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Abstract

The production of negative ions is of significant interest for applications including mass spec-
trometry, particle acceleration, material surface processing, and neutral beam injection for magnetic
confinement fusion. Methods to improve the efficiency of the surface production of negative ions,
without the use of low work function metals, are of interest for mitigating the complex engineer-
ing challenges these materials introduce. In this study we investigate the production of negative
ions by doping diamond with nitrogen. Negatively biased (−20 V or −130 V), nitrogen doped
micro-crystalline diamond films are introduced to a low pressure deuterium plasma (helicon source
operated in capacitive mode, 2 Pa, 26 W) and negative ion energy distribution functions (NIEDFs)
are measured via mass spectrometry with respect to the surface temperature (30◦C to 750◦C) and
dopant concentration. The results suggest that nitrogen doping has little influence on the yield
when the sample is biased at −130 V, but when a relatively small bias voltage of −20 V is applied
the yield is increased by a factor of 2 above that of un-doped diamond when its temperature reaches
550◦C. The doping of diamond with nitrogen is a new method for controlling the surface produc-
tion of negative ions, which continues to be of significant interest for a wide variety of practical
applications.

1 Introduction 1

The development of negative ion sources is of significant interest due to their applications in parti- 2

cle acceleration1–5, neutron generation6,7, mass spectrometry8–11, spacecraft propulsion12–14, nano- 3

electronics manufacturing15, and neutral beam heating for magnetic confinement fusion (MCF)16–19. 4

One application of particular interest is the creation of negative-ion beams suitable for MCF 5

neutral beam injection, which has a proposed requirement of accelerating a 40 A current of deuterium 6

negative ions to 1 MeV16. This primarily utilises negative ion surface production, as distinct from 7

volume production, to increase the density of negative ions close to the extraction grid20–22. 8
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Negative ion production from plasma facing surfaces can be enhanced through the application of 9

a low work function alkali metal22. Current methods apply a thin layer of caesium to the extraction 10

region of the ion source23. This is achieved by injecting caesium vapour into the plasma and allowing 11

it to condense onto the inside of the ion source24. There exist some limitations with this approach, 12

such as controlling the application of the caesium so that it condenses in the right locations and at 13

a rate that is sufficient to maintain an optimum thickness at the extraction grid25. Additionally, 14

this method introduces complex engineering challenges, eg. equipment maintenance and potential for 15

caesium pollution26,27. Alternative materials to caesium are therefore of interest. 16

Several studies have been carried out to investigate negative ion production using alternative ma- 17

terials to caesium via their exposure to low pressure electronegative plasmas. Such materials include 18

non-dielectric and dielectric materials including: diamond-like-carbon (DLC)28, novel electrides29, 19

highly orientated pyrolitic graphite (HOPG)26,28,30,31, diamond28,28,30–36, and low work function ma- 20

terials other than caesium (LaB6, MoLa)27. 21

Dielectric materials are of particular interest as an alternative to low work function metals26. 22

Generally, for atoms approaching a surface, the affinity level of the atom is gradually downshifted 23

until it overlaps with the surface material’s valence band. Electrons can then tunnel from the valence 24

band of the surface to the approaching atom and form a negative ion, this is the so-called resonant 25

charge transfer (RCT) process, as summarised in Ref. 37. For a metal, the conduction band is situated 26

on top of the valence band. When a newly created ion begins to leave the surface, the probability 27

of electron loss through tunnelling back to the conduction band of the surface is high due to the 28

resonance between the affinity level of the negative ion and the empty states of the conduction band. 29

This means that most metals produce negligible negative ions through surface ionisation processes38. 30

Unlike most metals, caesium can be used to enhance negative ion production because it has a low 31

work function. This increases the distance at which the resonance between the affinity level of the 32

new ion and the empty conduction states occurs, reducing the probability that the electron tunnels 33

back to the surface37,38. 34

In contrast to metal surfaces, where the conduction band lies on top of the valence band, the band 35

gap of dielectrics suppresses the tunnelling of electrons from a newly created negative ion back to 36

the material’s surface. This means that a new negative ion can travel a larger distance away from 37

the surface before reaching a point where its affinity level is in resonance with the empty states of 38

the conduction band. The increased distance of the ion from the surface reduces the probability that 39

the electron associated with the new negative ion will tunnel into the empty states of the conduction 40

band, thereby increasing the negative ion yield26,39. 41
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One potential drawback to the use of dielectric surfaces is that to generate a negative ion the 42

atom-surface distance for a dielectric must be much smaller than for a metal. This is due to the larger 43

energy gap that the occupied valence band states lie beneath the vacuum level37. Fortunately, the 44

atom-surface interaction process is amplified by the Coulomb interaction between a negative ion and a 45

localised hole in the surface material40. This can result in a high ionisation efficiency as demonstrated 46

in beam experiments41–43. For these reasons, dielectrics are of interest as an alternative to low work 47

function metals for the surface production of negative ions. 48

Carbon surfaces are one prospective category of materials that are of interest for replacing low 49

work function metals where negative ions are to be produced. For instance, DLC has been used to 50

produce negative ions from incoming neutral particles for a spacecraft particle detector, when low work 51

function metals would not have been appropriate44. Of the forms of carbon, diamond has particularly 52

beneficial properties: 53

• It is a dielectric with a large band gap (5.5 eV)45 that suppresses the destruction of negative 54

ions as they leave the material’s surface 55

• It can be grown to have ‘designer’ properties such as the preferential growth of a particular 56

crystal face to alter the electronic structure of its surface45
57

• When it is being grown, dopants can be introduced to change its effective work function and 58

electron affinity46–49
59

• It can have a negative electron affinity when the surface is hydrogen terminated45, which reduces 60

its effective work function by reducing the energy gap between the valence band and the vacuum 61

level. This is thought to have a positive influence on negative ion production26
62

• When heated to 450◦C, diamond has previously been shown to produce five times more negative 63

ions compared to other forms of carbon e.g. graphite32
64

As a means of increasing the production of negative ions, previous work with diamond has inves- 65

tigated using single, nano- and micro-crystalline diamond and also p-type doping of micro-crystalline 66

diamond (MCD) using boron28. The n-type doping of diamond using nitrogen has not previously 67

been studied in this context and it is thought that it could lead to favourable properties for negative 68

ion production for two reasons. Firstly, previous studies of the electronic properties of nitrogen doped 69

diamond have demonstrated that nitrogen doping creates a deep donor level in the band gap of the 70

diamond at 1.7 eV50. This lowers the effective work function to approximately 3.1 eV51, which is lower 71

than boron doped diamond (3.9 eV)51 and un-doped diamond (∼4.5 eV, with hydrogenated surface 72
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and negative electron affinity)52. Secondly, it is thought that having the aforementioned deep donor 73

level of electrons close to the vacuum level could increase the negative ion production from diamond 74

by creating a source of electrons close to the vacuum level53. 75

In this study, we investigate the production of negative ions from nitrogen doped diamond films in 76

a low pressure deuterium plasma. Comparing micro-crystalline nitrogen doped diamond (MCNDD) 77

with un-doped micro crystalline doped diamond (MCD) and previously investigated micro-crystalline 78

boron doped diamond (MCBDD)26,33, we consider ‘low energy’ (11 eV) and ‘high energy’ (48 eV) ion 79

bombardment conditions at the surface as a mechanism for increasing the negative ion yield. The 80

experimental methods are described in section 2: plasma source in 2.1, sample holder in 2.2 and the 81

measurement method in 2.3. The micro-crystalline diamond samples are described in section 2.4, with 82

the surface characterisation using confocal microscopy and Raman spectroscopy described in 2.5. The 83

results are presented in section 3. 84

2 Method 85

The experimental setup is shown in figure 1. It consists of a low pressure deuterium plasma source, a 86

temperature controlled sample holder, and a mass spectrometer for the measurement of negative ions 87

produced at the diamond film’s surface. 88

2.1 Description of the plasma source 89

A deuterium plasma, figure 1 (a), is produced via a helicon source operated in capacitive mode (2 Pa, 90

26 W), which then expands into a diffusion chamber54. The pressure of the diffusion chamber, as 91

measured by a Baratron gauge (MKS), is regulated via a mass flow controller (7.6 sccm, BROOKS 92

5850TR) in combination with a 150 mm diameter Riber gate valve installed in front of a turbo 93

molecular pump (Alcatel ATP400). To reduce experimental drifts, the experiment source chamber 94

and lower spherical diffusion chamber have a base pressure of 10-5 Pa, which is lower than the base 95

pressure of a previous setup of 10-4 Pa54. 96

The relatively low power coupled to the plasma source results in plasma densities of approximately 97

1014 m-3 in the spherical diffusion chamber54. The choice of power and pressure was for similarity 98

with previous work34. The positive ion composition of the deuterium plasma is measured by the mass 99

spectrometer, described below, to be (84 ± 2) % D3
+ ions, (14 ± 2) % D2

+ ions and (1.1 ± 0.2) % 100

D+ ions. The measurement uncertainty represents the day-to-day variation of the measured plasma 101

composition, however the actual error in the plasma composition due to the internal settings of the 102

mass spectrometer may be higher55. 103
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Figure 1: Schematic of the experimental setup. (a) Representative plasma parameters and potential profile
between the biased sample surface at VS and the mass spectrometer, 37 mm away. (b) Sample holder with
heating element and thermocouple. (c) Mass spectrometer showing the external grounded shield and internal
extractor orifice.

2.2 Temperature controlled sample holder 104

The sample holder is shown in figure 1 (b). It is attached to a DC voltage source (Equipment Scientific 105

Alimentation de Laboratoire CN7C) that can negatively bias the frame that holds the diamond sample. 106

The voltage applied to the sample is defined as VDC, which is distinct from the voltage at the sample 107

surface, VS. The sample is positioned 37 mm away from, and perpendicular to, the plane of the mass 108

spectrometer orifice. This is the closest distance that the sample can be placed in front of the mass 109

spectrometer orifice, and is assumed to be sufficiently small to achieve minimal negative ion signal 110

loss. It has previously been demonstrated that this distance has negligible effect on the shape of the 111

negative ion distributions measured by the mass spectrometer28,33. 112

It is worth noting that the angular dependence of the NIEDFs for carbon materials has previously 113

been shown to be similar33,35,36. Therefore, a single measurement can be used to compare between 114

samples. A misalignment of the sample surface normal to the mass spectrometer would produce 115

spurious results, so to prevent this, the alignment is regularly checked by rotating the sample and 116

maximising the negative ion signal. 117

As shown in figure 1 (b), a tungsten heating element is built into the sample holder, which is used 118
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to heat the back of the sample. The heating element is controlled by a PID controller (designed and 119

built by AXESS tech) using a K-type thermocouple inside the the frame of the sample holder. By 120

fixing a second thermocouple to the surface of the sample, its temperature is calibrated against the 121

temperature measured by the PID. The heating element behind the sample increases the temperature 122

of the sample’s surface up to (750±20)◦C. 123

2.3 Mass spectrometry for the measurement of negative ions 124

2.3.1 Mass spectrometer setup 125

An electrostatic quadrupole plasma mass spectrometer with attached energy analyser (Hiden EQP 126

300) is positioned in front of the sample surface as shown in figure 1 (c). The mass spectrometer has 127

a 100 µm diameter polarisable orifice separated from the main chamber by a 5 mm hole in a grounded 128

shield. A grounded screen is positioned above the mass spectrometer orifice to reduce radio-freuency 129

(RF) fluctuations from the plasma source (not shown in figure 1)35,54. 130

The mass spectrometer polariseable orifice potential is calibrated so that a nearly planar plasma 131

sheath is formed in front of the orifice, as determined by a particle-in-cell (PIC) simulation54. 132

The potential on the surface of the samples accelerates any negative ions created through surface 133

interactions away from the sample and through the plasma to the mass spectrometer. The low pressure 134

of the plasma means there are few collisions between the plasma and the negative ions54,55. Any 135

collisions that do occur with the deuterium plasma would predominantly be detachment collisions 136

with deuterium molecules which would neutralise the negative ions, thus preventing measurement 137

of negative ions that have undergone collisions18,54,55. The plasma potential in front of the mass 138

spectrometer prevents negative ions generated through volume production processes in the plasma 139

from entering the mass spectrometer, therefore the energy of any negative ions that are measured 140

must have been accelerated away from the sample surface54,55. The negative ions are detected at 141

an energy corresponding to the energy they possessed when they were created which can then be 142

shifted by the kinetic energy gained between the sample and the mass spectrometer54,55. Presented 143

NIEDFs are shifted to present the kinetic energy the negative ions have at the surface of the samples. 144

The secondary electrons emitted from the surface of the sample are filtered out within the mass 145

spectrometer. 146

Positive ions impacting the samples are assumed to dissociate during impact26,56, splitting the 147

energy of the ion into its component particles (ie. for D3
+, 3 deuterium nuclei). This means that 148

because the plasma is predominantly composed of D3
+ ions, the modal energy of the ions striking 149

the samples’ surface is EM = e(VS+Vp)/3, where Vp is the plasma potential, giving approximately 150
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11 eV per particle at VS = −20 V and 48 eV at VS = −130 V. We define these conditions as ‘low 151

energy’ ion bombardment and ‘high energy’ ion bombardment, respectively. 152

The choice of −130 V is made to align with previously published work, whilst −20 V is chosen as 153

this is the lower limit of what can be reasonably used to ensure effective self-extraction of negative 154

ions from the sample surface into the mass spectrometer28,33. 155

2.3.2 Procedure for measurement of negative ion energy distribution functions (NIEDFs) 156

Measurements were undertaken using the following method: 157

• The plasma was brought to steady state as determined by measurements of the positive ion 158

energy distributions using the mass spectrometer 159

• A bias of either VDC = −20 V or VDC = −130 V was applied to the sample 160

• Negative ions produced following positive ion bombardment accelerate through VS, cross the 161

plasma volume and enter the mass spectrometer where the NIEDF was measured for sample 162

temperatures between 30◦C and 750◦C in increments of 50◦C 163

• In order to compare the negative ion production yields for distinct material samples, the positive 164

ion current was measured to the sample surface at 30◦C for VDC = −20 V and VDC = −130 V, 165

using a copper electrode in the place of a sample which was insulated from the sample frame 166

deleted:excluding the current to the sample frame33. This method of measurement could not be 167

used at high temperatures due to a temperature sensitive insulator used to isolate the copper 168

electrode from the sample holder frame. Instead, in order to roughly monitor changes in the 169

positive ion flux onto the sample, the positive ion current to the entire sample holder was mea- 170

sured using an ammeter connected to the frame of the sample holder. This showed that there 171

was a thermal drift in the positive ion current to the entire sample holder of approximately 5% 172

irrespective of sample at both −20 V and −130 V applied biases. 173

• The negative ion counts for each sample were integrated with respect to energy and then divided 174

by the positive ion current measured neglecting the possible small changes with temperature to 175

the isolated sample to give the relative negative ion yield for the sample33. This is given in arbi- 176

trary units as the mass spectrometer is not calibrated to count an absolute number of negative 177

ions. 178

Recent measurements show that an absolute negative ion flux could be measured using a magne- 179

tised retarding field energy analyser via the technique described in Ref. 57. A detailed investigation 180
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of this topic remains the subject of future work, but to provide some context for the presented results, 181

preliminary measurements have shown that the yield from HOPG at 30◦C and a bias of −130 V was 182

approximately 1% 58, compared to caesium which can have a yield of 30% 59. 183

2.4 Sample preparation 184

2.4.1 Micro-crystalline boron doped diamond and micro-crystalline diamond 185

As described in detail in Ref. 28, non-doped and boron doped micro-crystlline diamond films, MCD 186

and MCBDD respectively, were prepared in a bell jar reactor using plasma enhanced chemical vapour 187

deposition (PECVD). The boron doped samples used in this study are comparable to the samples 188

used in previous works where the gas phase doping level used is high (1000 ppm) to ensure a fully 189

conductive diamond layer. The method of the creation of MCD and MCBDD samples is described 190

elsewhere28. 191

2.4.2 Micro-crystalline nitrogen doped diamond 192

The nitrogen doped diamond films were created using a similar PECVD technique to the MCD and 193

MCBDD samples of Ref. 28 so only a brief summary is provided here. The PECVD process utilised 194

a bell jar reactor with a pressure of 200 mbar, microwave power at 3 kW, substrate temperature of 195

850◦C, background hydrogen gas mixture with a methane concentration of 5%. The ratio of nitrogen 196

in the gas mixture was set as a means to vary the concentration of nitrogen in the MCNDD film. Each 197

film was deposited on to a (100) orientated silicon wafer. 198

2.5 Surface characterisation 199

The samples were analysed using confocal microscopy and Raman spectroscopy prior to plasma expo- 200

sure to characterise their properties. 201

2.5.1 Surface morphology and crystal structure 202

A laser confocal microscope (S neox, Sensofar) was used to observe the diamond surface morphology 203

as shown in figure 2. From visual inspection, the crystal grains are observed to have grown to exhibit 204

(111) crystal faces, (100) crystal faces, or a mixture of both, dependent on the concentration of nitrogen 205

dopant introduced in the gas phase during sample growth60. As the gas phase nitrogen concentration 206

is increased from 0 ppm to 50 ppm the crystals are observed to exhibit an increased proportion of 207

(111) faces, with predominantly (111) faces observed at 50 ppm. As distinct from these, the crystal 208

grains of the diamond film with 200 ppm gas phase doping displays predominantly (100) faces. The 209
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Figure 2: Confocal microscopy images of the diamond films grown with gas phase concentrations of (a) 0 ppm
(b) 10 ppm (c) 50 ppm and (d) 200 ppm. The diamond crystals change in shape and size between the 4 gas
phase dopant concentrations, from a mixture of (111) and (100) faces at 0 ppm and 10 ppm to predominantly
(111) faces at 50 ppm to predominantly (100) crystal faces at 200 ppm.

diamond films grown with 200 ppm nitrogen concentration in the gas phase are different to the other 210

samples, due to be large crystals interspersed with regions of what appears to be much smaller crystals 211

with a less pronounced crystal orientation. The size of the crystals for the 0 ppm sample, figure 2 (a), 212

are approximately 10 µm, whilst the 10 ppm sample, figure 2 (b), has a much smaller average crystal 213

size, at approximately 1 µm. The 50 ppm sample, figure 2 (c), has a crystal size similar to the 0 ppm 214

sample, at approximately 10 µm. The 200 ppm sample, figure 2 (d), as previously described, appears 215

to have a distribution of large crystals separated by smaller crystals, here the average crystal size of 216

the larger crystals is approximately 5 µm. 217

2.5.2 Measurement of the relative quantity of nitrogen doping within the films 218

Figure 3: Raman spectra of nitrogen doped diamond samples taken at the centre of a dominant crystal face.
The spectra are presented with the background subtracted (in order to aid clarity and comparison between
samples) and normalised to the carbon sp3 peak, observed here at 1333 cm-1. The laser wavelength used for
the measurements is 514 nm.

Raman spectroscopy was undertaken to measure the relative concentration of nitrogen dopant that is 219

introduced into the MCD films with respect to the gas phase nitrogen concentration present during 220

the PECVD process. Raman spectra were generated using a Horiba Jobin Yvon HR800 setup. The 221
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measurements were undertaken in air using an excitation wavelength of λL = 514 nm, ×100 objective 222

(numerical aperture of 0.9, i.e. theoretical spot radius of 0.34 µm), 600 grooves/mm grating (resulting in 223

a resolution of about 1 cm-1), and 5 mW laser power. Measurements were taken using 5 acquisitions of 224

1 second intervals over a range of 0 cm-1 to 3000 cm-1, of which 750 cm-1 to 2500 cm-1 is presented, with 225

the measurement taken at the centre of a dominant crystal near the centre of the sample. A brief optical 226

microscopic inspection of the samples prior to taking Raman measurements showed relatively uniform 227

crystal distribution across the surface of all the samples and allowed for precise targeting of a dominant 228

crystal near to the centre of the sample to be the subject of the Raman measurement. A quantitative 229

comparison between Raman spectra has not been carried out as this requires the measurement of the 230

polarisation of the Raman emission and a good understanding of the grain orientation61. 231

Figure 3 shows the Raman spectra from samples of nitrogen doped diamond with gas phase nitrogen 232

doping of 0 ppm to 200 ppm. The spectra have been presented with the background fluorescence 233

removed and normalised to the 1333 cm-1 peak, which can be attributed to sp3 bonded carbon (the 234

diamond bond of carbon)47,62. The normalisation to this peak is justified due to the transparency 235

of the diamond films such that the measurement is integrated across the sample thickness. The 236

normalised spectra can therefore enable a comparison between samples that accounts for any change 237

in the thickness of the MCNDD film62. 238

The broad peak centred at 2100 cm-1 observed in figure 3 can be attributed to nitrogen vacancy 239

centres (NV0) that have been introduced into the diamond63. This broad peak appears, not due to 240

vibrational modes, but due to the electronic signature attributed to nitrogen vacancy centres and in 241

reality lies at an energy level of 2.15 eV. As Stokes Raman spectroscopy is energy loss spectroscopy, 242

this peak appears arbitrarily at 2100 cm-1 when using a 514 nm laser. Using another laser to perform 243

the Raman spectroscopy results in a change in the wavenumber of this peak64. 244

As the measurement configuration is the same for all samples, a relative comparison of the number 245

of nitrogen centres in the diamond can be made using the broad 2100 cm-1 peak. This can then be 246

used to infer relative nitrogen concentration65. As shown in figure 3, the ratio of the NV0 peak to 247

the peak centred at 1333 cm-1 increases with increasing gas phase dopant concentration, for samples 248

0 ppm to 50 ppm (200 ppm will be discussed below). This is consistent with previous work, which 249

showed a similar increase in the magnitude of the NV0 characteristic peak with an increase in the gas 250

phase nitrogen doping66. 251

In figure 3, the Raman spectrum of the 200 ppm nitrogen doped diamond has a peak at 1500 cm-1
252

that has a much higher intensity than the other samples. This peak is of particular interest as it is 253

associated with the sp2 bond of carbon that has previously been associated to graphite-like bonds62. 254
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The ratio of the peaks at 1333 cm-1 and 1500 cm-1 implies that there is a higher ratio of graphite 255

in the 200 ppm diamond film compared to the other samples28,67,68. The 200 ppm nitrogen doped 256

diamond sample also exhibits a NV0 centre peak at 2100 cm-1, which is slightly lower than the 50 ppm 257

sample, suggesting a reduction in the number of nitrogen vacancies, and therefore, a reduction in the 258

concentration of nitrogen in the diamond. 259

The observed increase in intensity of the NV0 peaks, increasing from 0 ppm to 50 ppm, may be 260

attributed to both the increase in nitrogen introduced in the gas phase and by a change in the crystal 261

face from a mix of (100) and (111), figure 2(a) and (b), to a primarily (111) face for which impurity 262

incorporation is higher than that for (100) crystals, figure 2 (c). This is consistent with the results 263

of previous work66,69,70 This same process may then account for the slightly lower 2100 cm-1 peak 264

for the 200 ppm sample compared to the 50 ppm samples despite a four fold increase in the nitrogen 265

gas phase content. This decrease could be attributed to the change in the crystal orientation (see 266

figure 2 (c) and (d)), from a (111) dominant crystal surface for the 50 ppm sample to predominantly 267

(100) crystal orientation for the 200 ppm sample. 268

The surface characterisation of the samples show that the incorporation of nitrogen into the 269

PECVD process has multiple effects on the diamond produced, aside from only substitutional or 270

interstitial incorporation of nitrogen into the diamond lattice. For these samples, separating the dif- 271

ference in negative ion yield due to the influence of the crystal face or the nitrogen content in the 272

diamond is not possible because of the interrelated nature the presence of nitrogen in the gas phase 273

has with the crystal face orientation and the measurable number of nitrogen vacancy centres. This is 274

an active area of research71. However for this study, as nitrogen doping is the main influencing factor 275

that generates the differences between the samples, it is reasonable to suggest that it is possible to 276

associate the nitrogen gas phase doping with the negative ion yield and this is how the samples will 277

be defined in the next section. 278

3 Results 279

3.1 Nitrogen doped diamond: influence of the dopant concentration 280

Figure 4 presents the negative ion yield from MCNDD for different dopant concentrations, as measured 281

in the gas phase during sample preparation. In both figures 4 (a) and (b) the yield profile for MCNDD 282

has a distinct shape. For example, at 50 ppm, the measured yield is practically zero between a 283

temperature of 30◦C and 400◦C. At 450◦C, the yield rapidly increases by several orders of magnitude 284

to a maximum at 550◦C. This transition is similar for all nitrogen doped samples with the transition 285
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(a) (b)

Figure 4: Negative ion yield plotted with respect to sample temperature for micro-crystalline nitrogen doped
diamond (MCNDD) of doping concentration between 0 ppm and 200 ppm for (a) VDC = −130 V and (b)
VDC = −20 V. Low pressure deuterium plasma operated at 2 Pa and 26 W. Insets for both (a) and (b) depict
the highlighted region’s negative ion yield for temperatures between 400◦C and 750◦C. Solid lines have been
added to guide the eye.

occurring at temperatures ranging from 250◦C to 450◦C. This is somewhat unlike MCD which produces 286

measurable negative ions for all temperatures. The trend for MCD is a gradual increase to a maximum 287

yield at a temperature of 450◦C (−130 V, high energy bombardment) or 400◦C (−20 V, low energy 288

bombardment), there is then a decrease in yield from this maximum yield as the temperature is 289

increased further to the maximum temperature of 750◦C. It can also be observed that between ∼30◦C 290

and ∼150◦C, MCD does undergo a transition, though this is smaller than that seen for MCNDD. 291

In order to understand these trends, it is important to note that the negative ion yield measured 292

using the technique described in this article relies on a conductive sample surface. A non-conductive 293

sample would not allow negative ions to be accelerated to the mass spectrometer at an energy which 294

the mass spectrometer is tuned for. The magnitude of the transitions seen in figure 4 is a feature of 295

this experimental technique which inadvertently highlights the temperature at which samples become 296

conductive, such that VDC = VS. 297

The difference in trends between MCNDD samples and the un-doped diamond can be attributed 298

to the differences in conductivity between MCNDD and MCD. Previous work with MCD has shown 299

that it has poor conductivity close to room temperature, which explains the increase in yield occurring 300

between 30◦C and 150◦C26. Regarding MCNDD, the temperature at which the sharp increase in yield 301

occurs appears to be dependent on the nitrogen doping of the diamond sample. The results of previous 302

work suggest that the level of interstitial nitrogen doping influences the conductivity of diamond49,72,73
303

and this sharp increase is consistent with increasing nitrogen dopant concentration and its influence 304

on the conductivity of the diamond, supporting the argument that the nitrogen incorporated into the 305

diamond increases as gas phase nitrogen is increased during its production. An exception to this trend 306

12



are the results for 200 ppm in both figure 4 (a) and (b), which does not exhibit a significant increase 307

in the sample temperature for which the film becomes conductive relative to the 50 ppm MCNDD 308

sample. This can be explained by considering figure 3. As discussed in section 2.5.2, the nitrogen 309

content measured using Raman spectroscopy suggests a nitrogen content that is similar for 200 ppm 310

and 50 ppm MCNDD samples meaning, in the absence of other influences, a similar conductivity for 311

these two samples could reasonably be expected. 312

The maximum yield from each sample occurs at temperatures between 400◦C and 550◦C, which is 313

highlighted in the insets of figures 4 (a) and (b). For the 0 ppm and 10 ppm samples, the maximum 314

yield occurs at 400◦C, whilst for 20 ppm (and 200 ppm) it occurs at 500◦C and for 50 ppm, at 550◦C. 315

As mentioned previously, a conductive sample surface is necessary to hold a DC surface bias which 316

is necessary for the acceleration of negative ions into the mass spectrometer. The trend of increasing 317

temperature for maximum yield as dopant increases (excluding 200 ppm) could be related to the 318

maximum yield in these experimental conditions being restricted by the conductivity of the samples. 319

For example, the maximum yield for MCD and MCNDD (10 ppm) is at the peak of a gradual increase 320

and decrease in yield as temperature is increased from ∼30◦C to ∼400◦C and then from ∼400◦C to 321

∼750◦C respectively. This is most clearly observed in figure 4 (b) for the 10 ppm sample. This sample 322

is distinct from the other MCNDD samples as the 10 ppm sample exhibits an increase in yield as 323

the temperature is increased (due to a change in conductivity) then a further smaller increase up to 324

a maximum negative ion yield at∼400◦C. The yield then gradually decreases as the temperature is 325

increased further. The other MCNDD samples also undergo an increase in yield due to a change in 326

conductivity, but no further gradual increase in yield is observed as temperature is increased. 327

It could therefore be reasonable to suggest that the peak yield conditions are not observed due 328

to a lack of conductivity for samples with more than 20 ppm gas phase nitrogen doping. The trends 329

observed for the 0 ppm and 10 ppm samples suggest that a temperature of approximately 400◦C may 330

be the temperature at which these MCNDD with more than 20 ppm gas phase doping produce the 331

highest yield. A technique to measure negative ions that does not require a conductive surface would 332

be necessary to explore this further. 333

In figure 4 (a), the effect of the nitrogen doping on the maximum yield is not readily observed 334

when a bias voltage VDC = −130 V is applied to the sample. This is unlike figure 4 (b) in which 335

a bias voltage of VDC = −20 V is used. In this data there is an observed difference between the 336

nitrogen doped and non-doped diamond. The yield in figure 4 (a) for the MCNDD samples and MCD 337

samples is also lower than the yields from all of the samples in figure 4 (b). A higher bombardment 338

energy as a result of the high magnitude bias is associated with an increase in sp2 bond formation 339
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in diamond36. It is reasonable to suggest that the reduction in yield for the higher magnitude bias 340

creates more sp2 defects which decreases the yield. Additionally, if the yield is not changing with the 341

addition of nitrogen to the diamond, it is also reasonable to suggest that the nitrogen doped diamond 342

may be more susceptible to defect formation due to high energy bombardment which would result in a 343

surface state that does not enhance the negative ion yield through nitrogen doping. Additional work 344

would be necessary to characterise this process. 345

The apparent influence of nitrogen doping on the measured negative ion yield is observed in 346

figure 4 (b) where a sample bias voltage VDC = −20 V is applied. When comparing the yield at 347

temperatures above 550◦C, i.e. when all of the MCNDD films are conductive, it is observed that the 348

negative ion yield is higher at similar temperatures, when increasing nitrogen dopant concentration 349

for the 0 ppm to 50 ppm cases. The mechanism for such an increase in yield is not immediately clear 350

and future work will be necessary to identify the specific cause of this increase. For example, it could 351

be solely due to interstitial nitrogen, or a change of crystal orientation or a combination of both. In 352

any case, the increase is correlated to the amount of nitrogen dopant with the exception of the result 353

observed for 200 ppm gas phase doping, which produces a comparatively lower yield compared to the 354

50 ppm case. Should interstitial nitrogen content be the main cause of an increase in negative ion 355

yield, this result can be explained by the Raman measurements shown in figure 3. As discussed in 356

section 2.5.2, the Raman measurement suggests that the diamond has a similar amount of nitrogen 357

doping when comparing the 2100 cm-1 peak for the 50 ppm and 200 ppm samples. However the Raman 358

measurement also suggests that the 200 ppm MCNDD sample has more carbon sp2 bonds (graphite- 359

like) than the 50 ppm sample. The reduction in yield observed for the MCNDD (200 ppm) sample 360

compared to MCNDD (50 ppm) sample is therefore consistent with previous work, which observed 361

that an increased number of sp2 bonds is less favourable to negative ion production28,33. This work 362

suggests that this is still the case with nitrogen doped diamond samples. 363

3.2 Mechanism for the surface production of negative ions 364

NIEDFs for MCBDD and MCNDD are presented in figure 5 to compare negative ion production 365

processes between MCBDD, a previously studied material26, and the MCNDD samples. In this figure 366

the NIEDFs are normalised to the modal negative ion energy at temperatures where MCBDD and 367

MCNDD samples are conductive. 368

When considering a normalised NIEDF, a reduction in the proportional magnitude of the NIEDF 369

peak at low energies will result in an increase in the apparent proportion of negative ions at high 370

energies. The NIEDFs in figure5 (a), show that for MCBDD the proportion of high energy ions 371

14



(a) (b)

Figure 5: NIEDFs for: (a) micro-crystalline boron doped diamond (MCBDD) at 30◦C, 500◦C and 750◦C, (b)
micro-crystalline nitrogen doped diamond (MCNDD) at 550◦C and 750◦C. Increases in sample temperature
lead to a decrease in the number of low energy negative ions, which results in an increase in the height of the
tail of high energy negative ions when the distribution is normalised. Low pressure deuterium plasma operated
at 2 Pa and 26 W.

increases as the surface temperature increases. This is because the main contribution to the measured 372

yield is low energy ions, which are predominantly created through the sputtering process, as distinct 373

from backscattering, due to the acceptance angle of the mass spectrometer26,54. Previous work has 374

confirmed this interpretation through comparison of experimental results with SRIM simulations36. 375

The physical interpretation for the decrease in the sputtering contribution is that this is due to a 376

decrease in the amount of sub-surface deuterium available for sputtering as a result of out-gassing 377

caused by the increase in temperature.35,36. 378

At a surface bias of VS = −20 V, i.e. the ‘low energy’ bombardment condition described in 379

section 2.3, the high energy tail observed in the NIEDFs in figure 5 is not produced. Without a 380

high energy tail, the normalised NIEDF shapes are not strongly dependent on the deuterium surface 381

content33, and comparison of the ratio of sputtered to backscattered particles cannot be readily inferred 382

using this approach. For this reason, only results with a surface bias of VS = −130 V are presented. 383

Comparing figure 5 (a) to figure 5 (b), which presents NIEDFs for MCNDD at 550◦C and 750◦C, 384

i.e. temperatures at which the sample is conductive, it is observed that MCNDD displays a similar 385

increase in the proportion of high energy negative ions as the sample’s surface temperature increases. 386

This implies that MCNDD has similar negative ion production properties to MCBDD. 387

The trends for MCNDD and MCD observed in figure 4 and discussed in the previous section 388

can be explored in the context of figure 5. Figure 4 shows that the yield for MCD increases up 389

to sample temperatures of ∼400◦C and decreases as its temperature is increased further. This is 390

similar to the trends observed for samples of MCNDD when they are conductive. The increase and 391

then decrease in yield as temperature is increased, from ∼30◦C to ∼400◦C and then from ∼400◦C 392
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to ∼750◦C respectively, can be attributed to two processes that combine to generate the observed 393

trend in figure 4. The first process is the removal of defects on the sample surface. The heating 394

of the sample results in an enhancement of the etching of sp2 bonds created by the bombarding 395

positive ions resulting in a surface which results in a higher ratio of sp3 bonds28. The increased 396

proportion of diamond bonds on the surface increases the negative ion yield, as explored in previous 397

work through Raman spectroscopy26,28,32,33. The second process is the previously discussed decrease 398

in the sputtering contribution to the negative ion yield due to out-gassing of deuterium from the sample 399

surface, as observed in the measurements of figure 5. As temperature is increased, the influence of each 400

of these processes on the measured negative ion yield is observed to vary significantly. At temperatures 401

below ∼400◦C, the reduction in defects increases the yield, whilst the outgassing does not cause a 402

significant decrease in the sputtering contribution. At temperatures above ∼400◦C, the decrease in 403

sputtering contribution reduces the yield by a greater extent than the reduction in defects caused by 404

the elevated temperature, causing a reduction in the the measured negative ion yield28. 405

For the samples of nitrogen doped diamond with more than 20 ppm nitrogen added in the gas 406

phase, the MCNDD film is not conductive at temperatures where the previously mentioned reduction 407

in the defects can increase yield, i.e. between 30◦C and 400◦C. A more thorough exploration of 408

the resulting interplay between the reduction of defects and the decreasing sputtering contribution 409

is beyond the scope of this experimental study. However, figure 5 (b) suggests that the decrease in 410

yield due to a decrease in the sputtering contribution is consistent with current understanding of the 411

behaviour of negative ion formation on micro-crystalline doped diamond. 412

3.3 Negative ion yield: comparison between MCNDD, MCBDD, and MCD 413

The negative ion yield with respect to sample surface temperature of the MCD, MCBDD and MCNDD 414

samples is shown in figure 6, with high energy ion bombardment (VDC = −130 V) shown in figure 6 (a) 415

and low energy bombardment (VDC = −20 V) shown in figure 6 (b). 50 ppm MCNDD is chosen as a 416

comparison to MCD and MCBDD as this produced the highest relative negative ion yield of all the 417

nitrogen doped diamond samples, as shown in figure 4. 418

In figure 6 (a), VDC = −130 V, the trends for MCD and MCBDD are similar, with an increase in 419

yield by a factor of 6 from 150◦C to 450◦C observed for MCD and a factor of 2 observed for MCBDD 420

from 150◦C to 550◦C. The yield then decreases gradually as temperature is increased further. These 421

results are consistent with previous work using MCD and MCBDD26. The negative ion yield from 422

MCNDD at sample temperatures below 400◦C is effectively zero. After 400◦C there is a rapid increase 423

in yield by several orders of magnitude up to 550◦C, as discussed in section 3.1. After 550◦C, the trend 424
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(a) (b)

Figure 6: Negative ion yield with respect to film surface temperature for micro-crystalline diamond (MCD),
micro-crystalline boron doped diamond (MCBDD) and micro-crystalline nitrogen doped diamond (MCNDD)
for (a) VDC = −130 V and (b) VDC = −20 V. Low pressure deuterium plasma operated at 2 Pa and 26 W.
Solid lines have been added to guide the eye.

agrees with MCD and MCBDD. In the high energy bombardment regime, the yield from MCNDD is 425

found to be lower than MCBDD and comparable to MCD. This suggests that the higher positive ion 426

bombardment energy is having a larger influence on MCNDD than MCBDD, though a mechanism for 427

such a difference is beyond the scope of this study. 428

In figure 6 (b) for VDC = −20 V, the trends for MCD and MCBDD are also observed to be 429

qualitatively similar, showing an increase in yield by a factor of 2 and a factor 1.5 from 150◦C to 400◦C 430

respectively, and a gradual decrease in yield above 400◦C, which has been discussed in section 3.126,33. 431

Figure 6 (b) has a similar trend as figure 6 (a) where the yield from MCNDD at temperatures below 432

400◦C is effectively zero. The yield increases by several orders of magnitude between 400◦C to 550◦C, 433

after which it decreases gradually. At temperatures above 550◦C the general trend of decreasing yield 434

is consistent with both MCD and MCBDD, and agrees with current understanding of these diamond 435

films as discussed in the previous section. Of particular interest is that the yield for MCNDD in this 436

low energy ion bombardment condition is observed to be higher than MCD, and also higher than 437

the previously best performing type of diamond, MCBDD26. At 550◦C, the maximum yield observed, 438

MCNDD has a higher negative ion yield than MCD and MCBDD by a factor of 2 and 1.5, respectively. 439

This therefore suggests that controlled addition of nitrogen during the growth of diamond using the 440

PECVD process could be an avenue for increasing the negative ion yield from diamond. 441

4 Conclusion 442

In this study, we have investigated the nitrogen doping of diamond films as a means of increasing 443

the negative ion yield during exposure to a low pressure deuterium plasma (2 Pa, helicon source at 444
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26 W). For conditions where positive ions from the plasma bulk bombard nitrogen doped diamond 445

film with energies of 11 eV and 48 eV, ‘low energy’ and ‘high energy’ bombardment, respectively, mass 446

spectrometry measurements are used to determine the negative ion yield as the film temperature is 447

scanned between 30◦C and 750◦C. For 50 ppm nitrogen doping, introduced in the gas phase during 448

diamond growth using the PECVD technique, the application of low energy ion bombardment is 449

observed to increase the negative ion yield by a factor of 2 compared to un-doped diamond and a 450

factor of 1.5 compared to boron doped diamond. 451
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