J. Beirlant, P. Vynckier, and J. L. Teugels, Tail index estimation, Pareto quantile plots, and regression diagnostics, J Am Stat Assoc, vol.9, issue.436, pp.1659-1667, 1996.

J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels, Statistics of extremes, wiley series in probability and statistics, 2004.

N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation encyclodepedia of mathematics and its applications, 1987.

C. Cottineau, Re)producing knowledge about city size distributions. UCL working paper Csörg? S, Deheuvels P, Mason D (1985) Kernel estimates of the tail index of a distribution, Ann Stat, vol.13, issue.3, pp.1050-1077, 2016.

, Table 1, p. 22) for the US year 2000 Census Bureau data. We obtain point estimates of 7.26 and 1.73 for the location and scale parameters of the lognormal distribution, a cut-off estimate? of 60203, The implementation of the maximum likelihood estimation procedure allows a close replication of the empirical results reported in Ioannides and Skouras, 2013.

L. De-haan and A. Ferreira, Comparison of tail index estimators, Stat Neerl, vol.52, pp.60-70, 1998.

L. De-haan and U. Stadtmüller, Generalized regular variation of second order, J Aust Math Soc (Ser A), vol.61, pp.381-395, 1996.

A. Dekkers, J. Einmahl, and L. De-haan, A moment estimator for the index of an extreme-value distribution, Ann Stat, vol.17, pp.1833-1855, 1989.

G. Draisma, L. De-haan, L. Peng, and T. T. Pereira, A bootstrap-based method to achieve optimality in estimating the extreme-value index, Extremes, vol.2, issue.4, pp.367-404, 1999.

J. Eeckhout, Gibrat's law for (all) cities, Am Econ Rev, vol.94, issue.5, pp.1429-1451, 2004.

P. Embrechts, C. Kluppelberg, and T. Mikosch, Pareto or log-normal? Best fit and truncation in the distribution of all cities, J Reg Sci, vol.55, issue.5, pp.736-756, 1997.

X. Gabaix, Zipf 's law for cities: an explanation, Quart J Econ, vol.114, issue.3, pp.739-767, 1999.

X. Gabaix, Power laws in economics and finance, Annu Rev Econ, vol.1, pp.255-293, 2009.

X. Gabaix and R. Ibragimov, Rank-1/2: a simple way to improve the OLS estimation of tail exponents, J Bus Econ Stat, vol.29, issue.1, pp.24-39, 2011.

X. Gabaix and Y. Ioannides, The evolution of city size distributions, Handbook of regional and urban economics, vol.4, 2004.

K. Giesen and J. Südekum, Zipf's law for cities in the regions and the country, J Econ Geogr, vol.11, pp.667-686, 2011.

R. Gonzalez-val, The evolution of U.S. city size distribution from a long-term perspective (1900-2000), J Reg Sci, vol.50, issue.5, pp.952-972, 2010.

E. Haeusler and J. L. Teugels, On asymptotic normality of Hill's estimator for the exponent of regular variation, Ann Stat, vol.13, issue.2, pp.743-756, 1985.

P. Hall, On some simple estimate of an exponent of regular variation, J R Stat Soc Ser B, vol.44, pp.37-42, 1982.

P. Hall, Using the Bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems, J Multivar Anal, vol.32, pp.177-203, 1990.

T. Hsing, On tail index estimation using dependent data, Ann Stat, vol.19, pp.1547-1569, 1991.

M. Ibragimov, R. Ibragimov, and P. Kattuman, Emerging markets and heavy tails, J Bank Finance, vol.7, pp.2546-2559, 2013.

M. Ibragimov, R. Ibragimov, and J. Walden, Heavy-tailed distributions and robustness in economics and finance, 2015.

Y. Ioannides and S. Skouras, US city size distributions: Robustly Pareto, but only in the tail, J Urban Econ, vol.73, pp.18-29, 2013.

M. Kratz and S. I. Resnick, The QQ-estimator and heavy tails, Commun Stat Stoch Models, vol.12, pp.699-724, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00179391

M. Levy, Gibrat's law for (all) cities: comment, Am Econ Rev, vol.99, issue.4, pp.1672-1675, 2009.

J. Luckstead and S. Devadoss, Do the world's largest cities follow Zipf's and Gibrat's laws?, Econ Lett, vol.125, pp.182-186, 2014.

Y. Malevergne, V. Pisarenko, and D. Sornette, Testing the Pareto against the lognormal distributions with the uniformly most powerful unbiased test applied to the distribution of cities, Phys Rev E, vol.83, pp.36111-36112, 2011.

Y. Nishiyama, S. Osada, and Y. Sato, OLS estimation and the t test revisited in rank-size rule regression, J Reg Sci, vol.48, issue.4, pp.691-715, 2008.

V. Nitsch, Zipf Zipped. J Urban Econ, vol.57, pp.86-100, 2005.

R. Perline, Strong, weak and false inverse power laws, Stat Sci, vol.20, issue.1, pp.68-88, 2005.

W. J. Reed, On the rank-size distribution for human settlements, J Reg Sci, vol.42, pp.1-17, 2002.

A. K. Rose, Cities and countries, J Money Credit Banking, vol.38, issue.8, pp.2225-2246, 2006.

C. Schluter, Top incomes, heavy tails, and rank-size regressions, Econometrics, vol.6, p.10, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01978497

C. Schluter and M. Trede, Size distributions reconsidered, Econ Rev, vol.38, issue.6, pp.695-710, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01994353

J. Schultze and J. Steinebach, On least squares estimates of an exponential tail coefficient, Stat Decis, vol.14, pp.353-372, 1996.

K. T. Soo, Zipf's law for cities: a cross country investigation, Reg Sci Urban Econ, vol.35, pp.239-263, 2005.

, Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations