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Abstract
We investigate rules which allow variable elimina-
tion in binary CSP (constraint satisfaction problem)
instances while conserving satisfiability. We pro-
pose new rules and compare them, both theoreti-
cally and experimentally. We give optimised algo-
rithms to apply these rules and show that each de-
fines a novel tractable class. Using our variable-
elimination rules in preprocessing allowed us to
solve more benchmark problems than without.

1 Introduction
Constraint satisfaction provides a generic model for many
NP-hard problems encountered in fields such as artificial in-
telligence, bioinformatics and operations research. In this pa-
per, we study binary CSP instances, in which each constraint
concerns at most two variables. Since the binary CSP is NP-
complete, it is of practical interest to find polynomial-time
operations which reduce the size of the search space. One
obvious way to reduce search space size is by variable elimi-
nation.

Variable elimination is classic in those families of con-
straint problems in which variables can be eliminated without
changing the nature of the constraints: we can cite Gaussian
elimination in systems of linear equations over a field [Schri-
jver, 1999] or variable-elimination resolution in boolean for-
mulae in CNF [Subbarayan and Pradhan, 2004]. Indeed, any
variable xi can be eliminated from a general-arity CSP in-
stance by joining all constraints whose scope includes xi and
projecting the resulting relation R with scope Y onto the vari-
ables Y \ {xi} [Dechter, 1999; Larrosa and Dechter, 2003].
Call this relation R−xi . Unfortunately, this often introduces
a high-arity constraint and this can be counterproductive in
terms of both memory and time. Under certain conditions,
a binary CSP instance will remain binary after this join-
and-project variable elimination of xi. For example, this is
clearly the case if xi is constrained by only two other vari-
ables since, in this case, R−xi is binary. A more interesting
case is when all constraints with xi in their scope share a ma-
jority polymorphism since, in this case, the relation R−xi is
∗This paper is an extended abstract of [Cooper et al., JAIR, 2019]
†Contact Author

equivalent to the join of its binary projections [Jeavons et al.,
1998]. Fourier’s algorithm for variable elimination applied
to a system of binary linear inequalities [Koubarakis, 2006;
Schrijver, 1999] can be viewed as just one example of this
general rule, since binary linear inequalities are all closed
under the majority polymorphism median. Another interest-
ing case is when there is a functional constraint of the form
xi = f(xj) (where f is a function) for some other variable
xj : the relation R−xi is then equivalent to the join of its pro-
jections onto the pairs of variables (xj , xk) (k 6= i, j) [Zhang
and Yap, 2011].

Unfortunately, the introduction of a large number of new
constraints, even if they are still binary, may again be counter-
productive. Therefore, we concentrate in this paper on rules
which do not introduce new constraints when a variable is
eliminated.

Various rules have been found which allow the elimination
of a variable without introducing new constraints and without
changing the satisfiability of the instance [Cohen et al., 2015;
Cooper, 2014; Cooper et al., 2010]. Such rules were used,
for example, in the deep optimisation solution to the spec-
trum repacking problem [Newman et al., 2018]. Discovery
of new variable-elimination rules may have not only prac-
tical but also theoretical applications. For example, simple
rules for variable or value elimination are used by Beigel and
Eppstein (1995) in their algorithms with low worst-case time
bounds for such NP-complete problems as 3-COLOURING
and 3SAT: these simplification operations are an essential first
step before the use of decompositions into subproblems with
smaller domains. In the theory of fixed-parameter tractability,
variable elimination is often an essential ingredient of polyno-
mial kernalisation algorithms. For example, in the Point Line
Cover problem (find k straight lines which cover n points), if
at least k + 1 points lie on a line, then they can be effectively
eliminated since they must be covered by this line [Kratsch et
al., 2016].

We study the following generic NP-hard problem.
Definition 1 A binary CSP instance I = 〈X,D, R〉 com-
prises

• a set X of n variables x1, . . . , xn,

• a domainD(xi) for each variable xi (i = 1, . . . , n), and

• a binary constraint relation Rij for each pair of distinct
variables xi,xj (i,j∈{1, . . . , n}).
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For notational convenience, we assume that there is exactly
one binary relation Rij for each pair of variables. We say that
xi constrains xj if Rij is different from D(xi)×D(xj), and
we use e to denote the number of pairs of variables {xi, xj}
such that xi constrains xj . An assignment 〈v1, . . . , vm〉 to
variables 〈xi1 , . . . , xim〉 is consistent if vj ∈ D(xij ) (for j =
1, . . . ,m) and (vj , vk) ∈ Rij ,ik (for all j, k such that 1 ≤
j < k ≤ m). A solution to I is a consistent assignment to all
variables in X .

We can associate a binary CSP instance with its mi-
crostructure, a labelled graph whose vertices are the variable-
value assignments and which has positive and negative edges.
If (vi, vj) ∈ Rij , we say that the assignments 〈xi, vi〉,
〈xj , vj〉 (or more simply vi, vj) are compatible and that vivj
is a positive edge, otherwise vi, vj are incompatible and vivj
is a negative edge. In figures, broken lines represent nega-
tive edges (incompatible pairs) and solid lines represent pos-
itive edges (compatible pairs). For simplicity of notation we
can assume that variable domains are disjoint, so that us-
ing vi as a shorthand for 〈xi, vi〉 is unambiguous. We say
that vi ∈ D(xi) has a support at variable xj if there exists
vj ∈ D(xj) such that vivj is a positive edge. A binary CSP
instance I is arc consistent if for all pairs of distinct variables
xi, xj , each vi ∈ D(xi) has a support at xj . Arc consistency
is ubiquitous in constraint solvers: it is applied both before
and during search in binary CSPs since it can be established
in O(ed2) time, where e is the number of binary constraints
and d the maximum domain size [Bessière et al., 2005].

All proofs of results given in this extended abstract can be
found in the full version of the paper [Cooper et al., 2019],
together with details of the experimental trials.

2 Variable-Elimination Rules
We study conditions under which a variable xi can be elim-
inated from a binary CSP instance while conserving satisfi-
ability. A simple example of such a condition is that there
exists a value vi ∈ D(xi) which is compatible with all as-
signments to all other variables. Clearly any solution s to the
instance I ′ obtained by eliminating xi can be extended to a
solution to the original instance I by setting s(xi) = vi. An-
other simple example is that the variable xi has a singleton
domain {vi}. This second example demonstrates that when
eliminating the variable xi we need to retain the projections
onto X \ {xi} of all constraints whose scope includes xi,
since in this example we must first eliminate from all do-
mains D(xj) (j 6= i) those values that are not compatible
with 〈xi, vi〉. Thus, the instance I ′ obtained by eliminating
a variable xi from a binary CSP instance I is identical to I
except that (1) ∀j 6= i, we have deleted from D(xj) all val-
ues vj such that 〈xj , vj〉 has no support at xi in I , and (2)
we have deleted the variable xi and all constraints with xi in
their scope.

We require the following formal definition in order to
study provably-correct variable-elimination rules [Cohen et
al., 2015].

Definition 2 A satisfiability-conserving variable-elimination
condition (or a var-elim condition) is a polytime-computable
property P (xi) of a variable xi in a binary CSP instance I
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Figure 1: The DE-snake property: for some value vi ∈ D(xi), for
each value vj incompatible with vi, there is a value v′j such that (1)
v′j is compatible with vi, and (2) v′j is compatible with all assign-
ments vk to a third variable xk which are compatible with vj .

such that when P (xi) holds the instance I ′ obtained from I
by eliminating xi is satisfiable if and only if I is satisfiable.
Such a property P (xi) is a solution-conserving variable-
elimination condition (sol-var-elim condition) if it is possi-
ble to construct a solution to I from any solution s′ to I ′ in
polynomial time.

A sol-var-elim condition not only allows us to eliminate
variables while conserving satisfiability but also allows the
polynomial-time recovery of at least one solution to the orig-
inal instance I from a solution to the reduced instance I ′. All
the var-elim properties given in this paper are also sol-var-
elim properties.

3 Variable Elimination by the DE-snake Rule
Definition 3 A variable xi satisfies the DE-snake property if
∃vi ∈ D(xi) such that ∀xj ∈ X \ {xi}, ∀vj ∈ D(xj) with
(vi, vj) /∈ Rij , ∃v′j ∈ D(xj) such that (1) (v′j , vi) ∈ Rji

and (2) ∀xk ∈ X \ {xi, xj}, ∀vk ∈ D(xk), we do not have
(vj , vk) ∈ Rjk and (v′j , vk) /∈ Rjk.

The DE-snake property is illustrated in Figure 1. The intu-
ition behind this property is that any solution to the instance
obtained after elimination of xi can be extended to a solution
to the original instance by assigning vi to xi and changing
those values vj which are incompatible with vi to some other
value v′j .

Theorem 1 The DE-snake property is a sol-var-elim condi-
tion in binary CSP instances.

The following proposition shows that the worst-case com-
plexity of applying the DE-snake rule is no worse than the
complexity of applying the weaker ∃snake rule [Cohen et al.,
2015].

Proposition 1 Variable eliminations by the DE-snake prop-
erty can be applied until convergence in O(ed3) time and
O(ed2) space.

4 The Triangle Property
The variable-elimination rule presented in this section says
that xi can be eliminated if for some variable xj 6= xi, for
all assignments vj ∈ D(xj) to y, in I[〈xj , vj〉] (the reduced
instance consisting of the set of variable-value assignments
compatible with 〈xj , vj〉) there is an assignment 〈xi, vi〉 com-
patible with all assignments to all variables xk ∈ X\{xi, xj}.
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Figure 2: The open-triangle pattern.

In other words, there is some variable xj 6= xi such that for all
vj ∈ D(xj), there exists vi ∈ D(xi) such that (vj , vi) ∈ Rji

and the open-triangle pattern shown in Figure 2 does not oc-
cur on (vi, vj , vk) for any vk.

Definition 4 A variable xi satisfies the triangle property if
∃xj ∈ X \ {xi} such that ∀vj ∈ D(xj), ∃vi ∈ D(xi) with
(vi, vj) ∈ Rij such that ∀xk ∈ X \ {xi, xj}, ∀vk ∈ D(xk),
(vj , vk) ∈ Rjk implies that (vi, vk) ∈ Rik.

Theorem 2 The triangle property is a sol-var-elim condition
in binary CSP instances.

Proposition 2 Variable eliminations by the triangle prop-
erty can be applied until convergence in O(end3) time and
O(end2) space.

5 Variable Elimination by Broken Polyhedra
The broken-triangle property is a property of the microstruc-
ture of instances of the binary CSP which when satisfied
allows either value merging [Cooper et al., 2016], variable
elimination or the definition of a tractable class [Cooper et
al., 2010]. In this section, we generalise the notion of broken
triangle to broken polyhedron, which allows us to define rules
for variable elimination parameterised by the dimension k of
the polyhedron. We begin by recalling the definition of the
broken-triangle property (BTP) [Cooper et al., 2010].

Definition 5 Let I = 〈X,D, R〉 be a binary CSP instance. A
pair of values v′k, v

′′
k ∈ D(xk) satisfies BTP if for each pair

of variables (xi, xj) (with i, j 6= k), ∀vi ∈ D(xi), ∀vj ∈
D(xj), if (vi, vj) ∈ Rij , (vi, v

′
k) ∈ Rik and (vj , v

′′
k ) ∈ Rjk,

then (vi, v
′′
k ) ∈ Rik or (vj , v

′
k) ∈ Rjk. A variable xk sat-

isfies BTP if each pair of values of D(xk) satisfies BTP. If I
is equipped with an order < on its variables, then I satisfies
BTP for the variable order < if each variable xk satisfies BTP
in the sub-instance of I restricted to the variables xi such that
xi ≤ xk.

If (vi, vj) ∈Rij ,(vi, v′k) ∈Rik, (vj , v
′′
k ) ∈Rjk, (vi, v

′′
k ) /∈

Rik and (vj , v
′
k) /∈ Rjk (as in Figure 3), then the quadruple

(v′k, vi, vj , v
′′
k ) constitutes a broken triangle on xk. I satisfies

the BTP on xk if no broken triangles occur on xk.
We now generalise the notion of broken triangle to broken

polyhedron and show that this notion can be used to define
variable elimination rules that are stronger than BTP. A bro-
ken triangle is a broken polyhedron of dimension 2. We now
define a broken k-dimensional polyhedron for k ≥ 2.

Definition 6 A broken k-dimensional polyhedron on xm

consists of

v′k

v′′k

vj

vi

xk

xj

xi

Figure 3: A broken triangle (v′k, vi, vj , v
′′
k ).

• a consistent assignment 〈v1, . . . , vk〉 to distinct vari-
ables 〈xi1 , . . . , xik〉 (where each xij (j = 1, . . . , k) is
distinct from xm),

• k distinct values u1, . . . , uk ∈ Dm,

such that

• ∀j ∈ {1, . . . , k}, (vj , uj) /∈ Rijm,

• ∀h, j ∈ {1, . . . , k}, if h 6= j then (vh, uj) ∈ Rijm,

The assignment 〈v1, . . . , vk〉 to variables 〈xi1 , . . . , xik〉 is
known as the base of the broken polyhedron, and each as-
signment 〈xm, uj〉 (j = 1, . . . , k) is an apex.

A broken 3-dimensional polyhedron (i.e. a broken tetra-
hedron) is shown in Figure 4. A broken triangle (Figure 3)
is a broken 2-dimensional polyhedron. We show that the no-
tion of broken k-dimensional polyhedron allows us to define
novel variable-elimination rules and tractable classes.

The broken-triangle property (BTP) has been generalised
to the ∀∃BTP rule for variable elimination which allows us to
eliminate more variables [Cooper, 2014] than BTP. Eliminat-
ing a variable satisfying the ∀∃BTP rule is strictly stronger
than the BTP rule. This is demonstrated by the fact that
∀∃BTP, but not BTP, subsumes the rule that allows us to elim-
inate a variable xm when an assignment to xm is compatible
with all assignments to all other variables. Another generic
example is when all occurrences of the broken-triangle pat-
tern on variable xm occur on pairs of values vm, v′m ∈
S ⊂ D(xm) and each assignment vi to each other variable
xi 6= xm has a support at xm in D(xm) \ S.

We first given the definition of the ∀∃ broken-triangle prop-
erty [Cooper, 2014], in order to generalise it to k dimensions.

Definition 7 A binary CSP instance satisfies the ∀∃ broken-
triangle property on variable xm if for all i1 6= m, for all
v1 ∈ D(xi1), there exists vm ∈ D(xm) such that

1. 〈v1, vm〉 is a consistent assignment to variables
〈xi1 , xm〉, and

2. for all i2 /∈ {i1,m}, for all v2 ∈ D(xi2), there is no
broken triangle on xm with base the assignment 〈v1, v2〉
to variables 〈xi1 , xi2〉 and with an apex 〈xm, vm〉.

We now generalise the ∀∃BTP rule for variable elimina-
tion to the case of broken polyhedra of any dimension k ≥ 2.
When k = 2 the following definition coincides with Defini-
tion 7 of the ∀∃BTP rule.
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Figure 4: A broken tetrahedron.

Definition 8 A binary CSP instance satisfies the ∀∃ bro-
ken k-dimensional polyhedron property on variable xm if
for all distinct i1, . . . , ik−1 6= m, for all consistent assign-
ments 〈v1, . . . , vk−1〉 to variables 〈xi1 , . . . , xik−1

〉, there ex-
ists vm ∈ D(xm) such that

1. 〈v1, . . . , vk−1, vm〉 is a consistent assignment to vari-
ables 〈xi1 , . . . , xik−1

, xm〉, and

2. for all ik /∈ {i1, . . . , ik−1,m}, for all vk ∈ D(xik),
there is no broken k-dimensional polyhedron on xm

with base the assignment 〈v1, . . . , vk〉 to variables
〈xi1 , . . . , xik〉 and with an apex 〈xm, vm〉.

The first condition of Definition 8 is a k-consistency
condition on variable xm with respect to all other vari-
ables [Lecoutre, 2009]. The second condition guarantees that
this k-consistency condition is sufficient for any consistent
assignment to the variables X \ {xm} to be extendible to a
consistent assignment to all variables.

Theorem 3 The ∀∃ broken k-dimensional polyhedron prop-
erty is a sol-var-elim condition in binary CSP instances I
with at least k variables.

The ∀∃ broken k-dimensional polyhedron property is inter-
esting from a theoretical point of view. However, from a prac-
tical point of view, the time complexity of detecting whether
variables can be eliminated is likely to be prohibitive. Indeed,
for k = 3, a naive exhaustive search for broken tetrahedra has
time complexity Θ(n4d6).

6 Theoretical Comparison of Rules
We say that two variable-elimination rules are incomparable
if neither is subsumed by the other.

Proposition 3 The following three variable-elimination
rules are all pairwise incomparable: the DE-snake property,
the triangle property and ∀∃BTP.

7 Variable-Elimination Rules and Tractability
We now investigate the possibility of defining tractable
classes based on our variable-elimination rules. As is the case
for BTP [Cooper et al., 2010], the rules we have presented in
this paper also define tractable classes that can be detected in
polynomial time by successive elimination of variables.

Definition 9 For a variable-elimination property P , we say
that a binary CSP instance I satisfies P for the variable or-
der < if for each variable xm, except for the first variable
according to the order <, I satisfies the property P on xm in
the sub-instance of I restricted to the variables xi such that
xi ≤ xm.

Theorem 4 The class of binary CSP instances I satisfying
any of the following properties (for a possibly unknown or-
dering of its variables) can be detected and solved in polyno-
mial time: the ∀∃ broken k-dimensional polyhedron property
(for any fixed k ≥ 2), the DE-snake property, ∀∃BTP, and the
triangle property.

When not all variables can be eliminated, we are interested
in maximising the number of eliminated variables.

Theorem 5 Maximising the number of variables that can be
eliminated by any of the following rules can be achieved in
polynomial time: the ∀∃ broken k-dimensional polyhedron
property (for any fixed k ≥ 2), the DE-snake property and
∀∃BTP. Maximising the number of variable eliminations by
combining the triangle property and neighbourhood substitu-
tion [Freuder, 1991] can also be achieved in polynomial time.

8 Discussion and Conclusion
In this paper we have given novel satisfiability-conserving
variable-elimination rules for binary CSPs. In each case, if
the instance is satisfiable, then a solution to the original in-
stance can be recovered in low-order polynomial time from a
solution to the reduced instance. The DE-snake rule can be
applied until convergence in O(ed3) time, whereas the cor-
responding time complexity for the triangle rule is O(end3).
However, it should be pointed out that the DE-snake rule in-
herits the disadvantage of the ∃snake rule that the number of
solutions may actually increase after elimination of a vari-
able [Cohen et al., 2015]: for example, it allows us to elimi-
nate the central variable in the two-colouring of a star graph
which increases the number of solutions from 2 to 2n−1.

Extensive experimental trials (reported in [Cooper et al.,
2019]) have confirmed that because of relatively high time
complexity of each of the variable-elimination rules, they
may only be tested exhaustively during preprocessing. Ap-
plying them in preprocessing allowed us to solve more bench-
mark instances than without, the triangle rule allowing us to
eliminate more variables and hence solve more instances than
the other rules. We observed that most variables eliminated
by our rules have small domain size and/or small degree.

We generalised the notion of broken triangle to broken
polyhedron, which may be of theoretical interest.

We have also shown that each of the variable-elimination
rules allows us to define a novel hybrid tractable class by suc-
cessive elimination of almost all variables. For each rule, this
elimination order can be found in polynomial time, which we
found surprising in the case of the triangle property.
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