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Abstract: 

 

Sewage sludges are problematic due to the constant increase of urban population. The high level 

of organic matter in sludges can be valorized by co-composting with green waste. Many chemical 

changes occur in the compost maturation process, resulting on stabilized organic matter by 

humification which is recoverable as soil amendment. In this way, the knowledge of organic 

matter stability and maturity of compost is essential. However, estimation of chemical parameters 

allowing the management of compost quality usually need complex time consuming laboratory 

measurements. Indeed, there is not yet rapid, simple and robust method for their on site 

assessment at the moment. Among usual parameters used to monitor compost evolution, the C/N 
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ratio is a fundamental chemical parameter. The aim of this work is the estimation of the C/N ratio 

using a Partial Least Squares regression based on UV and fluorescence spectroscopic data and pH 

from compost water extracts at various steps of composting process and measured on site. A 

mathematical linear model is established based on selected data (pH, spectroscopic indices) 

resulting on average relative error for C/N estimation of 5.26 % (range between 0.5 % min. and 

9.5 % max.). This tool leads to a rapid and simple on site estimation of the compost stabilization, 

allowing qualification of the end-product resulting on a global spectroscopic index of stability. 

 

*Corresponding author: Tel.: +33(0)413551037; Fax: +33(0)413551060 

E-mail address: frederic.theraulaz@univ-amu.fr 
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1. Introduction 

The interest of composting is to reduce the volume of wastes, to kill pathogenic microorganisms 

and weed seeds (He et al., 1992; Bernal et al., 2009), in order to obtain a valuable product used 

for soil amendment. In this context of circular economy (Clark et al., 2016), it is important for 

producer to have a good knowledge on the production process and on the quality of the product 

and follow specific and rigorous laws in some countries (Maroušek et al., 2016). Among the 

different wastes used for composting (green waste (Khalil et al., 2008; Carmona et al., 2012), 

animal manures (Moral et al., 2009; Young et al., 2016), municipal solid wastes (Chefetz et al., 

mailto:frederic.theraulaz@univ-amu.fr
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1996; Li et al., 2014)), sewage sludges present a great interest due to their important 

biodegradable fraction (Nafez et al., 2015; Fytili and Zabanietou, 2008).  

Nowadays, it is necessary to measure a great number of physico-chemical (pH, temperature redox 

potential, carbon nitrogen ratio C/N) and biological (respirometric test, phytotoxicity test) 

parameters in order to monitor the compost evolution. Some of these measurements are 

expensive, time consuming (more particularly biological tests), and are rarely done directly on 

the composting platforms, but in laboratories requesting overtime. Among these parameters, 

today, production process is followed by regular temperature monitoring, and sometimes 

humidity and more rarely final chemical characterizations. The most used to decide the end of 

processing, in order to confirm the commercial conformity of the compost, are the 

microbiological respiration and germination test, and especially the C/N ratio (Martin-Ramos and 

Martin-Gil, 2020; Khalil, 2005), which is an important and lawful physico-chemical parameter to 

assess the organic matter stabilization and humification process. 

Concerning analytical aspect for the characterization of the composts maturity or stability, a large 

literature exists based on various techniques: Fourier-transform infrared spectroscopy (Carballo 

et al., 2008; Droussi et al., 2009; El Ouaqoudi et al., 2015), UV-Visible spectroscopy (Domeizel 

et al, 2004; Zhang et al., 2011; Mouloubou et al., 2016), fluorescence spectroscopy (Provenzano 

et al., 2001, 2016; Wei et al., 2016; Zhang et al., 2016; Fuentes et al., 2006), NMR (Nuclear 

magnetic resonance, Zbytniewski and Buszewski, 2005; Cozzolino et al., 2016) but few take into 

account the whole production process or the rapidity and feasibility on site of the measurement. 

Among these analytical techniques to characterize and follow the evolution of organic matter in 

aqueous fraction in its whole, the use of fluorescence spectroscopy (Green and Blough, 1994; 

Sierra et al., 1994) and UV-Visible absorbance (Chen et al, 1977; Sellami et al, 2008)), are 

proven methods. They allow to define what types of organic matter are contained in a sample 
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using absorption indices and excitation emission localization of fluorophores, for monitoring 

pollution in rivers, sea water (Zhao, 2011; Coble, 1996) among others, for water quality (Hudson 

et al., 2007) and control of wastewater treatment processes (Reynolds and Ahmad, 1997). 

In this work, the interest is focus on organic matter state in the compost. The intensity of 

fluorescence can thus be used to evaluate the maturity of the compost (Henderson et al., 2009; 

Moral et al., 2009), especially thanks to its high instrumental sensitivity compared to other 

available approaches (Marhuenda-Egea et al., 2007; Provenzano et al., 2001, 2016; Wei et al., 

2016; Zhang et al., 2016). In this context, fluorescence excitation-emission matrices (EEM) are 

used to study organic compounds that exhibit fluorescence characteristics of humic, fulvic and 

protein type (Marhuenda-Egea et al., 2007; Tian et al., 2012; Chen et al., 2003). Moreover, 

Stedmon et al. (2003) applied canonical polyadic parallel factor analysis (CP/PARAFAC) on 

EEMs to analyze natural organic matter (NOM) and thus monitored its production and 

degradation in the environment. The application of CP/PARAFAC has gained momentum in 

environmental research on organic matter (Mounier and Redon, 2018). PARAFAC analysis can 

break down EEMs into different groups of components and provide a solution to study all the 

data that constitute these EEMs (Santín et al., 2009; Bro and Vidal, 2011; Zhao, 2011; He et al., 

2013). 

According to our knowledge, there is not overall operational criteria for to monitor easily on site 

composting process and to define stability and maturity of composts. The objective of this work 

was to monitor the C/N value of solid compost samples (TOC/TKN) using several spectroscopic 

indexes integrated into a numerical model. This tool could be used on site in order to follow the 

evolution of compost and estimate its stabilization during the maturation phase, allowing the 

qualification of the end-product, resulting on a global spectroscopic index of stability. Performing 

https://paperpile.com/c/Jhkg0e/5sgO
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rapid on site analyzes provides guidance during the composting process allowing the platform to 

optimize composting process, space use and quality of products. 

 

2. Materials and methods 

 

2.1 Experimental materials 

 

The composting platform Biotechna is located at Ensuès-la-Redonne (Bouches-du-Rhône, 

France). Its activity is directed towards the co-composting of sludge sewage treatment plants 

called MIATE (materials of agronomic interest derived from water treatment), suitable for use in 

agriculture (Ministerial Decree of 8 January 1998), mixed with green waste (Article L 255-2 of 

the Rural Code). After mixing green waste and sludge (2:1 v/v), the MIATE remained in an 

alveolus about twenty days, and were brewed about every 3 days, the compost was then stored 

outdoor for maturation during at least 4 months before valorization.  

 

2.1.1 Compost sampling 

MIATE were put initially in an alveolus where the stage of bio-oxidation of the organic matter 

started. The 1
st
 sample (T0) was performed the first day. After this, seven samples were made 

weekly (T1 (8 days old) to T7 (51 days old)). Then, samples were performed every two weeks 

until T9 (81 days old). Sampling campaign lasted in total six months, from April to September 

2014. Sampling was done on the swath.  Four parts (2 kg each) were sampled in different places 

at 80 cm depth. Samples were then mixed and subsampled using the quartering protocol to get a 

final representative composite sample of 2 kg (NFU-44-101). 
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2.1.2 Water extraction of samples and physico-chemical analyses 

A homemade high pressure (4 bars) room temperature water extraction device (based on a 

modified commercial coffee maker) was used for water extraction of the compost 

(Supplementary Information 1 (SI.1)). Ten grams of fresh compost were introduced and 400 mL 

of water Milli-Q (C.E.: 18 M.Ω.cm at 25 °C) were passed by batches of 100 mL. The last batch 

was gathered for analysis. These fourth extractions were chosen because they allow to have an 

entirely wet sample and an organic matter concentration adapted to the following spectroscopy 

measurements. The determination of the compost aqueous extraction pH was accomplished 

according to standard method (NF ISO 10390, in 2005, 1:5 solid (w)/water (v) ratio) with a pH 

meter equipped with a standard glass electrode (Orion 2 Thermo Fisher). 

 

2.2 UV-Visible and fluorescence spectroscopy 

 

After water extraction of fresh composts, the sample suffer a filtration using 0.45 µm cellulose 

nitrate membranes. SUVA254, E2/E3, E4/E6 and EET/EBZ index (Mouloubou et al., 2016) were 

obtained using a double beam SHIMADZU UV1800 spectrophotometer with quartz cells (path 

length of 1 cm) and water Milli-Q as reference. Fluorescence measurements were obtained on 

this filtered sample using a Hitachi FL4500 spectrofluorometer (Hitachi, Tokyo) in scan mode. 

Emission spectra from 200 to 800 nm were obtained at a scan speed, 2400 nm min
-1

, using 5 nm 

excitation and emission slits bandwidths, by scanning the excitation wavelength from 200 to 600 

nm at 5 nm increments. The integration response was set at 0.1 s and photomultiplier voltage 

fixed at 700V. The matrices were extracted with FL-Winlab software from HITACHI with 5 nm 

step for both excitation and emission and treated by the progMEEF program developed by Redon 

R. of the Laboratory PROTEE which works on MATLAB 2015 (https://colloques.univ-
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tln.fr/Colloques/RegistrationPROGMEEF.jsp). This software is based on algorithm CP/ 

PARAFAC (Luciani et al., 2008; Stedmon and Bro, 2008), and it has been used to decompose set 

of excitation-emission matrices (EEM) in independent components which makes easier 

identification and quantification (Murphy et al., 2013). The Kalbitz (Kalbitz et al., 1999), Milori 

(Milori et al., 2002) and Zsolnay (Zsolnay et al., 1999) fluorescence index were obtained 

following previous works. 

 

2.3 Organic Carbon and Nitrogen measurement 

 

Determination of dissolved organic carbon (DOC) concentration was made by subtracting 

inorganic carbon (IC) to total carbon (TC) using a total organic carbon analyzer which uses the 

principle of high temperature catalytic combustion (TOCV-Shimadzu) (ISO 20236). TC is 

measured by injecting a known volume of sample in a 750°C furnace under oxygen flux (160 

L.min
-1

). The CO2(g) is driven by the oxygen stream to a non-dispersive infrared detection cell 

(NDIR) previously calibrated with a solution of potassium hydrogen phtalate (C8H5KO4). The 

total organic carbon of the dry compost (TCs) was measured using an N/C 2100 S (Analytik 

Jena) TC meter with the solid module. First, for solid TCs, the sample (200 mg) is fed into an 

oven heated to 950°C under an oxygen stream. Calibration is done using calcium carbonate 

(CaCO3) 12% carbon. The second step is the measurement of solid inorganic carbon (IC module). 

The sample is brought into contact with phosphoric acid 40-45% (2 mL) and heated to 80°C 

under agitation at 500 rpm. The CO2 emitted from solid inorganic carbon (ICs) is quantified by a 

NDIR detector calibrated with CaCO3. The TOC is obtained by distinguishing between total 

(TCs) and inorganic carbon (ICs).  

https://paperpile.com/c/Jhkg0e/cQxz
https://paperpile.com/c/Jhkg0e/rXO1
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Total Kjeldahl Nitrogen (TKN) was measured on dry compost samples (ISO 11261). In a 

Kjeldahl matras, 0.5 g of compost sample was introduced, to which we added 2 g of potassium 

sulphate (K2SO4), 2 g of copper sulphate (II) mineralization catalyst (CuSO4, 5H2O) and 0.1 g of 

selenium (Se) (w/w/w: 20/20/1), and finally 10 mL of concentrated sulphuric acid (H2SO4). The 

matras were placed in the digester (TKN SpeedDigester) and heated for 4 hours. Kjeldahl matras 

containing greenish mineralisat were placed on the Büchi B-323 distillation apparatus. A beaker 

with 50 mL of 0.05 M sulphuric acid (special nitrogen) was placed to harvest the distillate. The 

following steps take place automatically in the device. Osmosis water (30 mL) was added to the 

sample to remove all the pellet at the bottom of the matrix, then 60 mL of NaOH 32% is added. 

The distillation lasts 7 min. After distillation, the distillate-sulphuric acid mixture was titrated by 

a 0.1 M NaOH solution with an automatic titroline. The C/N atomic ratio of the solid is 

calculated from TOC (mg of C.kg
-1

) and TKN (mg of N.kg
-1

) measurement using the molar mass 

of carbon and nitrogen. 

 

3. Mathematical treatment and model: PLS regression for C/N (TOC/TKN) prediction of 

MIATE compost 

 

In this part, we assume that the C/N ratio only depends on the linear combination of some 

measured parameters. But, the matrices of measurements generally comprise a smaller number of 

samples than of measured parameters, some of which are highly correlated with each other 

(emission spectra with neighboring wavelengths and CP/PARAFAC components mainly). A 

classical linear regression model using matrix inversion, which in our case is poorly conditioned, 

is not suitable for this type of problem. Indeed, the matrix inversion generates very large errors 

making the process unclear or even unusable. This is why Partial Least Square (PLS) regression 
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model was used as it deals with this type of matrices. Indeed, PLS regression is based on an 

iterative robust algorithm and the optimal number of iterations to obtain results is determined by 

a simple test. 

There are several types of PLS regression depending on the prediction of one or more variables to 

explain (Wold, 1975; Wold et al, 1984; Geladi and Kowalski, 1986; Frank, 1993; Tenenhaus, 

1998). We use in this first work the PLS1 regression to model and to predict a single variable, 

C/N ratio, which is a well-used physico-chemical parameter to monitor organic matter 

stabilization and decide the end of processing (Khalil., 2005), well correlated to organic content 

of samples and their spectroscopic properties. 

 

3.1. Matricial PLS1 resolution 

 

In this work, a part of the PLS1 regression is presented in an original matrix form.  PLS1 is based 

on a supposed linear relation between two sets of data (linked to n samples) which are contained 

in two matrices called X (matrix of predictor variables) and Y (matrix of response variables). The 

i-th row of X corresponds to the i-th sample defined by p variables and the i-th sample is 

characterized by the i-th response variable yi of Y. 

We have the     matrix                   where xj is the j-th column vector of matrix X 

and the     matrix                where    represents the transpose of matrix Y. In the 

following part, it is assumed that there is not missing data. The matrices X and Y are mean-

centered. 

The main goal of PLS1 regression is the calculation of the     matrix B which defines the 

linear relation between X and Y:  
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       (1) 

In order to obtain the matrix B, the algorithm of PLS1 regression uses an iterative procedure 

whose steps are described in Supplementary Information 2 (SI.2). On this base, the algorithm of 

PLS1 regression could be written using only some equations, with H the iteration number 

described below where new notation is proposed on the three last equations (see Fig. 1). 
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  (Eq. 19) 

 

                 (Eq. 20) 

 

                
      (Eq. 31) 

                

 

          (Eq. 33) 

Fig. 1. Algorithm of the PLS1 in matrix notation. Equations 31 to 33 are original notations 

 

3.2. Rank of linear model 

 

The parameter H corresponds to the rank of linear model, so H is lower than or equal to the 

number of variables p defining each sample since several columns of matrix X can be partially 

correlated. This information is a priori unknown. An approach to determine the rank H consists of 

calculation of Predicted REsidual Sum of Squares for the iteration h (PRESSh) defined by the 

following expression: 

                 
   

 
 

 
     (34) 

The variable     
   

 represents the j-th component of the predicted variable     obtained after h 

iterations of PLS1 regression applied on matrices X and Y whose j-th row is removed: in other 

words, the matrix Bh is estimated without knowledge of the j-th sample. The linear model is 

enhanced if PRESSh decreases when h increases. In the case of overfitting, the number of 
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iterations h exceeds the rank of linear model, and the prediction error PRESSh increases. 

Therefore, the rank H is the maximum value of h associated to the minimum of PRESSh. 

The optimum value of h can be determined by calculating   
                    

using SIMCA-P procedure (Tenenhaus, 1998) where RSSh-1 =                
  

    is the residual 

sum of squares calculated with the h-1 component model. 

 

4. Results and discussion 

 

Principal Component Analysis (PCA) applied to measured and calculated parameters (pH, 

spectroscopic indices, PARAFAC components) allows to select relevant parameters for the 

proposed linear model. After identification of possible outliers, a comparison of the average 

relative error between the slow and fast parameters is completed. 

 

4.1. Fluorescence decomposition by PARAFAC 

The CP/PARAFAC model of the fresh compost water extraction EEM gives 2 components with a 

CORCONDIA equal to 99.85%. Component 1 (C1) has a maximum fluorescence intensity for the 

330/425 nm pair (λEx/λEm) corresponding to humic-like "visible" fluorophore C (Coble, 1996; 

Parlanti et al., 2000) or to fulvic-like substances (Baker, 2001, 2002; Berkovic et al., 2013; Wang 

et al., 2007). Indeed, Berkovic et al. (2013) studied various IHSS reference fulvic acids and 

observed, in fluorescence, a peak at 320-340/410-430 (Ex/Em). For component 2 (C2), we 

observe two peaks: the pair couple of wavelengths 260/475 nm usually corresponds to 

fluorophore A of the "humic-like" (Coble, 1996) and 390/475 nm corresponding, also, to "humic-
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like" substances (Baker, 2002). Contribution of these two components could be used as proxy of 

the “fulvic” and “humic” like molecules in the prediction model of compost stabilization.  

 

4.2. Parameters for compost process monitoring 

 

Samples pH varied between 7 to 9 as seen in Supplementary Information 3 (SI.3). It rises from 

7.6 (initial data) to 8.8 in day 22 and decreases until 7.6. The small fall at day 15 could be due to 

volatile fatty acid production (data not shown). This could happen when anoxic conditions occur 

during compost progression (Sundberg, 2004). Anyway the decrease of pH after the thermophilic 

period is due to the formation of carboxylic acid. 

Absorbance parameters like EBZ/EET, E4/E6 and E2/E3 shown contrasted behavior. E2/E3 is related 

to aromaticity and did not vary sharply, 4 to 6 (SI.3) during the composting process compared to 

similar works in literature, 3 to 18 (Soriano-Disla et al., 2010). The downward trend during the 

thermophilic phase is coherent with Ilani (2016), who described a lower value around 2. The 

E4/E6 index is related to size and conjugation. It stays constant until day 22 and increases after the 

thermophilic period until value of 12 to finally decrease at the end of process (SI.3). This 

behavior was not really explained and to our knowledge no work describes the temporal variation 

of this index for a sewage compost process, but it seems coherent with previous work on sewage 

sludge mature compost (1.8 to 6.1, Soriano-Disla et al, 2010). EBZ/EET index linked to the 

aromatic ring occurrence, was increasing until the end of the thermophilic and stay constant 

during the mesophilic one. SUVA254, which is a slow parameter due to the need of dissolved 

organic carbon value in mg.L
-1

, behave like EBZ/EET index showing an increase of UV-

absorbance efficiency until day 20, and a stabilization.  

https://docs.google.com/document/d/1r4FGzc0iSzpnbf0K1UcIVYs1i34NvSwG3mDYYAQi_Xw/edit?usp=sharing
https://paperpile.com/c/Jhkg0e/f1XK
https://paperpile.com/c/Jhkg0e/f1XK
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Fluorescence indices presented variety of tendency. Like E2/E3 index, Kalbitz index is quite 

constant except for high values for days 22 and 31. Zsolnay index shown a very high value at the 

first day and decreased rapidly under 1 until the last day, where it rose up to 2. The Milori indice, 

related to humification process, behaved like Kalbitz and increased until day 22 and stay constant 

during the mesophilic phase. This variation is coherent with the humification process leading to 

more and more complex and conjugated molecules. The C1 and C2 CP/PARAFAC components, 

are slow parameter as it needs all the EEM data, both shown an increased to a maximum at day 

64. Four samples were not validated due to low fluorescence signal, but general variation was 

kept during the study. If the variation between C1 and C2 contribution seems to be similar, the 

C1/C2 ratio contribution shown a decrease from the beginning to the 22-th day and a slower 

increase after in the mesophilic phase. The component C2 is the most redshifted and represent 

more conjugated/humic like compound. The variation could be explained by a thermophilic phase 

recombining molecule in a more complex way, and a slow decomposition favoring the C1 

component. Anyway the C1/C2 variation differs from the other index with a maximum or break 

at day 64 instead of day 22.   

The atomic C/N variation of solid sample is decreasing monotonically from 16.3 to around 10 

(SI.3). This matches with previous works even if some authors found increase (Doublet et al., 

2011) or stability (Ilani et al., 2016) in particular conditions. No break was observed at day 22-th 

and day 64-th, or at the thermophilic / mesophilic frontiers like other parameters. Even if starting 

and ending point highly depend on the compost composition (Table 1), the decrease with time is 

often used as valuable stability parameter (Guo et al., 2012). 

 

Table 1: Example of C/N variation from different compost origins before and after maturation. 
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Compost Type Starting C/N Ending C/N Work Reference 

Green Litter 28.7 19 Godden et al., 1986 

Manure 18.9 9.21 Tang et al., 2006 

Manure 31.0 25.0 Tang et al., 2006 

Solid Municipal 

Waste 

38 22-14 Raut et al., 2008 

Green + Cattle 59 32 Goyal et al., 2005 

Municipal Waste 29 12 Zmora et al., 2005 

Cattle Manure 33 10.5 Zmora et al., 2005 

Sewage – MIATE 23 11 Zmora et al., 2005 

Urban Sewage 25 55 Doublet et al., 2011 

All type - 8.75 <->19 Guo et al., 2012 

 

4.3. Selection of the uncorrelated parameters 

 

A first approach was made using PCA in order to know the links and similarities between the 

different variables. This study was performed on C/N, pH, E2/E3, E4/E6, EET/EBZ, Kalbitz, 

Zsolnay, SUVA254, Milori indices, and PARAFAC components C1, C2. The Figure 2 shows the 

correlation matrix and circle between all the parameters. It can be seen that the C/N ratio has no 
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marked correlations with all other parameters. However, a weak and negative correlation with 

EBZ/EET (-0.58) and with SUVA254 (-0.6) is observed. There are stronger correlations between, for 

example, EBZ / EET and Milori (0.86) or SUVA254 (0.99), which make it possible to expect that 

the results given by retaining only the fast components will be close to those obtained with all the 

fast and slow parameters. However, the components C1 and C2 are indeed highly correlated with 

each other but not correlated with the rest of the parameters which suggests that they are the ones 

who could provide the most additional information if they were retained. The correlation circle 

(Fig. 2) shows the correlations, even if the projection is based on an explained variance less than 

70% for the two axis. The quality of the results does not allow us to make a meaningful 

classification or a prediction of the monitored parameter (C/N), but it gives information on the 

correlations between the parameters. Explanatory variables are highly correlated and the 

usefulness of the PLS regression is tested below. 

 

  

Fig. 2. Correlation matrix and circle given by PCA analysis 

 

4.4. PLS and Prediction of MIATE sample C/N 
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The pH and spectroscopic measurements are recorded in an X matrix comprising n=10 rows, 

corresponding to the number of samples studied at different dates, and p equal to 6 and 10 

columns related to the measurement parameters selected respectively immediate (pH, E2/E3, 

E4/E6, EET/EBZ, Kalbitz, Zsolnay) and slow measurement (SUVA254, Milori, C1, C2). One 

physical parameter was retained namely pH as it is a fast parameter. Among the spectroscopic 

index, E2/E3, E4/E6, Kalbitz, and Zsolnay were considered as fast as they need only absorbance or 

fluorescence measurement. SUVA254, Milori, C1, C2 were considered as slow measurement as 

they need organic carbon measurement for the two former, and total set of measurement and data 

treatment for the two later. 

PLS1 is used to predict Y (i.e. C/N) as a function of chemical (pH) and spectroscopic 

measurements xj. To find the linear relationship between the variable to be estimated (C/N) and 

the explanatory variables xj (j = 1,..., p), the fit accuracy was calculated.  

To determine the linear relation calculated by the PLS1, the optimal number of iterations h is 

obtained by the calculation of PRESSh as previously described. After evaluation of model 

precision and identification of possible outliers, we use the "one leave out" method, where the 

learning class is reduced to a single element, considering the low number of samples studied. 

In this calculation the regression PLS1 is carried out on n-1 rows of the matrix, after having 

removed a single row of this matrix, and this, for all the matrix rows. 

The missing variable C/N was predicted using each (n-1) p matrices and compared to the 

measured value. This calculation was done for each iteration h of the PLS1 regression. At each 

iteration h, the value of PRESSh provides information on the accuracy of the estimator and the 

mean of relative error between variable C/N and his estimator are calculated. The optimum value 

of h is equal to the number of iterations corresponding to the minimum value of mean relative 
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error calculated below. The Figure 3 shows the evolution of prediction with the value of PRESSh 

as a function of the number of iterations h and the visualization of the errors for the C/N ratio 

estimation. At each iteration h, the relative error between the measured C/N ratio (y0) and its 

estimator (   ) is also calculated, the relative error being equal to 
   

  
 

      

  
. The PRESSh 

decreases as h increases to the rank of the matrix X and increases thereafter. The optimum value 

of h can be determined by the value of the coefficient or by the minimum of the mean value of 

the relative errors. As an example, Figure 3 shows the evolution of the PRESSh for the fast 

parameters. The PRESSh is minimal for h = 7 with a value of 0.156 corresponding to the rank of 

the matrix X that is to say the number of measurement parameters (Fig. 3). 
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Fig. 3. Evolution of the PRESSh as a function of the number of iterations h and the 

visualization of the errors for the C/N ratio estimation with fast parameters. 

 

4.4.1. PLS with all the measured parameters 

The measured parameters (slow and fast ones) were used to determine the best way to predict the 

TOC/TKN of the compost during the process. These parameters allow the prediction with an 

average relative error of 14.35 % (Fig. 4, graph B on the left). It was observed that the prediction 

without initial sample T0, the higher errors are located at the end of the experimentation (days 63 

and 81) and average relative error is 2.20% (Fig. 4, graph B on the right). This is probably due to 

rapid and unequilibrated chemical composition of the MIATE compost at the very beginning of 

the process. For an accurate prediction, it seems that is it better to eliminate the T0 sample which 

does not seem to follow the proposed linear model.  

 

  

Fig. 4. TOC/TKN ratio (dashed line) and its estimation (dotted line) using all the measured 

parameters (A) and the relative error estimation (B) 

 

4.4.2. PLS with only fast parameters 



20 
 

In the way to investigate a rapid and field useful method, the only fast parameters were used to 

determine the best way to predict the TOC/TKN ratio (pH, E2/E3, E4/E6, EET/EBZ, Kalbitz, 

Zsolnay). Average relative error for prediction with T0 sample (Fig. 5, graph B, on the left) and 

without T0 sample (Fig. 5, graph B, on the right) is 14.25 % and 5.26 % respectively are 

presented on Figure 5. The results show that by eliminating the T0 and using only fast 

parameters, the C/N prediction remains good. Moreover, the relative error at the end of the 

composting process, where the information is crucial for compost producers, is decreasing. 

Finally, we favored a small number of input parameters (fast parameters) to obtain an acceptable 

precision on the C/N ratio assessment (minor than 10%). 

 

  

Fig. 5. TOC/TKN ratio (dashed line) and its estimation (dotted line) using fast measured 

parameters (A) and the relative error estimation (B) 

 

5. Coefficient values of prediction models 

 

Two different models are established either on all parameters or on rapid parameters, with the use 

of all samples except initial one T0 as seen previously. To implement PLS1 in a predictive 
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model, it needs the coefficients of matrix B (eq. 1) associated to the measured parameters. Table 

2 presents these coefficients estimated from all parameters and from only fast parameters.  

 

Table 2: Values of coefficients for the PLS1 prediction using all the parameters (fast and slow) 

and only the fast one 

Parameters PLSAll PLSfast 

pH 2.164 1.578 

E2/E3 1.975 0.544 

E4/E6 5.893 0.314 

EET/EBZ -0.450 -7.397 

Kalbitz -0.893 28.679 

Zsolnay -33.653 1.937 

SUVA254 -57.615  

Milori -0.751  

C1 -45.154  

C2 6.655  

 

The all parameter PLS1 calculations show C2, E4/E6, pH and E2/E3 positive contribution order 

and negative contribution of SUVA254, C1 and Zsolnay to predict C/N. In this case it is 

interesting to note that if PCA correlated C1 and C2, the PLS1 regression shows an opposite 
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predictive behavior between them. Variables EET/EBZ, Kalbitz and Milori are less influential. The 

PLS1 regression using only fast parameters is positively driven by the Kalbitz and negatively by 

the EET/EBZ. Zsolnay and pH are less predictive while E4/E6 and E2/E3 lost their influences.  

      

6. Conclusion 

This experiment has shown that spectrometric measurements on samples from cold water extracts 

of compost allowed the fast estimation with a good precision (maximum relative error on 

predicated value < 10%) of the C/N ratio from a linear combination of fast measured parameters 

(pH and some usual spectroscopic indices) and  by this mean, allowed the monitoring of its 

evolution until its stability directly on site. This approach could be used to develop a simple and 

low cost measuring procedure on site allowing to improve the reactivity of the actors and 

management of organic waste composting platforms. This approach could be extended to various 

type of waste (mixing waste, winery waste, household waste, cattle manure, digestate...) after 

regression procedure as learning phase. 
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