixed
threshold value were kept.

Two examples of the results we obtained are displayed in
Fig. 6. For each snapshot, the histogram of the selected PoI
producing OF vectors were plotted to help the visualization
of clusters. These clusters were considered as potential obsta-
cles to avoid. On Fig. 6A, results show the PoI and clusters
within a RoI set at 100% of the Fov, with N = 1000. These
parameters led to the detection of the frontward obstacle,
but also the motion of the ground and the legs, therefore
considered as obstacles to avoid. To prevent from such a
mistake, the number of PoI was decreased to N = 100, and
the RoI was set at 30% of the FoV, thus removing the OF
caused by the robot’s legs (see Fig. 6B). Besides, the OF
threshold was slightly increased. The results are shown in
Fig. 6B, where only the frontward obstacle is identified. In
a navigational context, the angular sector depicted by the
cluster of PoI can be used to set the new heading of the
robot.

V. SNAPSHOT-BASED LOCALIZATION

In this section, the snapshot-based indoor localization was
addressed under the low visual acuity constraint, including
visual disturbances coming from the walk of the robot.

Fig. 6. Results obtained for the experimental context introduced in Fig. 5.
A N = 1000; RoI set at 100% of the FoV. B N = 100; RoI set at 30%
of the FoV. For each snapshot, the frontward obstacle is magnified by the
dashed yellow box. FoC: focus of contraction, diametrically opposite to the
focus of expansion (FoE). Thick red lines depict the clusters of PoI, i.e. the
obstacles’ angular, based on the PoI histogram (in blue).

Image normalization was not necessary in this experimental
context since the light control prevented from any variation.
The snapshot comparison method applied relied on the
root means square (R.M.S.) difference of omnidirectional
snapshots, as introduced in Zeil et al. [16], for which the
visual acuity was of 0.2◦. The following experiments were
performed indoor, in the flying arena of the Mediterranean
equipped with 17 motion-capture cameras (VICON™) cov-
ering a re-configurable space (6 × 8 × 6 m).

First, the robot was asked to walk over a 2m-long straight
line and take a snapshot every 5 cm. The R.M.S. image
difference was computed between these views and a mem-
orized snapshot taken at the center of the line (Eq. 3). This
procedure provides us with an image difference value for
each location along the line. This acquisition was repeated
for two lighting conditions (artificial light), namely at 1200
and 120 Lux. Results are displayed in Fig. 7.

R.M.S. =

√
1

m× n

∑(
I(x, y) − Iref (x, y)

)2
(3)

These results are consistent with those presented in [16] as
the difference function for a particular memorized snapshot
was computed, showing typical shape and smooth variations
with the distance to the reference location. The depth ob-
served at the middle of the course proves that omnidirectional
snapshot-based navigation relying on a simple R.M.S. image
difference method, with coarse visual acuity (1.5◦) and even
low lighting conditions, is enough to reach a 5 cm localiza-
tion accuracy, provided the initial grid mesh of memorized
snapshots.

In a second series of tests, we had the robot navigating in
the flying arena where boxes of different sizes and shapes
were put on the floor to serve as visual landmarks for



Fig. 7. Difference function (R.M.S.) from a reference location (at 0) along
a straight line and for two distinct light conditions: 1200 Lux and 120 Lux.

localization (Fig. 8). Prior to the acquisition, a 2-D grid
mesh of memorized snapshots were collected with 50 cm
resolution along the y-axis, and 1m-resolution along the
x-axis. Each of the omnidirectional snapshots were taken
with the same orientation. While navigating, the robot took
snapshots of its current view at random times. The R.M.S.
image difference was then used to determine to which node
of the grid mesh the robot was the closest. To deal with
the robot’s changing heading, the current view was rotated
by successive 90◦ steps. Results show that for each actual
position of the robot, the closest node (memorized snapshot)
was successfully activated. On average, the distance error
between the robot’s actual location and the activated node
snapshots reached 25 ± 10 cm (mean ± sd), with a median
equal to 24 cm (Fig. 9Left). More precisely, the average
error along the x-axis was found to be equal to 16 ± 11
cm (median: 15 cm), and 16 ± 10 cm (median: 18 cm)
along the y-axis. These results are consistent with the 2-
D grid mesh resolution, though we would have expected a
greater average error along the x-axis. An example of image
difference distribution for the 4th snapshot of the robot is
displayed in Fig. 9Right.

VI. CONCLUSION

In this study, we presented a series of visual-based navi-
gation behaviors implemented on-board the AntBot hexapod
robot using an omnidirectional visual sensor, the coarse
visual acuity of which makes it similar to the insects’
compound eye. The characterization of the omnidirectional

Fig. 8. Top view of the snapshot-based localization experiment in the
flying arena of the Mediterranean. Blue markers depict the position of the
memorized snapshots. Red markers show the actual location of the robot
when the current snapshot was taken. The red dashed curve shows the real
trajectory of the robot, and the blue curve shows the believed trajectory
based on the memorized snapshots activated by the r.m.s. difference (black
lines).

Fig. 9. Localization estimation results. Left Overall results showing the
(a) 2-D distance, (b) x-axis, and (c) y-axis error distributions between the
robot’s believed position according to the 2-D grid mesh, and its actual
location when taking pictures. Right Example of image difference between
snapshot #4 and node snapshot #15 (the one activated by the R.M.S.; see
Fig. 4). The bottom chart displays the image difference according to the
neighboring node snapshots.

camera reported a coarse visual acuity equal to 1.5◦, corre-
sponding to 90 minutes of arc. As a comparison, the visual
acuity of the human’s eye is 1 minute of arc (1◦/60) in the
fovea.

Obstacle detection was performed within a region of
interest set at 30% of the total field of view, centered
around the horizon line. AntBot was able to detect obstacles
with a coarse acuity while walking, despite its locomotion
mode which naturally causes oscillations of the field of
view. Besides, autonomous localization was successfully
performed within an indoor cluttered environment with visual
landmarks (e.g. boxes), reaching an accuracy of 0.25 m after
a 9m-journey and representing only 3 steps error on average
(hexapod stride length: 8.2 cm).



These results demonstrate that high-resolution vision is
not necessary to achieve complex tasks like homing. Fur-
ther investigations will consider automatic detection of the
FoE/FoC points, which should contribute to the optimization
of the performance of detection of obstacles while walking.
As for desert ants, AntBot could combine a path integration
with a coarse ommidirectional vision to autonomously ex-
plore unknown environments while avoiding obstacles. The
next question will be to understand how these two com-
ponents of the insects’ navigational toolkit merge together.
Regarding this work and our prior studies on path integra-
tion [1], we believe that AntBot is a reliable robotic replica
of desert ants which, besides leading to new parsimonious
and accurate navigation systems for robotic applications, can
be used as an experimental platform for testing biological
models [1].
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[18] D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner, “A
mobile robot employing insect strategies for navigation,” Robotics and
Autonomous systems, vol. 30, no. 1-2, pp. 39–64, 2000.

[19] W. Stürzl and H. A. Mallot, “Efficient visual homing based on fourier
transformed panoramic images,” Robotics and Autonomous Systems,
vol. 54, no. 4, pp. 300–313, 2006.

[20] H. G. Meyer, D. Klimeck, J. Paskarbeit, U. Rückert, M. Egelhaaf,
M. Porrmann, and A. Schneider, “Resource-efficient bio-inspired
visual processing on the hexapod walking robot hector,” Plos one,
vol. 15, no. 4, p. e0230620, 2020.
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