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City size distributions are not strictly Pareto, but upper tails are rather Pareto like (i.e. tails are regularly varying). We examine the properties of the tail exponent estimator obtained from ordinary least squares (OLS) rank size regressions (Zipf regressions for short), the most popular empirical strategy among urban economists. The estimator is then biased towards Zipf's law in the leading class of distributions. The Pareto quantile-quantile plot is shown to offer a simple diagnostic device to detect such distortions and should be used in conjunction with the regression residuals to select the anchor point of the OLS regression in a data-dependent manner. Applying these updated methods to some well-known data sets for the largest cities, Zipf's law is now rejected in several cases.

Introduction

Zipf's law continues to fascinate economists. In urban economics, it concerns the largest city sizes and stipulates (in its strictest form) that the upper tail of the city size distribution not only decays like a power function, but also that the tail exponent equals unity. The most popular empirical strategy among urban economists is the estimation of the tail exponent by (variants of) an ordinary least squares (OLS) regression of log sizes on log ranks (a Zipf regression for short).1 Since real-world (city) size distributions are not strictly Pareto but the upper tails are rather Pareto like (i.e. tails are regularly varying), such Zipf regressions suffer from asymptotic distortions. These distortions are rarely taken into account in applied work. In particular, it turns out that the Zipf regression estimator is biased towards Zipf's law in many situations, while the associated Pareto quantile-quantile (QQ) plot is concave like and becomes linear only eventually. This is of great practical relevance since practitioners usually select in a data-invariant manner the threshold point of the Zipf regression. This paper addresses these issues, by exploiting the relation between the Zipf regression and the Pareto QQ-plot, using methods that are new to urban economics.

To be more precise, consider the distribution function F of positive independent and identically distributed city sizes that is regularly varying: for large x and γ ∈ (0, ∞)

1 -F(x) = x -1 γ l(x) (1)
where l is slowly varying at infinity. 2 Focussing instead on the largest city sizes, the tail quantile function U (x) ≡ F -1 (1 -1/x) gives an equivalent representation

U (x) = x γ l(x)
where F -1 denotes the generalised inverse and l(x) is another slowly varying function.

The parameter γ , usually referred to as extreme value index (and 1/γ as the tail exponent), is unknown and needs to be estimated.

In particular, γ is the slope coefficient in the Pareto QQ-plot that Zipf regressions seek to estimate. To see this and the ensuing problems, reconsider the tail quantile function. As x → ∞, log U (x) ∼ γ log(x). Replacing these population quantities with their empirical counterparts gives the Pareto QQ-plot. It follows that γ is the ultimate slope of this plot. If the distribution were strictly Pareto, 3 this plot would be linear throughout. However, if the tail of the distribution varies regularly, the Pareto QQ-plot will become linear only eventually. In Appendix A.3.1 we show that, using the tail quantile function, the Pareto QQ-plot has a tendency to exhibit a concave-like curvature for leading parametric models. A slow decay in the nuisance functions l(x) and l(x) will then induce asymptotic distortions in the estimator of the slope coefficient in the Zipf regression. Below, this slow decay will be modelled formally by higherorder regular variation and quantified. In particular, building on asymptotic expansions developed in [START_REF] Schluter | Top incomes, heavy tails, and rank-size regressions[END_REF], we show that the OLS estimator over-estimates γ in the leading class of distributions in which the nuisance function l in model (1) converges to a constant at a polynomial rate. In this case Zipf regressions are biased towards Zipf's law. The Pareto QQ-plot therefore offers a simple diagnostic device to detect the presence of such distortions as it conveys important information about the behaviour of the Zipf regression estimator.

It is then shown how the threshold parameter (i.e. the kth upper-order statistic) for this Pareto QQ-plot and the OLS regression can now be selected in a data-dependent manner, using regression diagnostics based on the residuals of the OLS regression. The problem in common practice is that practitioners tend to select mechanically the number of observations to be included in the Zipf regression. As [START_REF] Gabaix | The evolution of city size distributions[END_REF] observe "optimum cutoff techniques have not (..) been used in the context of the city size distribution". This choice determines the threshold, beyond which linearity is implicitly assumed. Such "blind" choice (i.e. without visual reference to the Pareto QQ-plot) then risks to fall within the curved, usually concave, part of the Pareto QQplot, thus distorting the estimator. For instance, it is common practice to select the top 1% of city sizes in complete census for all cities, or to consider only cities above 100,000 inhabitants (see, for example, Nitsch 2005, p. 95, or Giesen andSüdekum 2011, p. 671, andreference therein), or using all observations in left-truncated data sets for the largest cities. The latter case is illustrated in Sect. 3, by revisiting the data and Zipf regressions reported in [START_REF] Soo | Zipf's law for cities: a cross country investigation[END_REF] and [START_REF] Nishiyama | OLS estimation and the t test revisited in rank-size rule regression[END_REF]. When these proposed updated methods are applied to these well-known data sets for the largest cities, we detect some substantial differences to the results reported in the literature. Zipf's law (in the strictest sense with γ = 1) is now rejected in some of these cases and confirmed in others.

The empirical importance of this threshold selection in the presence of a Pareto QQ-plot that exhibit curvature is illustrated in Fig. 1 for administrative data for cities in Germany in the year 2000, using up to the largest 5000 cities. Panel (a) depicts the Pareto QQ-plot, and panel (b) plots the Zipf regression estimates γ = γ (k) as a function of the k upper-order statistics. The Pareto QQ-plot clearly depicts a concavelike curvature in the lower left part of the plot, which then leads to an over-estimate of γ . The larger k, the larger is the resulting distorted estimate γ (k). This curvature then explains the unexplained observation in, for example, Nitsch (2005, p. 94) or [START_REF] Gabaix | The evolution of city size distributions[END_REF] that a larger number of observations tends to increase the estimate γ (i.e. in their notation reduce the estimate 1/ γ ). 4 In Appendix A.3.1, the curvature is examined parametrically using the tail quantile function. Below, we quantify these distortions and propose a method for choosing k optimally.

This paper therefore makes a substantive contribution to the extensive literature on the city size distribution, surveyed in, for example, [START_REF] Gabaix | The evolution of city size distributions[END_REF] and the meta-studies based on Zipf regressions [START_REF] Nitsch | Zipf Zipped[END_REF][START_REF] Cottineau | Re)producing knowledge about city size distributions. UCL working paper[END_REF]) already mentioned. A recent applied literature extends this scope and estimates Zipf regressions for country size distributions (see, for example, [START_REF] Rose | Cities and countries[END_REF]) and considers the world city size distribution (see, for example, Luckstead and Devadoss 2014). Clarity about the speed of tail decay for the largest cities is important. Firstly, the largest cities contain most of the population. For instance, using a cut-off of 100,000 people in the often used 2000 US census place data captures 63% of the population and 1% of places. 15% of all places contain 80% of the population. Secondly, the speed of tail decay informs about the underlying theoretical generative growth processes. For instance, Gibrat's classic model of i.i.d. proportional growth leads to a lognormal size distribution, while adding a lower reflecting barrier to geometric Brownian motion leads to a Pareto size distribution with unity exponent (used in Gabaix 1999b), and subordinating geometric Brownian motion can lead to the so-called double-Pareto-lognormal distribution [START_REF] Reed | On the rank-size distribution for human settlements[END_REF]. See also [START_REF] Perline | Strong, weak and false inverse power laws[END_REF]. Debates about the speed of tail decay are ongoing and extend beyond urban economics into diverse fields in economics and the natural sciences, see, for example, [START_REF] Gabaix | Power laws in economics and finance[END_REF] and [START_REF] Schluter | Size distributions reconsidered[END_REF] for recent discussions. 5 In particular, [START_REF] Schluter | Size distributions reconsidered[END_REF] propose a unifying statistical framework based on the classic Fisher-Tippett theorem and allied concepts of maximum domains of attraction. This reasoning gives rise to encompassing tests of whether the tail of the size distribution decays faster than any power function, i.e. tests of the so-called Gumbel-Gibrat hypothesis γ = 0 (which includes the case of the lognormal distribution). In the empirical applications to firm and city size data, the hypothesis that γ be zero is robustly and clearly rejected in favour of γ > 0, the setting of model ( 1) and thus justifying the use of Zipf regressions.

In order to illustrate the debates and the problems of interpretation, [START_REF] Eeckhout | Gibrat's law for (all) cities[END_REF], for instance, using US Census Bureau data, states that "cities grow proportionately" and "it is shown that the size distribution of the entire sample is lognormal and not Pareto". However, using the same data, [START_REF] Levy | Gibrat's law for (all) cities: comment[END_REF] observes that "[for the largest cities] the size distribution diverges dramatically and systematically from the lognormal distribution, and instead is much better described by a power law". This latter observation is reiterated in, for example, [START_REF] Ioannides | US city size distributions: Robustly Pareto, but only in the tail[END_REF] based on different methods (which is revisited below). While the literature beginning with the influential contribution of [START_REF] Eeckhout | Gibrat's law for (all) cities[END_REF] has the merit of considering the entire city size distribution, [START_REF] Schluter | Size distributions reconsidered[END_REF] clarify that the analysis of the largest city sizes requires appropriate statistical techniques based on extreme value theory, 6 and that this task is distinct from fitting the main body of the size distribution. Moreover, the asymptotic distortions caused by the slowly varying nuisance function l in model (1) render problematic fully parametric attempts in the applied literature that seek to test lognormality against strict Paretoness (see, for example, [START_REF] Malevergne | Testing the Pareto against the lognormal distributions with the uniformly most powerful unbiased test applied to the distribution of cities[END_REF], for a statistically sophisticated maximum-likelihood-based approach to discriminating between the tails of the two distributions).

A very recent literature in regional science seeks to combine the two distributional perspectives by smoothly pasting a strict Pareto tail to the main body of a lognormal size distribution. For instance, [START_REF] Ioannides | US city size distributions: Robustly Pareto, but only in the tail[END_REF] propose a maximum likelihood approach to estimate jointly the switching point and the distributional parameters. Fazio and Modica (2015) compare several other approaches to identifying the smoothly pasted switching point (and assess their performance in a simulation study when the data generating process is exactly Pareto-lognormal). These recent approaches address the question of how data from the entire city size distribution could be used. However, given the assumption of strict Paretoness in the upper tail, this approach inherits the asymptotic distortion discussed above caused by the confounding presence of the slowly varying function l in model ( 1). This observation is numerically illustrated in Appendix A.3.3. The semi-parametric model (1) has the merit of avoiding the problems of fully specified distributions while imposing informative restrictions on the data of city sizes. Furthermore, the threshold points of the Zipf regression and the Pareto QQ-plot are determined below in a data-dependent manner.

The paper is organised as follows. In the next section we introduce the concept of higher-order regular variation that enables us to be precise about the decay of the nuisance function l in model (1). We then recall the Pareto QQ-plot, relate it to the Zipf regression, recall the asymptotic theory for the OLS estimate of γ and characterise the asymptotic distortions. In Sect. 2.4, we consider the choice of threshold. We illustrate the methods in several applications in Sect. 3. When these methods are applied to some well-known data sets for the largest cities, we detect some substantial differences to the results reported in the literature. Zipf's law is now rejected in some of these cases and confirmed in others.

The Pareto QQ-plot and the rank size regression

Preliminaries: higher-order regular variation

The distributional theory for the Zipf regression estimator exploits modelling the slowly varying nuisance function l in (1) as higher-order variation. Recalling the preceding discussion of the tail quantile function, it is immediate that model (1) has the equivalent (first-order regular variation) representation lim t→∞ [log U (t x)log U (t)]/[a(t)/U (t)] = log x for all x > 0 where a is a positive norming function with the property a(t)/U (t) → γ (see, for example, [START_REF] Dekkers | A moment estimator for the index of an extreme-value distribution[END_REF]). The problem for estimating the extreme value index γ is the behaviour of the slowly varying function l in (1). It is therefore common practice in the extreme value literature to model such second-order behaviour by strengthening the first-order regular representation to second-order regular variation. Following de [START_REF] De Haan | Generalized regular variation of second order[END_REF], we assume

lim t→∞ log U (t x)-log U (t) a(t)/U (t) -log x A(t) = H γ,ρ (x) (2)
for all x > 0, where

H γ >0,ρ<0 (x) = 1 ρ ( x ρ -1 ρ -log x) with ρ < 0.
This parameter ρ is the so-called second-order parameter of regular variation, and A(t) is a rate function that is regularly varying with index ρ, with A(t) → 0 as t → ∞. As ρ falls in magnitude, the nuisance part of l in (1) decays more slowly. Most heavytailed distributions of interest satisfy representation (2). The Hall class of distributions [START_REF] Hall | On some simple estimate of an exponent of regular variation[END_REF], which includes, for instance, the Burr, Student t, Fréchet, and Cauchy distributions, is but one example and considered explicitly in Appendix A.3, which illustrates the role of ρ, the concavity of the Pareto QQ-plot, and the induced substantial distortions of statistical inference.

The rank size regression estimator

We briefly recall the Pareto QQ-plot and the associated Zipf regression that yields an estimator of the tail index γ . Details are collected in Appendix A.1. Variants of this Zipf regression are discussed in Sect. 2.3.

The key insight is obtained from the tail quantile function: As x → ∞, log U (x) ∼ γ log(x) in model (1). Replacing these population quantities with their empirical counterparts gives the Pareto QQ-plot whose ultimate slope is γ . To this end, let X 1,n ≤ • • • ≤ X n,n denote the order statistics of X 1 , . . . , X n , and consider the k upper-order statistics. The Pareto QQ-plot becomes ultimately linear for a sufficiently high threshold X n-k,n where k < n. In Sect. 2.4, we consider how this threshold, which is usually ignored by practitioners in regional science, can be selected in a data-dependent manner.

The estimator of the slope coefficient in the Pareto QQ-plot is obtained by minimising with respect to γ the least squares criterion of the Zipf regression of sizes on ranks,7 γ = arg min [START_REF] Schluter | Top incomes, heavy tails, and rank-size regressions[END_REF] demonstrates that under assumption (2), as k → ∞ and k/n → 0, this estimator is weakly consistent, and if

k j=1 log X n-j+1,n X n-k,n -γ log k + 1 j 2 (3) with 1 ≤ j ≤ k < n.
√ k A(n/k) → 0 √ k( γ -γ ) → d N 0, 5 4 γ 2 . (4)
Asymptotically, the estimator is thus unbiased if

√ k A(n/k) → 0.
But if this decay is slow, the estimator will suffer from a higher-order distortion in finite samples given by

b k,n ≡ 1 2 γ ρ 2 -ρ (1 -ρ) 2 A(n/k) (γ > 0, ρ < 0) (5)
For instance, in the Hall class (see Appendix A.3 for details), the tail quantile function is

U (x) = cx γ [1 + dx ρ + o(x ρ )] so that A(t) = (ρ 2 /γ )dt ρ .
The sign of the bias is therefore given by -sign(d), and one can show that d < 0 for the nested Burr, Student t, Fréchet, and Cauchy distributions. It follows that b k,n > 0, so γ is over-estimated, and Zipf regressions are thus biased towards Zipf's law in models in which the nuisance function l in model (1) converges to a constant at a polynomial rate. The empirical evidence presented in Sect. 3 is in line with this theory.

OLS regression variants in the literature

The literature contains several variants of regression (3). Usually, practitioners include the additional estimation of a regression constant: log X n-j+1,n is regressed on a constant and log j. [START_REF] Schultze | On least squares estimates of an exponential tail coefficient[END_REF] prove weak consistency of the estimator in this setting. [START_REF] Kratz | The QQ-estimator and heavy tails[END_REF] also prove weak consistency, obtain the distributional theory for this alternative estimator, and show that its asymptotic variance is 2γ 2 /k, which exceeds the asymptotic variance of γ given in (4). Hence, this regression variant is less efficient (given the additional estimation of the regression constant) and the estimate exhibits excessive variability (which can be an issue for hypothesis testing, such as Zipf's law). Similar comments apply to the so-called dual regressions in which ranks are regressed on sizes [START_REF] Nitsch | Zipf Zipped[END_REF], refers to the two regressions types as the Lotka and Pareto forms). Shifting ranks, as examined formally in [START_REF] Gabaix | Rank-1/2: a simple way to improve the OLS estimation of tail exponents[END_REF] in the strict Pareto model, does not eliminate the asymptotic distortion in model (1) [START_REF] Schluter | Top incomes, heavy tails, and rank-size regressions[END_REF]. Finally, we observe that some practitioners augment the OLS regression with a squared regressor in order to control directly the curvature of the QQ-plot (rather than selecting k). However, since the distributional theory for this augmented regression is currently unknown (not even in the strict Pareto model), statistical inference is not possible in this setting (Nishiyama et al. 2008 p. 703, make a similar observation). 8 Since Pareto-like tails lead to curved Pareto QQ-plots when the nuisance function l in model (1) decays slowly (as illustrated in Fig. 6a), it is also not clear how significance tests for the squared regressor should be interpreted.

Many other estimators of γ have been proposed in the statistical extreme value literature (see, for example, the textbook treatments in [START_REF] Embrechts | Pareto or log-normal? Best fit and truncation in the distribution of all cities[END_REF][START_REF] Beirlant | Statistics of extremes, wiley series in probability and statistics[END_REF]). The Hill estimator has received most attention, and its asymptotic normality has been studied in various settings (e.g. [START_REF] Hall | On some simple estimate of an exponent of regular variation[END_REF]Csörgő et al. 1985, or Haeusler and[START_REF] Haeusler | On asymptotic normality of Hill's estimator for the exponent of regular variation[END_REF]. In particular, using a second-order condition similar to (2), de Haan and Peng (1998

) show that if lim n→∞ √ k A(n/k) = λ, then √ k( γ (Hill) -γ )
follows asymptotically a normal law with mean λ/(1 -ρ) and variance γ 2 . 9 We observe that the variance of the Hill estimator for a given k is thus smaller than the variance of any of the rank size OLS estimators. However, the Hill estimator also suffers from asymptotic distortions, and requires, as the OLS estimator, the selection of the threshold level k. This problem is considered next.

The choice of the threshold k

The OLS regression (3) provides further diagnostics that can be used to select optimally the threshold level k in a data-dependent manner. Specifically, the residuals enable us to estimate nonparametrically the asymptotic mean-squared error (AMSE), which, in view of the bias-variance trade-off implied by ( 4) and ( 5), is commonly used in the statistical literature as a selection criterion (e.g. [START_REF] Cottineau | Re)producing knowledge about city size distributions. UCL working paper[END_REF][START_REF] Hall | Using the Bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems[END_REF][START_REF] Beirlant | Tail index estimation, Pareto quantile plots, and regression diagnostics[END_REF].

Following [START_REF] Beirlant | Tail index estimation, Pareto quantile plots, and regression diagnostics[END_REF], we observe that the expectation of the mean weighted theoretical squared deviation

1 k k j=1 w j,k E log X n-j+1,n X n-k,n -γ log k + 1 j 2 (6)
8 In the Burr model, this augmented regression increases the positive distortions of the point estimates of γ for high k. For instance, in a Monte Carlo with 1000 replications in the Burr model with γ = 2/3, sample sizes n = 1000 and k = 500, the mean point estimates of γ were 1.59 when ρ = -.5, 1.17 when ρ = -.75, and 0.998 when ρ = -1. Evaluated at k = n, the distortions are even higher, exceeding the population value at least by a factor of 8; for instance, when ρ = -.5, the mean estimate is 10.89. 9 In particular, de Haan and Peng (1998) obtain the asymptotic expansion for the Hill estimator

γ (Hill) = d γ + γ √ k Z k + 1 1-ρ A(n/k)(1 + o p (1)) where Z k = √ (k)(k -1 k i=1 E i -1
) and E i are i.i.d. standard exponential random variables. However, since their second-order assumption differs from (2), their bias expression is not directly comparable to (5). 8) and we have set ρ = -5 equals, to first order,

c k Var( γ ) + d k (ρ)b 2 k,n (7)
for some coefficients c k depending only on k, and d k (ρ) depending on k and ρ (see Appendix A.2 for details). The procedure then consists in applying two different weighting schemes w (i) j,k (i = 1, 2) in ( 6), estimating the corresponding two mean weighted theoretical deviations using the residuals of regression (3), and computing a linear combination thereof such that

Var( γ ) + b 2 k,n
obtains. We carry out this programme for weights w (1) j,k ≡ 1 and w (2) j,k = j/(k + 1) for a set of preselected values of ρ. 10Table 1 reports some performance evidence for this AMSE-based selection procedure in the Burr model parametrised as 1 -F (γ ,ρ) (x) = (1+ x -ρ/γ ) 1/ρ with γ = 2/3, ρ ∈ {-0.5, -0.75, -1}, and n ∈ {1000, 10,000}. Appendix A.3 provides additional details for this model (e.g. the role of ρ and the curvature of the Pareto QQ-plot). The higher-order distortion (5) becomes Burr is explained by the asymmetry of the theoretical AMSE plot illustrated in the figure (which varies across the experiments since the squared bias increases at speed k -ρ whereas the variance does not depend on ρ). We also verify that the theoretical bias in the Burr model is a good guide for the actual distortions, by bias-correcting the estimate γ (k * ). The table shows that across all experiments the bias corrected estimate γ (k * )b Burr k * ,n is very close to the population value 2/3.

b Burr k,n = 1 2 γ 2 -ρ (1 -ρ) 2 n k ρ > 0.

Bias correction and lower bounds analysis

By trading off asymptotic bias and variance, the resulting optimal estimate γ (k * ) still exhibits a bias. A simple pragmatic procedure is based on (6) with w j,k ≡ 1, and yields a lower bound for γ as follows. An estimate of the mean theoretical deviation is the mean of the squared residuals k -1 SSR k of the rank size regression (3). All the measured deviation k -1 SSR k is then ascribed to the bias,

bk,n (ρ) = [k -1 SSR k /d k (ρ)] 1/2 (8)
thereby defining a conservative bound γ -bk,n (ρ). The sensitivity analysis then consists of examining this expression for a range of values of ρ. Table 1 reports the results of this exercise for the Burr case, setting ρ = -.5 as a conservative value, allowing, by Fig. 6a, for curvature in the Pareto QQ-plot. It turns out that the resulting estimates are very close to the population value of γ , improving on the estimate γ (k * ). 

Applications

We illustrate the methods in several applications to the upper tail of the size distribution of cities, focussing on the diagnostic Pareto QQ-plot, the positive distortions of the OLS estimator, and the selection of k.

The size distribution of cities in Germany

Our first empirical application concerns the size distribution of cities in Germany. We use first an administrative dataset for Germany for the year 2000, provided by the German Federal Statistical Office. These administrative data are highly accurate due to the legal obligation of citizens to register with the authorities. The unit of analysis is the "city", or more precisely the municipality or settlement ("Gemeinden"). Population sizes are as of December 31, and the year 2000 size distribution comprises 13,854 cities. Figure 3 depicts the results. In panel (a), we plot the estimated AMSE for several values of ρ. The minimisers closely agree, the estimated AMSE being minimised at k * = 908. In panels (b) and (c) we revisit Fig. 1, now restricting the plots to the 1000 largest cities. In panel (b) we redraw the Pareto QQ-plot, as well as the regression line with slope γ (k * ) = .761 and threshold X n-k * ,n . In panel (c), we draw again the estimates γ (k) as a function of the k, as well as the pointwise 95% symmetric confidence intervals. The vertical line at k * = 908 indicates the optimal choice of k, yielding the associated γ (k * ) = .761. This value seems a very sensible choice, as the plot of γ (k) in the interval [350, k * ] appears fairly flat, so the best choice in this interval is then such that the variance is minimised.11 Returning to panel (b), the depicted regression line describes the Pareto QQ-plot well. k * minimises the estimated AMSE using the procedure described in Sect. 2.4. Standard errors, not reported but depicted in Fig. 4, can be easily computed using the distributional theory given in Eq. ( 4). bk * ,n is the conservative bias correction with ρ = -0.5 given by Eq. ( 8)

Cross-country analysis: cities

This illustration revisits and updates the cross-country comparative analysis of [START_REF] Soo | Zipf's law for cities: a cross country investigation[END_REF] and [START_REF] Nishiyama | OLS estimation and the t test revisited in rank-size rule regression[END_REF] using data for the largest cities from citypopulation.de.12 These data sets are left-truncated, and we denote the resulting sample sizes by n 1 . We consider the largest city sizes for European countries for which at least 100 observations are available. Practitioners use typically the complete data, thus computing (variants of) γ (n 1 ). The above theoretical analysis suggests that these are likely to be over-estimates (hence biased towards Zipf's law). The purpose of this illustration is to examine whether k * < n 1 , whether γ (k * ) differs from γ (n 1 ), and, if so, relate it to the curvature of the diagnostic Pareto QQ-plot. Finally, we perform the lower bounds analysis in order to gauge the magnitude of the potential distortion.

Table 2 reports the results. Although the data are for recent years, the sample sizes n 1 and estimates γ (n 1 ) are similar to those reported in [START_REF] Soo | Zipf's law for cities: a cross country investigation[END_REF] (where 1/ γ (n 1 ) is given). For the majority of countries considered, k * is substantially smaller than n 1 , which then results in substantially smaller estimates of γ .13 These positive distortions are thus in line with the statistical theory developed above.

In Fig. 4 we examine the diagnostic Pareto QQ-plot for four case in which we observe large differences. In panel (a), we depict the Swedish case. The plot reveals a pronounced initial curvature of the QQ-plot, and this significant departure from linearity explains the presence of positive distortions that increase as k increases beyond Pareto QQ-plots use the n 1 largest cities, and Zipf regression line with slope γ (k * ) and threshold X n-k * ,n . Estimates γ (k) are depicted as a function of the k upper-order statistics used in the Zipf regression (solid line) and associated pointwise 95% symmetric confidence intervals (dashed line),based on the distributional theory given in Eq. ( 4). The grey vertical line indicates k * k * . This is further depicted in the accompanying plot of γ (k). Similar remarks apply to the case of Russia, depicted in panel (b), and Poland, depicted in panel (c). For the UK, the departure from linearity in the QQ-plot is very mild, thus explaining the small difference between γ (n 1 ) and γ (k * ). Turning briefly to Zipf's law, we also observe that the value of 1 lies above the pointwise 95% confidence interval at k * for Sweden, Russia, and the UK; thus, Zipf's law is rejected for these cases. Taking into account the likely distortion, Table 2 also reports the lower bound given by γ (k * ) -bk * ,n . A bias adjustment in the implied range then suggests that in all cases bar Ukraine, Zipf's law is rejected.

Two agglomerations: Japan and France

In our final illustration concerns two urban agglomerations. First, we revisit the Japanese Urban Employment (UEA) areas in the year 2000, based on commuting patterns, examined in [START_REF] Nishiyama | OLS estimation and the t test revisited in rank-size rule regression[END_REF]. Table 3 reports the results, and Fig. 5 the diagnostic Pareto QQ-plot and the estimates γ (k). The point estimate using the complete data, γ (n 1 ), suggests a point estimate very close to the Zipf value 1 (almost identical to the value 1/.997 reported in [START_REF] Nishiyama | OLS estimation and the t test revisited in rank-size rule regression[END_REF]. But the diagnostic QQ-plot clearly shows an initial pronounced curvature inducing a substantial positive distortion. By contrast, the selection procedure yields k * = 70, and a point estimate of 0.853. However, the estimated variability of the estimate is sufficiently large so that the Zipf value 1 still falls within the 95% confidence interval (even after accounting for its shift suggested by bk * ,n ). The same observations apply to the French agglomeration data for the year 2015. The selection procedure for k * substantially reduces the point Data obtained from http://www.csis.u-tokyo.ac.jp/UEA/uea_code_e.htm (Japan) and http://citypopulation. de/ (France). k * minimises the estimated AMSE using the procedure described in Sect. 2.4. bk * ,n is the conservative bias correction given by Eq. ( 8) estimate compared to γ (n 1 ), but the associated variability is sufficiently large so that the Zipf value 1 is still contained in the confidence interval.

Conclusions

A Zipf regression is the most popular method for estimating the tail exponent of the city size distribution, and the established literature summarised in several metastudies and surveys covers close to 100 articles which report thousands of estimates. The (deceptive) ease of computing such a regression has undoubtedly contributed to its popularity. However, the econometric challenges posed by regular-varying upper tails are often not well understood by practitioners: (i) the regression estimator suffers from asymptotic distortions (the bias being usually towards Zipf's law), and (ii) the choice of the threshold parameter, often made mechanically, has important consequences. Both issues have been addressed using techniques that focus on the tail quantile function and that exploit the link between the Zipf regression and the Pareto QQ-plot, a key insight being that this plot becomes linear only eventually and that γ is its ultimate slope. The threshold parameter can now be selected in a data-dependent manner. These considerations and proposed methods are new to urban economics.

The relevance of these empirical methods is demonstrated by reconsidering some well-known data sets for the largest cities. While common practice in this established literature uses all available data points n 1 , it has been shown that in several cases these threshold points belong to the curved part of the Pareto QQ-plot, leading to an overestimation. By contrast, the proposed methods rectify this problem, yielding estimates γ that are smaller than γ (n 1 ), sometimes substantially so. Zipf's law is now rejected in some of these cases and confirmed in others.

The formal analysis in this paper is based on the standard assumption made the urban literature that city sizes are independent and identically distributed random variables. All papers cited in footnote 1 and Sects. 1 and 2.3 adopt this assumption. In order to examine to which extent the theoretical predictions hold for dependent data, the Supplementary Material provides evidence for AR(1), MA(1) and GARCH(1,1) processes. Results in [START_REF] Hsing | On tail index estimation using dependent data[END_REF] suggest that the current theory might be a reasonable guide if the dependence is sufficiently weak so that approximations to a normal law still hold. The Supplementary Material demonstrates that this is the case. In particular, in all experiments considered, the Pareto QQ-plots exhibit the concave-like curvature, and our method selects well the ultimate linear part of these QQ-plot.

The OLS estimator of the slope parameter in the Pareto QQ-plot is obtained by minimising the least squares criterion

k j=1 log X n-j+1,n X n-k,n -γ log k + 1 j 2 (1 ≤ j ≤ k < n)
with respect to γ . The resulting OLS estimator is

γ = 1 k k j=1 log k+1 j log X n-j+1,n -log X n-k,n 1 k k j=1 log k+1 j 2 .

A.2 The choice of k: details

The mean weighted theoretical squared deviation

1 k k j=1 w j,k E log X n-j+1,n X n-k,n -γ log k + 1 j 2 equals, to first order, c k Var( γ ) + d k (ρ)b 2 k,n
for some coefficients c k depending only on k, and d k (ρ) depending on k and ρ. For model ( 2) [START_REF] Schluter | Top incomes, heavy tails, and rank-size regressions[END_REF] shows that these coefficients are

d k (ρ) = ( 1 2 2-ρ (1-ρ) 2 ) -2
dk (ρ) and c k = (4/5) ck with

dk (ρ) = 1 k k j=1 w j,k ( j/(k + 1)) -ρ -1 ρ 2 ck = k j=1 w j,k ⎛ ⎜ ⎝ k-j+1 l=1 1 k -l + 1 2 + ⎛ ⎝ k-j+1 l=1 1 k -l + 1 -log k + 1 j ⎞ ⎠ 2 ⎞ ⎟ ⎠ .

A.3 Example: the Hall (1982) class of distributions

The Hall class of distributions [START_REF] Hall | On some simple estimate of an exponent of regular variation[END_REF] satisfies the second-order representation (2) and possesses a nuisance function l in model ( 1) that converges to a constant at a polynomial rate. This class contains, among others, the Burr, Student t, Fréchet, and Cauchy distributions.

In particular, the distribution function of the Hall class is given by 1

-F(x) = ax -1/γ [1 + bx β + o(x β )]
for large x with γ, a > 0, b ∈ R, β < 0, and tail quantile function

U (x) = cx γ [1 + dx ρ + o(x ρ )].
It satisfies the second-order representation (2) with ρ = γβ < 0, and rate function A(t) = (ρ 2 /γ )dt ρ . 14The Burr distribution, parametrised here as

1 -F (γ ,ρ) (x) = (1 + x -ρ/γ ) 1/ρ ,
is a member of the Hall class with parameters γ and ρ < 0, c = 1 and d = γ /ρ < 0. Its tail quantile function can be expanded as

U (x) = x γ [1 + (γ /ρ)x ρ + o(x ρ )].
Other members, for instance, are (ii) the Student t δ distribution with δ degrees of freedom: with γ = 1/δ, ρ = -2/δ, d = γ BC -2γ , B = -.5δ 2 (δ + 1)/(δ + 2), and C = ((δ + 1)/2)δ (δ-1)/2 /(δπ ) 1/2 (δ/2) (valid for δ > 2); (iii) the Fréchet distribution F γ (x) = exp(-x -1/γ ) with ρ = -1, c = 1, and d = -.5γ ; and (iv) the Cauchy distribution with γ = 1, ρ = -2, c = 1/π , and d = -.5π 2 .

A.3.1 Concavity of the Pareto QQ-plot

For distribution model (1) the Pareto QQ-plot becomes linear only eventually and exhibits typically a concave-like curvature. This can be easily verified using the population analogue, i.e. the tail quantile function. 15In particular, in the Burr case, log U (x) ≈ γ log(x) + (γ /ρ)x ρ for large x, and it follows immediately that ∂ log U (x) ∂ log(x) = γ + γ x ρ > 0 and ∂ 2 log U (x) ∂ log(x) 2 = γρx ρ ≤ 0 log U (x) ∼ γ log(x) only as x → ∞. Thus, the presence of the nuisance function l in model (1) augments the slope and induces concavity when x is not sufficiently large, leading then to an over-estimation of γ by the Zipf regression. As the second-order parameter ρ decreases in magnitude, and the nuisance function l decays more slowly, the Pareto QQ-plot becomes steeper, ∂ ∂|ρ| ∂ log U (x) ∂ log(x) < 0, and the distortion increases. These properties are illustrated in Sect. A.3.3.

More generally, a similar calculation for the general Hall class reveals that the signs of the first and second derivatives of log U (x) are given by sign(-d) and sign(d) respectively, recalling that d < 0 for the Burr, Student t, Fréchet, and Cauchy distributions. Finally, we illustrate how recent switching models that are designed to fit the entire city size distribution inherit the bias problem caused by the strict Pareto assumption. In particular, we examine the performance of the switching model of [START_REF] Ioannides | US city size distributions: Robustly Pareto, but only in the tail[END_REF] that smoothly pastes a strict Pareto tail to a lognormal body. Beyond cut-off τ , the density model is proportional to a × x -1/γ -1 where the parameterdependent scaling factor a ensures that the density is continuous at the cut-off τ . The parameters of the model (location and scale of the lognormal body, cut-off τ and γ ) are estimated by maximum likelihood. 16 For this Monte Carlo illustration, we use the Burr model above with parameters γ = 2/3 and varying ρ, repeat the experiment R = 1000 times, and draw in each iteration a sample of size N = 10,000 or N = 1000. The maximum likelihood procedure, it turns out, correctly dismisses the lognormal body by invariably estimating a very low cut-off point τ . However, γ is over-estimated and the distortion increases as ρ falls in magnitude (and the nuisance function l in model (1) decays more slowly), as predicted by our statistical theory. Table 4 reports the results. In particular, for samples of size N = 10,000, the distortion increases as ρ changes from -2 to -0.5, the mean value of γ being 1.0003 with mean standard deviation 0.0317 for ρ = -.5. Drawing smaller samples has the predicted effect of increasing variability.

Fig. 1

 1 Fig. 1 German cities: Pareto QQ-plot and the Zipf regression estimates γ (k). German cities in the year 2000. The data are described in Sect. 3.1. a Pareto QQ-plots using the 5000 largest cities. b Estimates γ = γ (k) as a function of the k upper-order statistics used in the Zipf regression (solid line) and associated pointwise 95% symmetric confidence intervals (dashed line). For the Zipf regression, see Eq. (3), and for the distributional theory, see Sect. 2.2

Figure 2 Fig. 2

 22 Figure 2 illustrates further one such experiment. In panel (a) the theoretical AMSE, Var( γ ) + [b Burr k,n ] 2 , is plotted as well as a boxplot for the optimally selected k * in all 1000 Monte Carlo simulations. In panel (b) we examine one such random sample for which the selection procedure yielded k * = 126 and depict the Pareto QQ-plot as well as the Zipf regression line with anchor X n-k * ,n . In the table we report the mean

Fig. 3

 3 Fig. 3 German cities: Pareto QQ-plot and the Zipf regression estimates γ (k). German cities in the year 2000. a Plot of the estimated AMSE as a function of k for selected ρ. The minimiser is k * = 908. b Pareto QQ-plots using the 1000 largest cities, and Zipf regression line with slope γ (k * ) = .761 and threshold X n-k * ,n . c Estimates γ (k) as a function of the k upper-order statistics used in the Zipf regression (solid line) and associated pointwise 95% symmetric confidence intervals (dashed line), based on the distributional theory given in Eq. (4). The grey vertical line indicates k *

Fig. 4

 4 Fig. 4 Diagnostic Pareto QQ-plot and the Zipf regression estimates γ (k). Pareto QQ-plots use the n 1 largest cities, and Zipf regression line with slope γ (k * ) and threshold X n-k * ,n . Estimates γ (k) are depicted as a function of the k upper-order statistics used in the Zipf regression (solid line) and associated pointwise 95% symmetric confidence intervals (dashed line),based on the distributional theory given in Eq. (4). The grey vertical line indicates k *

Fig. 5

 5 Fig. 5 Pareto QQ-plot and the Zipf regression estimates γ (k): Agglomerations in Japan and France. As per Fig. 4

Table 1

 1 Performance evidence for optimal k selection: Burr distribution is the mean value across 1000 Monte Carlo repetitions computed using the procedure described in Sect.2.4. k *Burr minimises the parametric AMSE in the Burr model given by Var( γ ) + [b Burr k,n ] 2 . bk * ,n is defined in Eq. (

	γ γ (k 2/3 ρ n k * k * Burr -0.5 10,000 340 201 0.732	0.664	0.688
	2/3	-0.5	1000	118	64	0.805	0.678	0.741
	2/3	-0.75	10,000	604	444	0.698	0.661	0.664
	2/3	-0.75	1000	173	112	0.743	0.663	0.692
	2/3	-1	1 0 ,000	1114	765	0.692	0.664	0.664
	2/3	-1	1000	226	164	0.719	0.662	0.671
	k *							

* ) γ (k * )b Burr k * ,n γ (k * ) -bk * ,n

Table 2

 2 Revisiting the cross-country OLS regression analysisData obtained from http://citypopulation.de/. n 1 is the size of the left-truncated data set for the largest cities.

	Country γ (k Belgium Year n 1 γ (n 1 ) k * 2010 158 0.608 156 0.600	0.570
	Italy	2011	144	0.678	108	0.721	0.658
	Netherlands	2014	175	0.910	164	0.889	0.840
	Poland	2011	234	0.909	132	0.817	0.781
	Russia	2010	166	0.955	64	0.691	0.581
	Spain	2011	145	0.835	124	0.754	0.700
	Sweden	2010	128	0.800	46	0.626	0.545
	Switzerland	2010	162	0.879	156	0.637	0.569
	Ukraine	2014	215	1.087	190	1.054	0.973
	United Kingdom	2011	202	0.737	138	0.696	0.604

* ) γ (k * ) -bk * ,n

Table 3

 3 Agglomerations in Japan and France

	Country γ (k Japan Year n 1 γ (n 1 ) k * 2000 113 1.031 70 0.853	0.761
	France	2015	2226	1.124	512	1.070	1.022

* ) γ (k * ) -bk * ,n

Table 4

 4 Performance evidence for the switching model: Burr distribution Burr model with fixed γ = 2/3 and variable ρ and sample of sizes N . The Monte Carlo is based on R = 1000 repetitions. The switching model is as proposed in Ioannides and Skouras (2013) and set out in the main text. Estimation of all parameters is by maximum likelihood. Reported is only the estimate of γ

	ρ	N = 10,000		N = 1000	
		Mean γ	SD( γ )	Mean γ	SD( γ )
	-2	0.684	(.0138)	0.729	(.430)
	-.75	0.854	(.0334)	0.876	(.084)
	-.5	1.000	(.0317)	0.977	(.077)

For instance, the meta study of[START_REF] Nitsch | Zipf Zipped[END_REF] cites

papers providing 515 estimates based on Zipf regressions, and a recent update in[START_REF] Cottineau | Re)producing knowledge about city size distributions. UCL working paper[END_REF] 81 papers of which 23 are in core journals of regional science providing 1702 estimates. In comparative cross-country work,[START_REF] Soo | Zipf's law for cities: a cross country investigation[END_REF], for instance, runs rank size regressions for data on 75 countries, which are revisited in, for example,[START_REF] Nishiyama | OLS estimation and the t test revisited in rank-size rule regression[END_REF]. We reconsider some of these in Sect. 3. 2 That is, l(t x)/l(x) = 1 as x → ∞. Recall that a (positive measurable) function g is called regularly varying at infinity with index θ ∈ R if lim x→∞ g(t x)/g(x) = t θ with t > 0. If θ = 0, the function is said to be slowly varying. See, for example,[START_REF] Bingham | Regular variation encyclodepedia of mathematics and its applications[END_REF].3 Strict Paretoness, 1 -F(x) = cx -1/γ , is usually assumed in formal statistical analyses in economics, see, for example, inNishiyama et al. 2008 p. 696 equation (3), orGabaix and Ibragimov 2011, p. 25 equation (2.1).

For instance,Gonzales-Val (2010, Table 2) uses Zipf regressions to produce 165 estimates for US data, letting the truncation point for the year 2000 distribution range from the largest 100 to the largest 19,200 cities yielding point estimates that range from γ (100) = .76 to γ (19, 200) = 1.86.

In the literature on exchange rates, finance, insurance and risk management [where often 1/γ ∈ (2, 4)],[START_REF] Ibragimov | Emerging markets and heavy tails[END_REF][START_REF] Ibragimov | Heavy-tailed distributions and robustness in economics and finance[END_REF] emphasise that heavy tails may lead to sub-optimal diversification in the valueat-risk framework, non-robustness of several economic and financial models, while finiteness of variances is crucial for the applicability of classical econometric approaches.

The empirical problem posed by lognormality is its subexponentiality: Although the speed of tail decay of the lognormal distribution is faster than that of power function class (1), it is slower than exponential and sufficiently slow to generate a tail that is commonly considered as "heavy", i.e. for both distributional classes we have e βx (1 -F(x)) = ∞ for all β > 0 as x → ∞. Some authors refer to the lognormal distribution as rapidly varying, since its index is -∞ and lim x→∞ [1 -F(t x)]/[1 -F(x)] equals ∞ if 0 < t < 1 and equals 0 if t > 1, reserving the term regular variation to finite and nonzero indices (e.g.Bingham et al. 1987, definition 2.4.2). As discussed above,[START_REF] Schluter | Size distributions reconsidered[END_REF] show that the appropriate test is that of the Gumbel-Gibrat hypothesis.

Since the OLS estimator of the slope coefficient is not invariant to shifts in the data, it is conceivable that a purposefully chosen shift could yield an asymptotic refinement[START_REF] Gabaix | Rank-1/2: a simple way to improve the OLS estimation of tail exponents[END_REF], demonstrate the optimality of a shift of ranks by 1/2 in the strict Pareto model, show the asymptotic normality of the estimator, and obtain the correct standard errors). Since it turns out that the higher-order distortion in model (1) remains intact, we ignore such a shift for the sake of notational simplicity.

Such preselection and the comparison of the resulting optimal k * = k * (ρ) avoid the need to estimate ρ. It is well known in the extreme value literature that reliable estimation of second-order objects ρ and A is notoriously difficult.

Giesen and Südekum (2011, Figure 4) consider cities in West Germany. For the year 1997, and using only the 71 largest cities, their point estimate is γ (71) = 1/1.23 = .81 with 95% confidence interval[.61, 1.22], which is similar to the corresponding point in Fig.3c.

[START_REF] Nishiyama | OLS estimation and the t test revisited in rank-size rule regression[END_REF] correctly point out that standard errors used in[START_REF] Soo | Zipf's law for cities: a cross country investigation[END_REF] are wrong, hence undermine his statistical inference. Their empirical analysis uses the correct variance, 2γ 2 /k, for their variant of the rank size regression as discussed in Sect. 2.3.

We also observe that at k * the point estimates γ (k * ) are very similar to the Hill estimates γ (Hill) (k * ). For instance, for Sweden, Russia, Poland, and the UK, we obtain 0.608, 0.683, 0.818, and 0.681, respectively.

[START_REF] Gabaix | Rank-1/2: a simple way to improve the OLS estimation of tail exponents[END_REF] provide numerical evidence to show that the log-log rank size regressions with shifted ranks performs well in Hall's model with ρ = -1.

This calculation is valid, of course, for any parametric model. It is of interest, for instance, to consider the lognormal distribution.[START_REF] Schluter | Size distributions reconsidered[END_REF] show that in this limiting case γ = 0 and that its tail quantile function satisfies, to first order, log(U(x)) = σ √ 2[log x] 1/2 . Then ∂ log U (x)/∂ log(x) = (σ/ √ 2)[log x] -1/2 ↓ 0.The Pareto QQ-plot can thus be seen to be concave, and its eventual slope is 0.
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A Statistical Appendix

A.1 The Pareto QQ-plot, the Zipf regression, and ˆ

The Pareto QQ-plot has coordinates (x, y) = (log( j/(n+1)), log X n-j+1,n ) j=1,...,k . In model (1), this plot becomes ultimately linear for a sufficiently high threshold X n-k,n

where k < n. The line through the threshold pointlog((k +1)/(n +1)), log X n-k,n ) with slope γ is thus given by 4), and bias corrected by the theoretical b Burr k,n (dashed line)

A.3.2 The sign of the higher-order bias of ˆ

In the Hall class, it then follows that the sign of the higher-order bias of the slope estimator γ , b k,n stated in Eq. ( 5), is given by -sign(d).

For many members of the Hall class such as the Burr, Student t, Fréchet, and Cauchy distributions, the above results imply d < 0, so b k,n > 0. For instance, d = γ /ρ < 0 in the Burr case. Moreover, ∂b Burr k,n /∂|ρ| < 0, so that the smaller the magnitude of ρ, the larger is the distortion.

We conclude that γ is over-estimated, so that Zipf regressions are biased towards Zipf's law in this settings.

The consequences are illustrated quantitatively next.

A.3.3 Numerical illustrations

We illustrate the second-order behaviour specifically for the Burr distribution. Figure 6 illustrates the role of ρ for the Pareto QQ-plot, and the resulting estimates γ (k) when γ = 2/3. In line with the theoretical discussion of Sect. A.3.1, we observe that the smaller the magnitude of ρ, the greater the initial concave-like curvature and steepness of the Pareto QQ-plot, and the larger the induced positive distortions of the OLS estimator of its slope coefficient. This is also consistent with the theoretical bias b Burr k,n discussed above. The qualitative results are similar to those for the real-world distribution depicted in Fig. 1.

In panel (c) of Fig. 6 we illustrate the consequences of the distortions for statistical inference for the case ρ = -.5, by plotting the empirical coverage error rates of the usual 95% symmetric confidence intervals. The higher-order distortions lead to undermining inference because of the considerable size distortions. For instance, at k = 200, the empirical coverage error rate is 30% for a nominal 5% rate. Shifting the estimate by the theoretical bias b Burr k,n reduces the coverage error rate to 7%.
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