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Abstract Clay translocation is among the most widespread processes in soils.
It is generally identified by the presence of clay coatings at the macroscopic or
microscopic scales. Nevertheless, several authors demonstrated that clay coatings
have different origins, which renders the attribution of individual coatings to a
particular process difficult. Therefore, their characterization at the microscopic
scale is necessary. Modern synchrotron technics allow mapping of the mineral
composition of soil thin sections by X-ray diffraction with a lateral resolution of
a few micrometres that is compatible with the size of the clay coatings. However,
the use of this technic raises a certain number of technical difficulties when clay
minerals and small pixel size are considered. Therefore a preliminary feasibility
analysis was performed on soil coating obtained experimentally in a soil column
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experiment. We developped a mathematical/statistical method to automatically
identify and map the minerals present in synchrotron X-ray diffraction maps. This
method combines a subtraction of the background signal, an identification of the
diffraction peaks and the attribution of the obtained peaks to the different min-
erals phases. The robustness of the method was tested for the two first steps that
were critical. We then showed that most of the minerals present in the considered
samples could be identified, including clay minerals and Fe oxides; however, their
relative proportions were difficult to estimate within the experimental conditions.
As a conclusion, we proposed here a new mathematical method for the data treat-
ment of synchrotron X-ray diffraction. Our study shows that this method could
be applied on natural heterogeneous samples with data of poor quality to perform
robust qualitative analysis. Moreover, with the recently available fast data acquisi-
tion schemes, large amounts of datasets (diffractograms) can be rapidly acquired,
and are expected to benefit of the automatic data treatment approach proposed
here.

Keywords Signal processing · Filtering · Mineralogy · Clay translocation ·
Pedogenesis

Mathematics Subject Classification (2010) 92F99 · 62-07 · 60G35 · 65D10

1 Introduction

Clay translocation is among the most widespread processes in soils. This process is
defined as a substantial vertical transfer of particles from a horizon, called eluviated
horizon, to another horizon referred to illuviated horizon. Lessivage is generally
identified in soils by the presence of clay coatings and fillings at the macroscopic or
microscopic scales (Jamagne, 1973; McKeague et al., 1980; Thompson et al., 1990;
Gunal and Ransom, 2006; Gutiérrez-Castorena et al., 2007). Clay translocation has
been considered as occurring mostly under boreal conditions and consequently as
a fossil process in temperate conditions (Van Vliet-Lanoë, 1990). Recent research
however clearly demonstrated that this process is still active nowadays in temper-
ate climate (Montagne et al., 2013; Sauzet et al., 2016) and that its intensity is par-
ticularly sensitive to anthropic or climatic global changes (Montagne and Cornu,
2009; Montagne et al., 2016). As increasing intensity of clay translocation may
correspond to increasing risks of erosion and compaction in surface soil horizons,
to increasing transfer of soil contaminants associated with eluviated soil particles
but also to increasing long term C sequestration in subsoil horizons (Torres-Sallan
et al., 2017), it seems thus necessary to better understand its mechanisms notably
at the microscopic scale.
Indeed while few studies deal with the characterization and quantification of clay
coatings by image analysis to our knowledge (Terribile and FitzPatrick, 1992; Protz
and VandenBygaart, 1998; Sauzet et al., 2016, 2017), none of them proposes a min-
eralogical characterization of illuvial clay features. Clay coatings being generally
60 to 200 µm thick (Dalrymple and Theocharopoulos, 1987; Thompson et al.,
1990; Sauzet et al., 2017), the selective sampling of clay coatings to characterize
their mineralogical composition with laboratory X-ray diffractometers is generally
not feasible. The mineralogical composition of clay coatings and fillings therefore



remains largely unknown, making it impossible to specify the mineralogical selec-
tivity of the translocation process or its dependence on the conditions of formation
of clay coatings. Micromorphological studies have however demonstrated that the
composition of clay coatings and infillings depends on their deposition conditions.
Pure micro-laminated and limpid clay coatings are associated with a homogeneous
and low energy flow of water under permanent plant cover while “dusty” clay coat-
ings containing organic and silt-sized particles are associated with a flow of high
energy water under cultivation (Fedoroff and Courty, 1994; Jongmans et al., 2001;
Kuhn et al., 2010)... Modern synchrotron technics allow mapping mineral compo-
sition on soil thin sections by (monochromatic) X-ray diffraction (XRD) with a
lateral resolution of a few micrometres that is compatible with the size of the clay
coatings. Classically in the literature, synchrotron XRD is either used on powder
to detect mineral phases that are hardly detectable by laboratory XRD appara-
tus, as iron oxides for example (Schulze and Bertsch, 1995; Sumoondur et al.,
2008; Lopano et al., 2011; Yusiharni and Gilkes, 2012; Tsao et al., 2013), or in
association to micro X-ray fluorescence (XRF) or micro-EXAFS to identify phases
bearing trace elements on thin sections (Dillmann et al., 2002; Manceau et al.,
2005; De Nolf et al., 2009; Fan and Gerson, 2011; Stroh et al., 2014; Sutton et al.,
2017; Siebecker et al., 2018), among others. While dealing with small investigated
volumes (small X-ray beams and thin section samples), the probed sample cannot
be anymore assimilated to a random orientated powder. As a consequence of the
few number of illuminated crystallites (Gueriau et al. (2020), in press), the Bragg
diffraction condition is scarcely satisfied and not all the peaks are recorded for
a given mineral phase (Manceau et al., 2005; Stroh et al., 2014; Siebecker et al.,
2018). To solve this problem, most authors sum up individual XRD-pattern on a
chemically homogeneous zone of interest (Sutton et al., 2017, among others) or
use larger X-ray beams, e.g. of size of several tenth of µm (Dillmann et al., 2002;
De Nolf et al., 2009; Sutton et al., 2017) in order that the probed volume resem-
bles more to a random orientated crystalline powder. Also, XRD-maps are rarely
presented with the notable exception of De Nolf et al. (2009) who used a 60 µm
pixel size. In addition, while clay minerals as kaolinite and illite were detected by
synchrotron XRD, mainly on powder samples (Manceau et al., 2005; Tsao et al.,
2013; Ndzana et al., 2019), in the case of orientated clay coating, depending on
the orientation axis, detection of these mineral might be more challenging. At last
under these conditions (few number of crystallites in the X-ray probed volume),
classical data treatment approaches as Rietveld refinement and other full pattern
fitting methods that were proved very efficient to quantify the mineral composi-
tion of a sample cannot be used as mentioned by Siebecker et al. (2018) ”often,
peak-matching is challenging because minerals can have overlapping peaks, and
the number and intensity of the peaks can be disproportionate to the reference
database”. In addition, due to the large amount of XRD-patterns acquired auto-
matic processing procedure is required if mapping mineral is one of the pursued
objective. The aim of this paper was thus to study the feasibility of mapping
the mineralogy of clay coatings by synchrotron X-ray diffraction. To this aim, we
analyzed coatings from thin sections obtained in an experiment of in vitro pedoge-
nesis on soil columns, performed by Cornu et al. (2014). Due to the high number
of diffractograms acquired, we developed an automatic processing procedure that
combines a subtraction of the background signal (both from thin section mount
and from mathematical modeling), an identification of the diffraction peaks and



an attribution of the obtained peaks to different minerals phases in order to draw
various contrasts maps.

2 Material and methods

2.1 Experimental design

Cornu et al. (2014) performed clay translocation laboratory experiments on two
E-horizons of Luvisols developed in loess with contrasting pH and clay mineralogy.
For eluviation, an E-horizon, called L1, containing smectites and with a pH of 6.2
was chosen, while for illuviation, a E-horizon, called L2, containing no smectite
and with a pH of 7 was chosen. Undisturbed cylinders (with height and diameter
of 15 cm) were sampled at a depth between 35 and 50 cm. To monitor illuviation
(particle deposition), complex columns were built consisting of an undisturbed L1-
cylinder overlaying an undisturbed L2-cylinder. Thirty rain events were applied to
the soil columns using a rain simulator. The considered L2 cores contained quartz,
feldspars, kaolinite, illite, chlorite, iron oxides (goethite, ferrihydrite notably) and
accessory minerals, and eventually smectite coming from the upper L1 cylinders.
For more details see Cornu et al. (2014).

2.2 Thin sections fabrication, and observation by optic microscope

On four L2 cores (named R, S, AR and P), undisturbed blocks (80 mm x 50 mm)
were sampled both at the top and at the bottom of the core (named /T and /B
respectively), for thin sections. The blocs were air-dried for 2 months, then oven-
dried at 40◦C for 2 weeks, and impregnated under a vacuum of -5 kPa with a
polyester resin diluted to 30% by volume with a styrene monomer (Bruand et al.,
1996). Eight uncovered thin sections, 50 x 50 mm in size and 25µm thick, were
prepared on a glass slide and observed by using a petrographic microscope Nikon
Eclipse 50ipol optical microscope in both plane polarized light (PPL) and crossed
polarized light (XPL) at the magnification of 20x, 40x, 100x and 200x. Three dif-
ferent microscopic units (MU) are observed: the soil matrix (skeleton and plasma),
voids and voids coating made of fine material, and of varying thickness. The skele-
ton is composed of sandy and silty particles embedded in a finer brownish silty-clay
plasma containing some fine brown organic particles common in E horizons. The
dark hue of the matrix is typical of Fe and/or Mn oxides. The skeleton includes
mainly quartz grains. Pores are mainly channels, which are the traces of burrowing
by soil macrofauna and roots, and vughs.
Three types of coatings may be distinguished: a dark brown, dusty and slightly
birefringent one (DSB) (Fig 1a), a limpid and birefringent one (LB) (Fig 1b), and
a highly birefringent laminated one (HBL) (Fig. 1c). Increasing birefringence is
interpreted as increasing orientation of the clay particles inside the clay coatings
or infillings, and is linked to decreasing energy of the water flows. Limpid and
dusty coatings are respectively associated with pure and impure clay deposits.
Impure clay coatings contain mineral or organic particles mobilised from the soil
surface. The DSB and LB coatings are generally thin and may be observed from
the top to the base of the soil column (Table 1) suggesting that they may have been



Fig. 1 Micromophology of (a) a dusty and (b) a clear clay coating surrounding a pore, and
(c) a clay cutane with internal lamination. The yellow squares are the regions-of-interest that
have been scanned with µXRD.

formed during rain simulations and thus may contain smectites. Their boundaries
are diffuse as the clay fill the irregularities of the edge of the pores. Highly bire-
fringent, thick and microlaminated coatings and infilling with iron staining (HBL)
are mostly observed at the base of the soil column and are typical of illuviated
horizons suggesting that they may have been formed under field conditions.
On each thin section, zones containing the portions of the different MU: matrix,
pore and one particular kind of clay coating were selected for X-ray diffraction
characterization. Three thin section zones are more specifically studied here in
order to target the different kinds of clay coatings and finally identify potential
relationships between clay coatings morphology, conditions of deposition and min-
eralogy. Image analysis (supervised classification) allowed the segmentation of the
zones in the three MU as already performed by Montagne et al. (2007).

2.3 Synchrotron-µXRD and µXRF analysis

The three selected zones of coatings were mapped by coupling µXRD and µXRF
on the DiffAbs beamline of the SOLEIL Synchrotron (France) in transmission
mode at 17.2 keV X-ray photons energy (i.e. λ = 0.72 Å), and a beam of 10µm
per 6µm (FWHM, horizontal x vertical direction) with a photon flux of several



1010 ph./s in the focused beam. The experimental setup is sketched in figure 2-
A: the sample (see details above) was placed vertically on a YZ scanner stage
(µm accuracy), with its surface normal rotated by about 20◦ with respect to the
incident X-ray beam, to avoid shadowing effects for measuring the XRF signal.
This small angle has as consequence a slight increase of the beam footprint on the
sample, in the horizontal direction, by about 6.5 percents. The XRF silicon drift
detector (SDD, Vortex®-EM X-ray Detector from Hitachi, with 50 mm2 active
area) is placed in the horizontal plane, at 90◦ from the incident X-ray beam.
Since the X-ray beam is polarized in the horizontal plane, this particular geometry
insures that the elastic scattering is minimized (zero in theory). The area detector
used for µXRD analysis is a hybrid pixel area detector, XPAD 3.2 that works in a
single-photon-counting pixel mode. It consists of 8 modules assembled like shown
in the figure 2. Each module consists of 7 hybrid integrated circuits (chips) on a
single 500 µm thick silicon sensor (Medjoubi et al. 2012) which rear face pixelized
and each pixel is coupled via ‘bump-bonding’ to an electronic counting device in
a dedicated circuit. Each chip consists of 80 x 120 pixels of 130 µm size, except
the first and last columns if situated at the junction with the next chip. They
have a size precisely 2.5 times larger along the neighbor chip direction. Due to the
module assembling on a flat plane, an inter-module gap of about 27 pixels (about
3.5 mm of dead area) is observed. Thus, the total area covered by the detector
is 75.1 x 149.3 mm2. Knowing this detector geometry in detail, and combining it
with reference X-ray diffraction images (ex. XRD taken on calibration powders),
reliable image and geometry corrections can be carried out to extract the position
in space, and then in the angular space, for each pixel (figure 2). The detail of
these corrections is described in several references (He, 2009; Le Bourlot et al. 2012;
Mocuta et al., 2013). For this experiment, the sample-detector distance used was
of 369.9 mm, yielding to an angular opening of about 0.02◦ per pixel. For all the
reported results on thin sections, a counting time of 4 s was used; XRD and XRF
data are acquired simultaneously, thus on precisely same region of the sample.
The choice of the acquisition time is a compromise between signal statistics (for
detecting XRD, mostly) and total duration to measure one sample, in order to
remain compatible with the possibility of measuring several samples during the
allocated beamtime at synchrotron. Since the XPAD detector analysed angular
domain is of about 10 - 15◦, three different acquisitions were performed for 3.5 -17;
9.3-24.7; 19.3-33.4 degrees ranges in 2θ. Glass plus resin areas were also analysed to
have a background signal as well as < 2µm fraction samples in powder, in order to
verify that the peak of interest were detected in the analytical configuration used
(see Appendix A). All the XPAD data were pre-processed for image correction as
mentioned above (Le Bourlot et al. 2012; Mocuta et al., 2013). The 2D diffraction
patterns (XPAD images)s were transformed into diffractograms (intensity vs. 2 θ
curves) using Python codes (Fig. 2). ‘Background’ like signal (obtained on glass
and resin alone) was systematically subtracted. One can note that both the XRD
signal and the ‘background’ have rather noisy baselines, so this subtraction is
generally insufficient and further processing of the data was necessary (see below).



Fig. 2 (A) Illustration of the synchrotron set-up for XRD and XRF mapping with an X-
ray microbeam: the sample is mounted on a micron-accuracy scanner stage, and surrounded,
as shown, by the two detectors. The schematics of the XPAD detector (modules and chips
assembly) is also shown, after Mocuta et al. (2013); Powder diffraction data acquired on
a powder sample (< 2µm fraction of the L2 soil) using the XPAD detector, for three 2θ
positions (of about 3.5, 13.5 and 23.5 degrees respectively) and the data conversion procedure,
to obtain XRD Intensity vs. 2θ datasets : (B) raw XPAD images (Log10 color scale, from
blue to red); (C) the previous images are first transformed to mask the inter-module gaps
and broader inter-chip pixels; (D) then the angular coordinates of each pixel are calculated
from the known particular geometry and reported in maps with the horizontal axis being the
scattering angle ( 2θ ) and the vertical one being ψ, the azimuth measured on the XRD ring,
zero being its apex point, situated in the xz plane (cf. panel (A)). In this representation, the
XRD rings appear as vertical lines (2θ = constant). The borders of the 3 XPAD images /
datasets patched to generate this figure are shown by the colored contours (black, blue and
red respectively); (E) The XRD (I vs. 2θ) curve is obtained from each dataset by performing
a ψ azimuthal regrouping (histogram like), and shown using the previously mentioned colors
(black, blue, red).
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2.4 Automatic identification of XRD peaks (pixel scale)

As mentioned in the introduction, at the pixel scale, only few, if any, XRD peak
may be encountered, which may be very small in intensity. Their automatic iden-
tification thus requires the identification of relevant peaks, after removing both
the noise and the baseline.

2.4.1 Removal of the remaining baseline

To detect the peaks, the remaining part of the background signal either linked to
the glass slide mount or to the detection apparatus, had to be removed. At first
sight, this is similar to what was done by Antoniadis et al. (2007, 2010) for mass
spectrometry data. These authors modeled each spectrum Y by the equation:

Y (x) = L (x) + S (x) + ε (1)

where x is the molecular mass, L is the baseline (some smooth function), S is the
genuine signal (peaks associated with proteins) and ε is a white noise. Technically,
Antoniadis et al. (2007, 2010) used first the stationary wavelet transform algo-
rithm (Mallat, 1999, Section 10.2.3) to pick out the noise, and then the R package
of penalized quantile smoothing spline COBS (Ng and Maechler, 2007) to estimate
the baseline. We adapted their method to the specific nature of our data. Unlike
Antoniadis et al. (2007, 2010), who considered mass spectrometry peaks having a
quantitative meaning, the peaks in XRD-patterns have a semi-quantitative mean-
ing. In addition, the signal over noise ratio of our data is much lower than in
Antoniadis et al. (2007, 2010).
To detect significant peaks, we propose a two-steps strategy:

1. baseline correction, thanks to COBS: Y 7→
(
Y − L̂

)
, where L̂ denotes the

baseline estimate
2. stochastic denoising, thanks to an original method (see Section 2.4.2):(

Y − L̂
)
7→
(
Y − L̂

)
− ε̂ ≈ S. (2)

Like in Antoniadis et al. (2007, 2010), the smoothing parameter λ of COBS (Ng and
Maechler, 2007) was automatically chosen according to the Schwartz Information
Criterion, but we chose as a quantile level τ = 0.5 (median regression).

Remark 1 For the first angular domains, ranging from 3.5 to 17 degrees of angles,
because of the steepness of all the associated patterns near the origin (see figure 5),
it was impossible to obtain a satisfying fit with median regression in a standard
way. This case has been processed in a special way detailed in Appendix B.

While Antoniadis et al. (2007, 2010) chose a rather large number of knots (K = 60)
for fitting L (adapted to the length of their series: about 18000 points (Coombes
et al., 2003)), we used smaller values: K = 10 for the angular domains ranging
from 9.3 to 24.7 and 19.3 to 33.4 degrees of angle respectively, and K = 20 for the
angular domain ranging from 3.5 to 17 degrees of angles (remember thatK controls
the smoothness of L). We could this way determine a sufficiently smooth estimate

L̂ of the baseline, and separate it from S+ ε (see Equation 1). We finally obtained

for each angular domain and pixel i the detrended XRD signal Di := Yi − L̂i
from the original diffractogram Yi.



Fig. 3 Kernel density estimate of the noise distribution (in black), for a fixed pixel from a
zone, and a fixed angular domain; the associated Gaussian distribution (µ = 0, σ = 0.0400082)
is plotted in red and η = 0.716156 is the Pvalue of the Cramèr-Von Mises test.
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2.4.2 An inference method to identify significant peaks in Di

Due to the size of the analyzed pixel, each diffraction signal Yi as well as the de-
trended one Di were noisy and of low intensity. We thus considered as a diffraction
peak only those higher than a given number of times the standard deviation of the
noise. Consequently, we had to estimate the standard deviation (SD) σ of the noise
ε before eliminating it thanks to the three-σ rule evoked by Pukelsheim (1994).

Stage 1: estimation of σ

We drew from each zone a random sample of N pixel positions and obtained the
required estimate of σ, for each angular domain, according to the following
algorithm (detailed in Appendix C):

1. remove the noise from each detrended signal, thanks to stationary wavelets
denoising: Di 7→ Di − ε̂i

2. check the normality of the noise
3. robustly estimate its standard deviation σ.

A typical distribution of noise is displayed on figure 3. The normality of the noise
was practically never rejected (Cramèr Von Mises test of level 0.05), in accordance
with model (1); consequently the general hypothesis

(H) : εm = N (0, σm)

of a Gaussian noise affecting each angular domain m, for each pixel, was accepted.



Stage 2: binarization

Impulse noise can be observed on the XRD-pattern and must thus be discarded.
Thus, once the SD of the noise affecting the mth angular domain of the studied
zone, σm, had been estimated, we binarized the detrended XRD-patterns by using
the following two-steps algorithm.

1. Detect stochastic peaks under (H) by binarizing each Di thanks to formula
(6) of Appendix D, according to some fixed threshold η0

2. keep only those stochastic peaks which can be simultaneously considered
as local maxima of the smoothing cubic spline S

(
Di, σ̂m

)
whose smoothing

parameter λ is determined from σ̂m by minimizing the Unbiased Risk Estimate
of Wahba (1990), implemented in R by Wang and Ke (2004).

Remark 2 In the first step above, we fixed η0 := P
(
|Z| > 3 σ̂m

)
as a threshold

(three-σ rule of Pukelsheim (1994)) , where Z = N
(
0, σ̂m

)
and σ̂m is the robust

estimation provided by Stage 1; this may seem severe, but notice that high-energy
physicists, for instance Collective (2007), currently use 5 σ as a threshold.

Finally, each Di =
{(
ai1, d

i
1

)
, · · · ,

(
aiJ , d

i
J

)}
was binarized according to the rule:

Di 7→ Bi :=
{(
ai1, b

i
1

)
, · · · ,

(
aiJ , b

i
J

)}
where bik = 1 if aik is the position of some retained peak and otherwise bik = 0.

2.5 From peaks to images of minerals: presence indicators

The method proposed above allowed to identify the XRD-peaks for each pixel.
These peaks must then be associated with minerals (through ”theoretical” binary
reference spectra (see Appendices E.1 and E.2) associated with minerals), and
mapped.

2.5.1 Mineral phases: identification and image

For each analyzed thin sections, XRD-patterns were averaged by (MU pore, ma-
trix, clay coating or cutane), based on the attribution of each pixel to one of
these features by image analysis, as described above. The obtained XRD-patterns
were then interpreted classically and a list of XRD peaks encountered was es-
tablished and reported in Table 1. Peaks that were common to several minerals
were differentiated from peaks belonging to a single mineral, also called exclusive
peaks (Table 1). Each mineral is characterized by a family of diffraction peaks,
which were defined as characteristic intervals (because of possible experimen-
tal shift). Since these intervals are different from one mineral to another, it was
necessary to construct a common system T of disjoint intervals such that any
original spectrum could be reconstituted in T (the construction of T is detailed
in Appendix E.1). In concrete terms, T consists in this study of 442 intervals.
Since some XRD-peaks may be associated to several minerals while other may be
exclusive of a single mineral, a ponderation was applied to give more weight to
exclusive peaks than to peaks shared by several minerals (see Appendix E.1). We



then defined indicators assigning to each peak a weight depending on the number
of minerals that shares it. This point is detailed in Appendix E.3, where are defined
the Presence Index of some mineral s at some position (xi, yi), PI (s;xi, yi),
and its Weighted Presence Index, WPI (s;xi, yi), which takes into account
the exclusiveness of each peak.

2.6 Computational aspects: a digest

On figure 4, we synthesize by a flowchart the sequence of processing proposed.
The left side of this figure corresponds to a Mathematica package, calling two
R packages: COBS (Ng and Maechler, 2007) for baseline removing, and assist
(Wang and Ke, 2004) for fitting the residual of COBS by some smoothing spline.
A second Mathematica package has been dedicated to the right part of figure 4:
conversion of binarized DRX data into maps of presence indicators of minerals
of interest, thanks to reference spectra provided by experts. Another preliminary
Mathematica package has been written, to build the family T of intervals (see
Appendix E) associating 2 θ coordinates with characteristic intervals. The whole
processing lasts around an hour per image (depending on its size, its signal to
noise ratio, etc).

Fig. 4 First part (left side): sketch of processing at the pixel level, for each angular domain;
the resulting binary curves are then merged and compared with reference spectra of minerals
of interest (right side).
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3 Results and discussion

3.1 Stability of the peak detection and identification process

In the above described approach two key steps were identified: the background
removal method, and the choice of the number of σ as a threshold for peak detec-
tion.

3.1.1 Removal of the background

As seen on figure 5, the background of the obtained XRD-pattern may be quite
complex and varies according to the angular domain considered. It comprises a de-
crease of exponential type of the signal from 3 to 5◦ in 2θ and a large bulge ranging
from 7 to 15◦ in 2θ (figure 5). The exponential decrease in small angles is classical
(principally due to air and small particles scattering and other phenomenons like
Compton scattering, fluorescent radiation. . . (Gaast and Vaars, 1981). The bulge
corresponds to the signature of the glass slide (amorphous material) on which the
soil thin section was mounted. The subtraction of an experimental XRD-pattern
obtained for a zone of the thin section containing only the resin from the raw
XRD-patterns before pre-treatment was used to remove this bulge. It however re-
sults in an increasing noise. That is why a supplementary mathematical removal
of the background was performed. Both the exponential decrease and the residual
bulge were thus removed mathematically from the XRD-signal for the automatic
analysis of the XRD-patterns of the individual pixels as shown on figure 5 in red,
green and yellow. As seen on this figure, the chosen algorithm was robust enough
to remove the background whatever its shape for the different angular domains
considered.

3.1.2 Binarization strategy: choice of the threshold k σ

In order to differentiate diffraction peaks from noise, the results of Pukelsheim
(1994) was used for determining stochastic peaks. This type of threshold is classical
in signal analysis but can range from as high as five SD, as in high-energy physics
Collective (2007), or as low as two sigmas in geochemistry. On figure 6, we reported
the peaks identified for two XRD-patterns using 2, 3 or 3.5σ as a threshold. Some
of the peaks identified with 2σ do not really come out of the background level and
would not have been interpreted as peaks by an expert (see for examples peaks at
21.2, 28.2 and 31.5 degrees in 2θ in figure 6a and at 10.8, 11, 18.2, 21.8, 22.8 and
23.2 degrees in two-theta in figure 6b). Two sigmas seemed thus an insufficient
threshold for diffraction peak detection. Using 3σ, for the two considered pixels,
only significant diffraction peaks were selected (see figure 6c and d). Moving to a
3.5σ threshold, small peaks considered as significant by an expert, as the peak at
11.7 degrees in 2θ on figure 6f, are not identified anymore by our procedure. At last,
while considering 4σ, no peak is detected, in both cases (results not shown). We
thus conclude that 3σ was the optimal threshold to be used for the peak detection.



Fig. 5 Two examples of XRD-patterns. Raw data (dots) and fitting of the background by
COBS of angular domains 1 (yellow), 2 (green) and 3 (red).

3.2 Identification of the mineral on the mean XRD-patterns of the different soil
microscopic units for the three studied zones

Average XRD-patterns for the analyzed zones shows that the main notable fea-



Fig. 6 Peaks detection for two diffractograms (columns). On each panel are superimposed:

the detrended data (black points) D, the smoothing spline S
(
D, σ̂m

)
(green) and the neigh-

borhoods of stochastic peaks (red strips).
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ture of these XRD-patterns is a bulge for 2θ values ranging from 7 to 17◦ that is
characteristic of the glass slide on which the thin sections are mounted. Few small
peaks are also observed. They may be considered either as artefacts due notably to



Fig. 7 Analysis of a dusty clay coating surrounding a pore from S/T: a- micromorphology
picture; b- classification of the different considered zones (pore, coating, matrix) by image
analysis; c to i: maps of the probability of presence the different minerals WPI of different
minerals identified on l, the average XRD-patterns for the different considered zones, with c-
feldspars; d- quartz, e- goethite; f- maghemite; g- kaolinite; h- illite; i- smectite. The green lines
represent the borders between the different pedological features (pore, coating and matrix).
Blue stands for the absence of the mineral when orange is its maximal probability of presence.
Maps j and k are µXRF maps for Fe and Zn respectively.
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Fig. 8 Analysis of a limpid clay coating surrounding a pore from R/T-3: a- micromorphology
picture; b- classification of the different considered zones (pore, coating, matrix) by image
analysis; c to i: maps of the probality of presence of the different minerals identified on l,
the average XRD-patterns for the different considered zones, with c- feldspars; d- quartz; e-
goethite; f- maghemite; g- kaolinite; h- illite; i- smectite. The green lines represent the borders
between the different pedological features (pores, coating and matrix). Blue stands for the
absence of the mineral when orange is its maximal probability of presence. Maps j and k are
µXRF maps for Fe and Zn respectively.
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Fig. 9 Analysis of a laminated coating from AR/B: a- micromorphology picture; b- classifica-
tion of the different considered zones (pore, coating, matrix) by image analysis; c to i: maps of
the probability of presence of the different minerals identified on l, the average XRD-patterns
for the different considered zones, with c- feldspars; d- quartz, e- goethite; f- maghemite; g-
kaolinite; h- illite; i- smectite.The green lines represent the borders between the different pedo-
logical features (pores, coating and matrix). Blue stands for the absence of the mineral when
orange is its maximal probability of presence. Maps j and k are µXRF maps for Fe and Zn
respectively.
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Feature type Studied zone Kaolinite Goethite Illite Feldspars Quartz Smectite Tot. nb. of obs. peaks
Nb. of peaks All 52(30) 14(7) 17(11) 150(119) 12(7) 6(1)
observed exp.

R/T-1 1 (0) 0 0 7 (0) 0 0 7
Limpid coating R/T-2 16(9) 2(0) 4(2) 22(15) 7(5) 0 42

R/T-3 3(3) 1(1) 1(0) 15(12) 3(3) 0 22
S/B 7(4) 3(1) 9 (7) 30(23) 3 (3) 3(1) 30

Laminated AR/B 3(2) 1(0) 2 (1) 8(8) 1(1) 1 (0) 14
coating P/B 5(2) 0 0 7(4) 0 0 9

AR/T 6 (5) 3 (2) 0 11(11) 1 (1) 1 (0) 22
Dusty coating P/T 10(4) 2(1) 3(2) 23(18) 2(2) 1(0) 31

S/T 11(7) 2(1) 2(1) 18(13) 1(1) 2(0) 31
AR/B 8 (3) 3 (1) 0 15 (13) 3 (3) 0 30
AR/T 10 (8) 3 (2) 0 14 (12) 4 (4) 1 (0) 30
P/B 9(5) 1(1) 1(1) 12(8) 1(1) 0 20

Matrix P/T 5 (2) 3 (2) 1 (1) 30 (28) 3(3) 0 41
R/T-1 8(3) 2(0) 2(0) 29(21) 4(3) 0 36
R/T-3 6(3) 2(0) 3(3) 18(17) 2(2) 0 31
S/B 10(7) 4(1) 1(1) 35(28) 4 (3) 1 (0) 53
S/T 6(2) 4(3) 3(1) 20(13) 2(2) 3(1) 33
P/T 0 0 1(1) 8 (8) 2 (2) 0 11

R/T-1 0 0 0 4(2) 0 0 4
Pore R/T-2 2(2) 2(1) 3(2) 3(2) 1(0) 0 9

R/T-3 0 0 0 3(3) 0 0 3
S/B 3(2) 1(0) 1(1) 5(4) 2(1) 0 11
S/T 1(1) 0 0 1(1) 0 0 4

Table 1 Number of peaks observed experimentally for each mineral on all the studied thin
sections in the angular domain 3.5 - 33.4 degrees in 2θ (λ = 0.72Å) and number of peaks
observed experimentally for each mineral for the different zones. Under bracket, the num-
ber peaks experimentally detected and not shared among several minerals (called thereafter
exclusive peaks).

an underestimation of the noise in certain zones, or resulting from an overestima-
tion of the pore surface by the image analysis including grains located at the edges
of these areas. The mineral maps of the two zones including pores (Figures 7 and
8 c to e) also show that almost no minerals are detected in the zones considered as
pores with some exceptions of very small intensity. For other zones however, more
peaks were detected due to an overestimation by image analysis of the pore zone
(see pore zones of P/T, S/B and R/T-2 in Table 1). The total number of peaks
detected remains however largely lower than in the matrix or in the clay coatings
(Table 1).
The average XRD-patterns of the matrix always exhibit a large number of peaks,
many of them being associated to feldspars and quartz (Figures 7j to 9j and Ta-
ble 1). Kaolinite, goethite are also systematically observed on the average XRD-
patterns of the matrix while illite is only encountered in the matrix of some of
the analyzed zones. Peaks of feldspar are the most numerous with the highest
intensities; this might be due to the fact that feldspar is a mineral family with a
high amount of possible diffraction peaks (150, see Table 1), it is also a mineral
common in the studied soil. Surprisingly, quartz that is known to represent about
80 percents in mass of these soils was not dominating the XRD-signal, probably
due to the much lower number of possible diffraction peaks in the angular domain
of 3.5 to 33.4 in 2θ (Table 1) and the difficulty in detecting the crystallite size
of the quartz with the small size beam used for mapping with X-ray synchrotron



as already observed by others (Stroh et al. (2014); Siebecker et al. (2018), Sup-
plementary materials 2 and 3). Smectite is rarely detected without ambiguity, as
expected for the matrix of this soil chosen to be depleted in smectite.
In the coating zones, the average XRD-patterns show a comparable number of
diffraction peaks to that observe for the matrix with the notable exception of
R/T-1 (Table 1) that is very thin with probably a small amount of matter on the
section according to the optic microscopy observations (data not shown). As for
the matrix, feldspars and kaolinite were systematically detected in the coatings
whereas goethite, illite and quartz are observed in most of them. Finally, smectite
is rarely unambiguously detected (Table 1). No clear distinction is observed be-
tween the mineral composition of the two types of coatings while dusty coatings
(DSB) were thought to be richer in grains (feldspars and quartz, Fedoroff and
Courty (1994); Jongmans et al. (2001); Kuhn et al. (2010)). In addition, while
it was expected to identify more clay minerals in coatings than in the matrix,
this was not clearly observed (Table 1). These two surprising results may be due
to changes in the relative abundance of the mineral species but not in the pres-
ence/absence of specific minerals and possibly to imprecisions in the segmentation
of images MUs. In the case of the laminated coating (HLB), only a few peaks were
identified (Table 1 and Figure 9j) despite the clear evidence of a large amount of
matter on the considered zones of the thin sections (see Figure 8a). The number
of peaks associated to feldspars is for example closed to those observed in pores
and considerably lower than those of the soil matrix (Table 1) suggesting that the
diversity and very likely the abundance of feldspar is limited in the HLB. Quartz
shows a similar behaviour (Table 1). Contrastingly, peaks associated with clay
minerals and more particularly with kaolinite, are more systematically detected
than in pores (Table 1). Smectite, that has been only very rarely detected, seems
entering in the mineralogical composition of the AR/B HLB. These combined
results suggest that HLB are very likely enriched in various clay minerals and
impoverished in quartz and feldspar grains as expected. It is however clear that
the total number of peaks detected in the HLB remains surprisingly low. This is
interpreted as resulting from the marked orientation of the clay minerals in HLBs
as deduced from its high level of birefringence (Figure 9a). Therefore, due to their
orientated nature, it seems very difficult to characterize with certainty the nature
of the clay minerals contained in HLBs, while the same minerals being randomly
orientated when present in the matrix may be identified with the same technic
(Schulze and Bertsch, 1995; Lopano et al., 2011; Yusiharni and Gilkes, 2012; Tsao
et al., 2013; Sumoondur et al., 2008).

3.3 Spatial distribution of the XRD-pattern in the different soil microscopic unit
(MU) of the three studied zones

The µXRD-maps confirm reasonably well the analysis obtained from the different
MU average XRD-patterns: the pore, the matrix and the coatings (Figures 7 to
9 c to i). Pores are almost free of mineral (Figures 7 and 8 c to i) as already
observed from average XRD-patterns and in good coherence with the very low Fe
and Zn concentrations (Figures 7 and 8 j and k) used here as geochemical tracers
for irons oxides and for the clay minerals respectively as already demonstrated
in comparable studies (Cornu et al., 2007). The matrix is characterized by the



highest abundances in feldspar and quartz (Figures 7 to 9 c and d) and by a patchy
distribution of clay minerals like kaolinite and illite and of iron oxides, especially
maghemite (Figure 7 to 9 e to i). The coatings, unsurprisingly rich in clay minerals
as suggested by high Zn concentrations (Figures 7 to 8k), are characterized by i)
the presence of kaolinite, illite and of most of the detected smectite in the HLB
(Figures 7 to 9 g, h and i); ii) almost no feldspar nor quartz but in the dusty coating
(DSB) or at the borders of the limpid (LB) and the HLB coatings (Figures 7 to
9 c and d) and iii) few goethite and almost no maghemite (Figures 7 to 9 e,
f) despite very high Fe contents (Figure 7 to 9j). The DSB is characterized by
the identification of quartz and feldspars grains, which is in good agreement with
microscopic observations made for this type of coatings (see section 2.2.) and with
their conditions of formation (Fedoroff and Courty, 1994; Jongmans et al., 2001;
Kuhn et al., 2010). Smectite is in addition more frequently detected in this coating
than in LBs (Figures 7 and 8i). Since DSBs are supposed to developed after rains
on bare soils (Fedoroff and Courty, 1994; Jongmans et al., 2001; Kuhn et al.,
2010), which correspond to the conditions of the rain experiment performed, and
since this coating contains smectite that are absent from the surrounding matrix,
it could have been formed by eluviation of material coming from the upper core
that contain smectite during the rain experiment. More systematic analysis of this
type of coating should be performed in order to definitely conclude on that point.
Finally, the ability of µXRD to detect clay minerals in clay coatings decreases from
DSBs to LBs and finally to HLBs despite similarly high Zn contents (Figure 7 to
9k). It is very likely related to an increasing orientation of clay particles as shown by
increasing birefringence and resulting from conditions of formation characterized
by slower water flows. the µXRD maps were relatively successful in identifying
changes in the mineralogical composition not only between the soil matrix and soil
features like but also between DSB and LB coatings. On the contrary, only few Fe-
bearing minerals was identified in the different clay coatings despite homogenously
high Fe concentrations in clay coatings and despite the identification of patches
of goethite or maghemite in the soil matrix for lower Fe concentrations (Figures 7
to 9j). This apparent contradiction results from that fact that in this type of
soil, a large part of Fe is mainly present as poorly crystalline oxides as shown by
sequential extractions by Montagne et al. (2008) and that maghemite is more of
an inherited mineral present in parent loess material and thus in the matrix.

4 Conclusion

Synchrotron µXRD on thin sections of soils resulted in mineralogical maps of
high complexity due to the small size of the analysed pixel compared to the size
of the mineral grains and the orientated nature of the clay coatings that partially
extinguish the diffraction peaks of the clay minerals. It leads to the detection
of a few diffraction peaks in the most favourable case. Despite this complexity,
our approach, combining various signal processing methods (wavelets, quantile re-
gression, smoothing splines, statistical inference), was shown to be efficient and
robust enough to automatically identify and map minerals from synchrotron XRD
large datasets obtained on naturally highly heterogeneous soil materials. Most of
the minerals present in the considered samples could be identified, including clay
minerals with the notable exception of smectite that was rarely identified with cer-



tainty. µXRD mapping was found to be complimentary to average XRD-patterns
and particularly helpful to characterize changes in mineralogical assemblages. Al-
though mostly qualitative, the approach proposed here successfully differentiated
the mineralogical composition of the soil matrix from that of soil features like clay
coatings. It results in one of the first characterization of the spatial variability of
clay mineral assemblages in clay coatings. In the studied case, the clay coatings
were found to contain not only smectite as generally hypothesized but also kaoli-
nite and illite. It suggests that the clay translocation process, if selective of clay
minerals species, is not selective enough to produce monospecific clay coatings.
The development of quantitative approach thus seems necessary to definitively
state on the potential clay mineral selectivity of the translocation process. The
mineralogical composition of clay coatings was found to be sensitive to their con-
ditions of formation as shown by dusty coatings richer in feldspar, in quartz or in
smectite than the limpid ones.
Moreover, the recently available fast data acquisition schemes, yielding now large
amounts of datasets (e.g. several 104 − 106 diffractograms), requires automatic
methods dedicated to the automatic identification and mapping of minerals as the
one developed in this study.
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Fig. 10 Synchrotron XRD-pattern of the < 2µm fraction (in powder) of the L2 core (acqui-
sition time: 100s)

Appendices

Notations and special terms

In this part, #E will denote the number of elements of some finite set E. We will say that a
matrix is of size r × c if it has r rows and c columns, and the Hadamard (i.e. elementwise)
product of two vectors of dimension p will be denoted: u ◦ v := (u1v1, · · · , upvp). As usual, N
will denote the set of positive integer numbers, Q the set of rational numbers and R the set of
real numbers, and the logical connectors and (resp. or) will be denoted ∧ (resp. ∨).

A Methodological test on the < 2µm fraction of the considered soil.

The fraction < 2µm of the soil was analysed in powder mode by synchrotron XRD in the same
configuration than the studied thin section in order to test whether the mineral of interest,
notably the clay minerals could be detected in the configuration used. Two main differences
with respect to the thin section analysis are to be noted: a) longer XRD acquisition time
(100 s) and b) during the acquisition, the sample is continuously moved laterally in Y and Z
direction over a ±500µm range. As a consequence, more crystallites are potentially brought
into diffraction condition, i.e. the sample resembles more to a random powder (i.e. with a
sufficient statistic for all possible orientation that is not obtained at the pixel size even for
< 2µm randomly orientated particles). This explains the much more ring-like XRD features
on the XPAD images (see e.g. Figure 2). Clay mineral peaks are detected, however the 001
peaks, traditionally used to identify clays, are very small despite their important concentration
in this fraction. Quartz is also clearly detected despite its small amount in this < 2µm fraction.
Small peaks of feldspars and goethite are also observed. This first analysis demonstrated the
feasibility of our approach when randomly orientated particles are considered. In the case of
thin sections, very few peaks are observed because of the discrete orientation of the crystals



in the illuminated sample volume (their volume is comparable with the illuminated sample
volume).

B Background removal in the case of the first angular domain

Because of the steepness of all these patterns near the origin (see figure 5), it was impossible to
obtain a satisfying fit with median regression in a standard way. Since COBS Ng and Maechler

(2007) is very flexible, we could impose global shape conditions to L̂i (associated with the ith

pixel), as well as pointwise equality constraints: the solution must run through a local maximum
of the diffractogram (among its 10 first values) and must have a ”right” slope at the midpoint
angle. More precisely, we considered the beginning Dbeg := {(a1, d1) , · · · , (a81, d81)} of the
diffractogram, and determined the angle aMax such that dMax = Max

1≤i≤10
di. We first imposed

to the output L of COBS the interpolation constraint:

L (aMax) = dMax. (3)

Then, we considered the midpoint angle a41 of Dbeg and the nonlinear fit of Dbeg by

f (a;λ, α, β, γ) := e−λ a
(
γ + αa+ β a2

)
obtained for some optimal vector

(
λ̃, α̃, β̃, γ̃

)
. We then imposed to L, in addition to constraint

(3), the slope constraint:
d

da
L (a41) =

d

da
f
(
a41; λ̃, α̃, β̃, γ̃

)
. (4)

C Estimation of σ

We drew from each zone a random sample of N pixel positions (we fixed N ≈ 1/16 of the zone
size) and obtained the required estimate of σ thanks to to the following algorithm:

1. perform stationary wavelet denoising (Mallat, 1999, Section 10.2.3) on each detrended
signal Di:

Di 7→ Di − ε̂i
(the SureShrink procedure of Donoho and Johnstone (1995) was used), and obtain the
local estimate σ̂ (ε̂i) of the SD

2. check the normality of the residual series ε̂i
3. robustly estimate the SD by the trimmed mean of order 0.25 of the local estimates
{σ̂ (ε̂1) , · · · , σ̂ (ε̂N )}; in addition, verify that the trimmed mean of order 0.25 of the local
estimates of the mean, {µ̂ (ε̂1) , · · · , µ̂ (ε̂N )}, is close to zero.

A typical illustration of the normality of residuals has been shown on figure 3.

D Stochastic binarization of detrended patterns

Remember first the well-known Bienaymé-Tchebychev theorem Renyi (1966).

Theorem 1 (Bienaymé-Tchebychev inequality) Let D be a random variable with mean µ and
finite standard deviation σ > 0 and r > 1. Then

P (|D − µ| > r σ) < 1/r2.

The three sigma rule Pukelsheim (1994) came up from a kin inequality, suited for unimodal
distributions and proved by Gauss.



Theorem 2 (Gauss inequality) Let D be an absolutely continuous random variable with mode

ν and τ :=

√
E
(

(D − ν)2
)

. Then

P (|D − ν| > r) ≤
{

4 τ2

9 r2
if r ≥ τ

√
4/3

1− r
τ
√
3
if r ≤ τ

√
4/3

. (5)

If D is a symmetric distribution, we obtain this way P (|D − µ| > 3σ) ≤ 4/81 ≈ 0.05: this
is the three sigma rule, attached to the usual excess probability 0.05. Notice that in this
case the Bienaymé-Tchebychev inequality only tells us that P (|D − µ| > 3σ) < 1/9: this is
approximately twice the excess probability given by the Gauss inequality, which is consequently
more accurate than the Bienaymé-Tchebychev one.

Remark 3 Of course, the accuracy is even better in the parametric setting: suppose D ∼
N (0, σ). Then P (|D| > 2σ) ≈ 0.0455, P (|D| > 3σ) ≈ 0.003 and P (|D| > 4σ) ≈ 6.33 10−5.

Consider now a detrended diffractogramD = {(a1, d1) , · · · , (aJ , dJ )}, where J ∈ {648, 624, 528}
is the length of the series and aj is an angle. The second coordinate dj is a realization of
some random variable D (aj); if aj corresponds indeed to pure noise, we may agree (see Sec-
tion C) that D (aj) is centered Gaussian, while in other cases (when aj is associated with
some genuine signal) D (aj) should obey an entirely different distribution. Thus, we naturally
postulated that D was a contaminated centered Gaussian distribution (that’s the rationale
of trimmed estimations in Section C). We only supposed D is symmetric and unimodal, with
zero as mode; in this case |D| can be controlled by Formula (5). Suppose now a risk η0 has
been fixed; thanks to inequality (5), we can associate to D the binarized diffractogram
B := {(a1, b1) , · · · , (aJ , bJ )} defined by:

bj =

{
0 if (dj ≤ 0) ∨ P (|D| > dj) > η0
1 if (dj > 0) ∧ P (|D| > dj) ≤ η0

. (6)

In other words, bj = 1 only if dj is big enough. We fixed η0 = 0.0026998, corresponding to the
probability of deviation from the mean > 3σ in the Gaussian case.

E The generating family T of intervals, the associated tables, and
presence indicators

To each mineral of interest s was associated a whole original family
{
Isk : 1 ≤ k ≤ Ns

}
of

not necessarily disjointed intervals (resulting from expert knowledge) such that the angles

associated with s belong to Es :=

Ns⋃
k=1

Isk. Roughly speaking, each binarized diffractogram B of

length Jm (associated with the mth angular domain) defined in the previous subsection would
give rise to S binary vectors, such that the one corresponding to s is Bs =

{
bs1, · · · , bsJm

}
,

where bsj = bj if aj ∈ Es and bsj = 0 if aj /∈ Es. Thus, Bs measures the similarities between

B and the ”signature” Es of the mineral s. But two problems are met:

– redundancy: because of the definition of the original intervals it is possible that for some
j, aj ∈ Isk

⋂
Isk+1; consequently, a single angle can ”switch on” two intervals associated

with a single s

– ambiguity: by construction, it is possible that Isk
⋂
Irp 6= ∅, or even

(
Isk
⋂
Isk+1

)⋂(
Irp
⋂
Irp+1

)
6=

∅; consequently, a single angle can also switch on two (or more) intervals associated with
different minerals.

Of course, these facts are not mutually exclusive. To control these problems, we built from the
complete family of intervals

{
Isk, 1 ≤ k ≤ Ns, 1 ≤ s ≤ S

}
another family, T0, of finer disjoint

generating intervals, such that

∀s, ∀k Isk =
∐

p∈P (s,k)

Tp



Fig. 11 The multiplicity µ of the members {T1, · · · , Tk, · · · , T442} of T .
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(disjoint union), where P (s, k) denotes the set of indices associated with the kth original
interval and the mineral s. We discarded afterward from T0 (538 intervals) all its “negligible”
members, of width less than 0.02 degrees (angular resolution of the data), obtaining a family
T of 442 disjoint intervals. Within this system, the redundancy phenomenon is eliminated,
contrary to the ambiguity one. Nevertheless, notice that now an angle cannot switch on more
than S intervals of T .

E.1 The intervals of T : their exclusiveness and exclusiveness

Consider again all the angles associated with the mineral s; they belong to Es =

Ns⋃
k=1

Isk =∐
p∈P (s) Tp , where P (s) denotes the set of indices of members of T associated with s. We

can thus represent some mineral s by its binary reference spectrum πs =
(
π1
s , · · · , π442

s

)
,

where

πks =

{
1 if k ∈ P (s)

0 if k /∈ P (s)

and now, all the minerals are described in the common system T ! Let us now build from
these binary spectra the matrix Π := (π1, · · · , πS) of size 442 × S, where S is the number
of minerals of interest. Notice that Π only depends on the experimental apparatus and that
µ := Π.1S ∈ N442 gives the number of minerals associated with each interval, its multiplicity.
The multiplicity of the 442 members of T is displayed on figure 11. It can reach 4, while there
are a number of intervals of multiplicity 1, which are really exclusive of some mineral. That is
why we will define the exclusiveness of each interval by the inverse of its multiplicity, giving

rise to the positive rational vector Ω :=
(

1
µ(1)

, · · · , 1
µ(442)

)
.



E.2 The operator Λm associating T with angles of the mth angular domain

Consider now the vector Am :=
(
am1 , · · · , am#τ

)
, of length #T = 442, of angles associated

with this angular domain. Like Π, it is totally independent of the data, as well as the operator
Λm of dimensions Jm× 442 whose jth row is the binary vector assigning to the sampled angle
amj the unique index p (m, j) ≤ #T such that amj ∈ Tp(m,j). We displayed on figure 12 the

operator Λ1 associated with the first angular domain. Notice the vertical patterns on this
figure, which correspond to sequences of sampled angles belonging to a common interval of T .
Consider finally some vector Bi of binarized responses in the angular domain m (issued from
the processing of some pixel, described in D), of length Jm. We will associate to Bi the vector
of the spectra space Λm

(
Bi
)
∈ N442 given by the matrix product Λm

(
Bi
)

:= Bi · Λm.

E.3 The presence indicators associated with minerals

The binarization procedure detailed in D gives rise, for each pixel and the mth angular domain
(with Jm angles), to some detrended binary signal Bm :=

{(
am1 , b

m
1

)
, · · · ,

(
amJm , bmJm

)}
.

We then translate Bm into the T language, in order to evaluate the possibility of presence
of each mineral at each pixel. Notice that the vector of first coordinates of Bm (angles),
denoted Am, only depends on the protocol while the vector of second coordinates, Bm, actually
depends on the data. The operator Λm ∈ Jm× 442 defined in E.2 associates to Bm the vector
Λm (Bm) := Bm.Λm ∈ N#T = N442 whose pth coordinate is the count of all the significant
angles (i.e. amj such that bmj = 1) of the detrended pattern which belong to the interval

Tp ∈ T (the dot denotes the scalar product in the spectra space R#T = R442).

Balancing the information bore by intervals of T

Since some XRD-peaks may be associated to several minerals while other may be exclusive of a
single mineral, a ponderation was applied to give more weight to exclusive peaks than to peaks
shared by several minerals. We defined an indicator assigning to each peak a weight decreasing
with the number of minerals that shares it. Consider some mineral species s, whose binary
reference spectrum is πs, and the vector of exclusiveness Ω defined too in E.1; both these

vectors belong to Q#T = Q442. While the ”raw weight” of s is naturally πs :=

#T∑
j=1

πs(j), we

will define similarly its ”exclusive weight” by ωs :=

#T∑
j=1

(Ω ◦ πs) (j); of course, ωs ≤ πs. Notice

that these weights only depend on the matrices Π (defined in E.1) and {Λm, 1 ≤ m ≤ 3}
(defined in E.2), which are associated with the experimental setting, not with data.

Presence indices

Definition 3 Considering the ith ”pixel” of a zone, we associate to the corresponding position
(xi, yi) the Presence Index of the mineral s at this position:

PI (s;xi, yi) :=
1

πs
πs · Λ• (B•) (xi, yi) ∈ Q (7)

where Λ• (B•) (xi, yi) :=
∑3
m=1 Λ

m (Bm (xi, yi)) ∈ N442.

Definition 4 Consider the ith pixel of a zone and the vector of exclusiveness Ω. We associate
to its position the Weighted Presence Index of s:

WPI (s;xi, yi) :=
1

ωs
(Ω ◦ πs) . (Ω ◦ Λ• (B•) (xi, yi)) ∈ Q (8)

with the same conventions as in Definition 3.



Fig. 12 The operator Λ1; vertical patterns correspond to sampled angles belonging to a
common interval of T (the arrows mark such cases).
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