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Abstract

The logarithmic prices of financial assets are conventionally assumed to follow a drift-diffusion

process. While the drift term is typically ignored in the infill asymptotic theory and applications,

the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for in-

tegrated variance estimators and extensive simulations provided in this paper reveal that the

drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads

to a dramatic power loss for a class of jump identification procedures. We propose an alterna-

tive construction of volatility estimators and observe significant improvement in the estimation

accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias

of the realized variance, bipower variation, and their modified versions take simple and intuitive

forms. The new jump tests, which are constructed from the modified volatility estimators, show

satisfactory performance. As an illustration, we apply the new volatility estimators and jump

tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ

stock price index.
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rent, Aix-Marseille School of Economics, Aix-Marseille University; E-mail: sebastien.laurent@univ-amu.fr. Shuping
Shi, Department of Economics, Macquarie University; E-mail: shuping.shi@mq.edu.au.

1

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0304407619302507
Manuscript_5bdd818a9f26a50c00a4785bd067b087

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0304407619302507


Keywords: Diffusion process, nonzero drift, finite sample theory, volatility estimation, jumps

JEL classification: C12, C14.

1 Introduction

Consider the conventional setup of an Ito semimartingale process of log prices yt such that

dyt = µtdt+ σtdWt, (1)

whereWt is an Ft-adapted standard Brownian motion, with {Ft : t ∈ [0, T ]} being a right-continuous

information filtration. With locally bounded coefficients µt and σt (as in the volatility estimation

and jump detection literature), the drift term is dominated by the diffusion process. For this reason,

most infill asymptotics are unaffected by the presence of a drift. The drift component is therefore

typically ignored in the high-frequency literature.

There is, however, substantial empirical evidence documenting that asset prices might have a

nonzero drift component. In the low-frequency (such as monthly, weekly and daily) framework,

prolonged periods of mildly explosive trends have been identified in many financial assets, e.g., the

stock market during the dot-com bubble period in the late 1990s (Phillips et al., 2011, 2015; Shi and

Song, 2016) and the commodity markets over the preceding decade (Etienne et al., 2014; Gutierrez,

2012; Phillips and Yu, 2011). Figure 1 displays the daily median1 of the 5-minute log returns of

the NASDAQ stock market index for the period 1996–2016. The daily median of the 5-minute log

returns is observed to deviate from zero for a substantial period of time in the early 2000s when

the dot-com bubble burst and around the subprime mortgage crisis period.

Evidence of a nonnegligible drift has also been observed by Phillips and Shi (2017) in the log

prices of the S&P 500 index during the 2008 subprime mortgage crisis period and in the bond yields

and CDS spreads of most European countries during the 2010 debt crisis. Additionally, there is

extensive literature documenting the temporary deviations in log prices from the random walk.2

In the high-frequency framework, motivated by the large number of flash crashes,3 Christensen

1We calculate the median and not the sample mean to reduce the impact of jumps in asset prices.
2See, for example, Bekaert and Hodrick (1992); Bessembinder and Chan (1992); Campbell and Ammer (1993);

Campbell and Hamao (1992); Lo and MacKinlay (1988); Fama and French (1988); Balvers et al. (2000); Chaudhuri
and Wu (2003).

3See, for example, Nanex Research: http://www.nanex.net/NxResearch/.
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Figure 1: Daily median of the 5-minute log returns of the NASDAQ stock index during 1996 - 2016.
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et al. (2016) propose a drift burst hypothesis, which postulates the existence of short-lived locally

explosive trends in log prices. This hypothesis was tested using a nonparametric approach and

applied to tick-by-tick data. The authors observe that drift bursts (especially negative drifts) form

an integral part of price dynamics in equities, fixed income, currencies and commodities.

Our paper investigates the finite sample impact of nonzero drifts on the estimation accuracy

of volatility in the high-frequency setting. The literature on volatility estimation focuses on the

asymptotic properties and, apart from some notable exceptions (Meddahi, 2002; Bandi and Russell,

2005), does not study its finite sample properties. We derive the analytical formulas of the bias of

the realized variance (Andersen and Bollerslev, 1998) and bipower variation (Barndorff-Nielsen and

Shephard, 2004) under a constant drift-diffusion process and a linear drift-diffusion process. The

two processes capture the important forms of nonzero drift and have been studied extensively in the

literature.4 We also investigate via Monte Carlo simulations the impact of a nonzero drift on a noise-

robust volatility estimator (Podolskij and Vetter, 2009). The finite sample theory, together with

extensive simulations, reveals that a nonzero drift causes a substantial bias in volatility estimation.

It is important to highlight that the integrated variance estimators are typically computed over

a short period of time (e.g., one day), and therefore, we do not mean by nonzero drift that the

drift needs to be nonzero over a long span (e.g., one month or one year) to cause a bias in these

estimators, but rather it deviates from zero during the period over which it is computed.

We propose computing volatility estimators on centered log returns instead of raw log returns.

4See, for example, Lo and Wang (1995); Barndorff-Nielsen and Shephard (2001); Nicolato and Venardos (2003);
Aalen and Gjessing (2004); Zhou and Yu (2015); Wang and Yu (2016).
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For centering, we consider either the sample mean or the median. The former has well-known

finite sample distributions but is sensitive to outliers (or additive jumps in our context), while the

latter has the advantage of being robust to outliers, but little is known about its finite sample

distribution. We derive the analytical bias of the modified realized variance estimators under both

drift-diffusion processes and provide an analytical expression for the bias of the modified bipower

volatility estimators under the constant drift-diffusion process.5 The theoretical and simulation

results suggest that both modifications lead to a dramatic improvement in the estimation accuracy

of volatility, especially when the drift deviates far from zero. In particular, estimators relying on

centered log returns (relative to the median) have the overall best performance in the presence of

jumps.

Volatility plays a central role in finance. It is the most important type of market risk and is

fundamental to asset pricing, portfolio choice, and financial market regulation. Volatility estimators

have been used extensively in this field. The finite sample bias of volatility estimation arising from

the presence of a nonzero drift is therefore expected to have many secondary impacts. As an

example, we demonstrate in this paper that the finite sample bias of the volatility estimators could

lead to the unsatisfactory performance of jump detection procedures. We show that in the presence

of a nonzero drift, the Lee and Mykland (2008, LM08 hereafter) and Lee and Mykland (2012, LM12

hereafter) tests are severely undersized, which translates into a dramatic loss of power. To address

this finite sample problem, we propose an alternative construction of the test statistic, which relies

on the proposed modified volatility estimators. Despite its ease of implementation, our test improves

the finite sample performance significantly.

As an illustration, we apply the new bipower variation estimator and the new LM08 jump test,

along with their original versions, to 5-minute log returns of the NASDAQ stock index from 1996

to 2016. The main conclusion is that the bipower variation tends to overestimate the volatility

in the presence of nonzero drift by, on average, 2.5% but, sometimes, by as much as 40% or even

more. The proposed new jump test allows for the identification of more jumps. These additional

jumps occur during periods with upward or downward trends in log prices which are likely due to

5The derivation for the modified bipower variations under the linear drift-diffusion process is very complicated,
as it involves deriving the first moment of the absolute value of the product of two correlated variables and the
distributions of order statistics (i.e., median) for nonidentically distributed and dependent variables. Such derivation
is therefore left for future research.
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the presence of nonzero drift.

The paper is organized as follows. The theoretical results on the impact of a constant drift on

the finite sample bias of realized variance and bipower variation computed on raw and centered log

returns are derived in Section 2, while the case of a linear drift-diffusion process is considered in

Section 3. Section 4 illustrates the impact of the drift on a noise-robust volatility estimator. Section

5 studies the finite sample performance of two popular jump tests and the modified jump tests in

the presence of a nonzero drift. An application is proposed in Section 6. Section 7 concludes. All

the proofs are reported in Appendix A. Appendix B compares the estimation accuracy of the sample

mean and the median in the presence of jumps.

2 Volatility Estimation under a Constant Drift-Diffusion Process

Let {0 < t1 < · · · < tT < N} be a set of T equally spaced observation times spanning N days. The

distance between two consecutive observation times is denoted by ∆ = ti − ti−1 = N/T . For

expositional purpose, we first consider a simple data generating process, where both the drift and

diffusion coefficients are constant, i.e.,

dyt = µdt+ σdWt. (2)

The log returns rti = yti − yti−1 (computed using log prices at equally spaced observation times)

can be written as

rti = µ∆ + σ
√

∆εti with εti ∼ N (0, 1) . (3)

It is obvious that the log return process is asymptotically dominated by the volatility component

σ
√

∆εti . In other words, the drift term is asymptotically negligible, and as shown by Barndorff-

Nielsen and Shephard (2002), r2
ti →

∫ ti
ti−1

σ2ds. However, in practice, one very often has to rely

on low-frequency data for estimations and hypothesis testing because ultrahigh-frequency data for

asset prices are not always available or because lower-frequency data (such as 5- or 10-minute data)

are preferred to mitigate the impact of microstructure noise (Park and Linton, 2011).
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2.1 Realized Variance Estimator

The realized variance estimator is defined as

RVti(K) =
i∑

j=i−K+1

r2
tj ,

where K is the number of observations included in the estimation. See Andersen and Bollerslev

(1998), Barndorff-Nielsen and Shephard (2002), etc.

Proposition 2.1 Under the drift-diffusion process (2), the bias of the realized variance is

E
[
RVti(K)−Kσ2∆

]
= Kµ2∆2.

The bias of the realized variance estimator is zero if the drift coefficient is zero (i.e., µ = 0). In

practice, parameter K is often set to the total number of intraday observations available at the end

of each trading day (i.e., 1/∆). See Andersen et al. (2001, 2003); Boudt et al. (2011); Bauwens

et al. (2012), etc. Thus, the bias of the daily realized volatility computed at the end of the day is

µ2∆, which increases with the magnitude of µ and decreases with the sampling frequency ∆.

One natural way to mitigate this bias is to remove the drift component before calculating

volatilities or, equivalently, to compute the volatility estimators on centered log returns. We consider

two different ways of centering, using either the sample mean or the median of K log returns involved

in the computation of realized variance, i.e.,

m̂ti(K) =
1

K

i∑
j=i−K+1

rtj , and m̂∗ti(K) = median
(
rti−K+1 , · · · , rti

)
.

Lemma 2.1 Under the drift-diffusion process (2), both the sample mean and median are unbiased

estimators of E(rti), i.e.,

E (m̂ti(K)) = E
(
m̂∗ti(K)

)
= µ∆. (4)

While the proof of the unbiasedness of the sample mean is trivial, it is less straightforward for

the median. The calculation of the median is equivalent to running a quantile regression (for the

50th quantile) with only a constant as a regressor. From the proof of Lemma 2.1 in Appendix A,
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under the DGP (2), the finite sample distribution of the median is a beta-normal (BN) distribution

(Eugene et al., 2002), i.e., m̂∗ti(K) ∼ BN(p,K − p+ 1, µ∆, σ
√

∆), where p = d0.5Ke is the smallest

integer greater than 0.5K.

The modified realized variance estimators are based on centered log returns and defined as

RV †ti(K) =
i∑

j=i−K+1

[
rtj − m̂ti(K)

]2
and RV ∗ti (K) =

i∑
j=i−K+1

[rtj − m̂∗ti(K)]2.

Proposition 2.2 Under the drift-diffusion process (2),

(i) the bias of the modified realized variance RV † is

E
[
RV †ti(K)−Kσ2∆

]
= −K V (m̂ (K)) = −σ2∆, (5)

where V(.) represents the variance of the argument;

(ii) the bias of the modified realized variance RV ∗ is

E
[
RV ∗ti (K)−Kσ2∆

]
= K [V (m̂∗ (K))− 2 cov (m̂ (K) , m̂∗ (K))] , (6)

where cov(., .) is the covariance between the two arguments.

The finite sample biases of both RV and RV † take very simple forms, i.e., Kµ2∆2 for RV ,

and −σ2∆ for RV †. Note that if K = 1/∆, the bias of RV is µ2∆, which is of the same order of

magnitude as that of RV †. For a given sampling frequency, the biases of RV † and RV are positively

related to, respectively, σ2 and µ2. It is obvious that the bias of RV will be larger than that of

RV † if µ > σ and will be smaller otherwise. We discuss empirically realistic settings of µ and σ in

Section 2.3.

The bias of RV ∗ takes a slightly more complicated form. It depends on the variance of the

median and the covariance between the sample mean and the median. Since m̂∗ti(K) ∼ BN(p,K −

p+ 1, µ∆, σ
√

∆), from Gupta and Nadarajah (2005), we have

V
(
m̂∗ti(K)

)
= µ2∆2K

(
K − 1

p− 1

)K−p∑
j=0

(−1)j
(
K − p
j

) 2∑
i=1

2

(
σ

µ
√

∆

)i
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×

[
p+j−1∑
k=0

(−1)k
(
p+ j − 1

k

)
Ii,k + (−1)i Ii,p+j−1

]
,

with Ii,k =
∫∞

0 νiφ (ν) [1− Φ (ν)]k dν. The finite sample covariance between the sample mean

and the median (i.e., m̂ (K) and m̂∗ti(K)) is unknown but can be approximated by its asymptotic

counterpart. See, for example, Ferguson (1999) for the joint asymptotic distribution of m̂ (K) and

m̂∗ti(K).

2.2 Bipower Variation

The bipower variation is probably the most popular jump-robust estimator of the integrated vari-

ance. It is defined as

BVti(K) =
π

2

K

K − 1

i∑
j=i−K+2

|rtj ||rtj−1 |. (7)

Despite its well-behaved asymptotic properties, we demonstrate below that, similar to the case of

the realized variance, the finite sample performance of the bipower variation is unsatisfactory in the

presence of a large nonzero drift.

We propose an alternative construction of the bipower variation based on centered log returns

(using either the sample mean or the median). The new estimators of the integrated variance,

denoted by BV †ti(K) and BV ∗ti (K), are defined as follows:

BV †ti(K) =
π

2

K

K − 1

i∑
j=i−K+2

|rtj − m̂ti (K) ||rtj − m̂ti (K) |,

BV ∗ti (K) =
π

2

K

K − 1

i∑
j=i−K+2

|rtj − m̂∗ti (K) ||rtj − m̂∗ti (K) |.

Since the drift component of log returns is asymptotically dominated by the variance, using the

centered log returns for the calculation of the bipower variation will not alter its limiting property

but should improve its finite sample properties, as is the case for the modified realized variance

estimators RV † and RV ∗.

Proposition 2.3 Under the drift-diffusion process (2),

8



(i) the bias of the bipower variation BV is

E
[
BVti(K)−Kσ2∆

]
= Kσ2∆

(
e−

µ2∆

σ2 − 1

)
+
π

2
Kµ2∆2

[
1− 2Φ

(
−µ
√

∆

σ

)]2

+2Kµ∆3/2σ

√
π

2
e−

µ2∆

2σ2

[
1− 2Φ

(
−µ
√

∆

σ

)]
;

(ii) the bias of the modified bipower variation BV † is

E
[
BV †ti(K)−Kσ2∆

]
≤
(π

2
− 1
)
Kσ2∆− π

2
σ2∆;

(iii) the bias of the modified bipower variation BV ∗ is

E
[
BV ∗ti (K)−Kσ2∆

]
≤
(π

2
− 1
)
Kσ2∆ +

π

2
K [V (m̂∗ (K))− 2 cov (m̂ (K) , m̂∗ (K))] .

The magnitude of the bias of BV is related to values of K, σ, ∆ and µ. If µ = 0, the bias of

BV is zero. In contrast, the biases of BV † and BV ∗ are bounded above, where the upper bounds

do not depend on µ.

2.3 Visualization of the Bias

For comparison, we compute the biases of the volatility estimators in this subsection. We set

K = 1/∆, so that volatility is computed over one day. We allow µ to vary from −0.2 to 0.2 with

an increment of 0.05. The daily unconditional mean of log returns is thus between ±2.5× 10−3 at

the 5-minute frequency, which aligns with the order of magnitude of the daily median of 5-minute

NASDAQ stock returns (see Figure 1). As mentioned above, we do not assume µ to be nonzero over

a long time span but do so only during the period over which the volatility estimators are computed.

The diffusion coefficient σ is set to 0.01, which implies an annualized variance of 10−4×252 = 0.1522

(a reasonable value for equity returns).

The biases of the realized variance estimators (RV , RV †, and RV ∗) are computed from Propo-

sition 2.1 and 2.2, with the quantities V(m̂(K)), V(m̂∗(K)), and cov(m̂(K), m̂∗(K)) obtained from

9



Monte Carlo simulations.6 Since we do not have an exact formula for the bias of the modified

bipower variations but only an upper bound, we obtain them by Monte Carlo simulations. For all

simulations conducted in this paper, we assume that the asset is traded 6.5 hours per day as is

the case on the NASDAQ stock exchange (from 9:30am to 16:00pm). That is, there are 24, 000

observations over one day at the one-second frequency. We pick one observation every 60 (300)

data points to obtain the 1-minute log prices (5-minute log prices). The sampling interval is set to

∆ = 1/400 and ∆ = 1/80 for the 1- and 5-minute data, respectively. The simulations are repeated

for 10, 000 times. In this simulations, log returns are assumed to follow Equation (3).

Figure 2: Bias of the realized variance estimators under the constant drift-diffusion process.

(a) Realized variances: 1-minute ∆ = 1/400
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(b) Realized variances: 5-minute ∆ = 1/80
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(c) Modified realized variances: 1-minute ∆ = 1/400
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(d) Modified realized variances: 5-minute ∆ = 1/80
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Figures 2 and 3 display the biases of RV , RV † and RV ∗ and the biases of the two modified

realized volatility estimators in the bottom panel for further comparison. Figure 3 presents the

biases of the bipower variations (BV , BV † and BV ∗) obtained from Monte Carol simulations,

6Although the analytical forms of V(m̂(K)) and V(m̂∗(K)) are known, for fairness of comparison between RV †

and RV ∗, we compute them by simulations.
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Figure 3: Bias of the bipower variations under the constant drift-diffusion process.

(a) Bipower variations: 1-minute ∆ = 1/400
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(b) Bipower variations: 5-minute ∆ = 1/80
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(c) Modified bipower variations: 1-minute ∆ = 1/400
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(d) Modified bipower variations: 5-minute ∆ = 1/80
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along with the upper bounds of the modified bipower variations computed from Proposition 2.3, in

the top panel. It is clear that the biases of the modified volatility estimators are much smaller than

those of their respective original estimators in finite samples. The discrepancy becomes increasingly

visible as the drift value deviates further away from zero. Additionally, the biases of the modified

volatility estimators are extremely close to zero and indistinguishable in the top panels. One can see

from the bottom panels that if ∆ = 1/80, the order of magnitude of the biases is 10−6 (compared

to 10−4 for the original estimators). This suggests that although Propositions 2.2 and 2.3 show

that the biases of the modified estimators are nonzero if there is a nonzero drift, they are negligible

compared to those of the original volatility estimators. The modified realized volatility estimators

are downward biased with the bias of RV † being slightly larger than that of RV ∗. The biases of the

modified bipower variations increase from negative to positive values as µ derivates further from

zero. The upper bounds are always above the actual values and far below the bias curve of BV

11



when µ is large.

3 Volatility Estimation under a Linear Drift-Diffusion Process

We consider an alternative drift-diffusion process, where the drift coefficient is a linear function of

the log price, and the diffusion coefficient is time-varying:

dyt = θ(yt − ρ)dt+ σtdWt, (8)

where θ and ρ are constants and σt is an adapted and cádlág volatility process with E
(
σ2
t

)
= d0. The

assumption on σt is very general. It includes a wide range of volatility models, e.g., the eigenfunction

stochastic volatility process of Meddahi (2002), the log-normal model, the square root model, and

the GARCH(1,1) model of Nelson (1991). It also allows for jumps and intraday periodical patterns

in volatility. For simplicity, we assume the independence of σt and Wt and hence do not allow for

the presence of leverage effect.

The exact discrete solution of (8) is (Arnold, 1974, Corollary 8.2.4)

yti+1 = g (θ) + α (θ) yti + ηti+1 , (9)

where g (θ) = µ [1− exp (θ∆)], α (θ) = exp (θ∆), and ηti+1 =
∫ ti+1

ti
eθ(ti+∆−s)σsdWs. The intercept

g (θ) converges to zero at the rate of ∆. The autoregressive coefficient is α (θ) = 1 if θ = 0; hence,

the log price process has a random walk dynamic. If θ 6= 0, we obtain that

α (θ) = exp (θ∆) = 1 + θ∆ +O
(
∆2
)

converges to unity as ∆ → 0 at the rate of ∆. The order of magnitude of the autoregressive

coefficient O(∆) can be written as O(1/T ), given that ∆ = N/T and N is a constant. Therefore,

the dynamic in (9) is local-to-unity (Phillips, 1987) in the explosive direction if θ > 0 and in the

stationary direction if θ < 0.

The continuous-time solution of the stochastic differential equation (8) is

yt = eθty0 + ρ(1− eθt) +

∫ t

0
eθ(t−s)σsdWs, (10)

where y0 is the initial value.

12



Lemma 3.1 Under the linear drift-diffusion process (8), log return rti can be written as

rti = ∆iA+

∫ ti

ti−1

σsdWs +

∫ ti

ti−1

B(ti, s)σsdWs +

∫ ti−1

0
[B(ti, s)−B(ti−1, s)]σsdWs (11)

=

∫ ti

ti−1

σsdWs{1 + op(1)},

where ∆iA = A(ti) − A(ti−1), A(t) =
∫ t

0 a(r)dr and B(t, s) =
∫ t
s b(r, s)dr with t ≥ s, a(t) =

θ (y0 − ρ) eθt and b(t, s) = θeθ(t−s);

The log return process is asymptotically dominated by the volatility component
∫ ti
ti−1

σsdWs

as ∆ → 0. Consequently, the squared return r2
ti converges to the integrated variance

∫ ti
ti−1

σ2
sds

(Barndorff-Nielsen and Shephard, 2002).

The unconditional expectation of rti , denoted by mti , is

mti = ∆iA =

∫ ti

ti−1

a(r)dr = (y0 − ρ)eθti−1(eθ∆ − 1).

One can see that it depends on the values of ρ, θ, and ∆, as well as the initial value y0. It is noted

that mti = 0 if either y0 = 0 or θ = 0. Furthermore, the unconditional expectation of the averaged

log returns over the past K observations, denoted by m̄ti(K), is

m̄ti(K) =
1

K

i∑
j=i−K+2

mtj =
1

K

∫ ti

ti−K
a(r)dr =

1

K
(y0 − ρ)

[
eθti − eθti−K

]
.

Suppose the sample runs over one day (i.e., T = 1/∆) and K = T . The unconditional expectation of

the daily averaged return is m̄1(K) = 1
K (y0 − ρ) (eθ−1). Figure 4 shows the value m̄1(K) for several

combinations of values of y0 and θ at 1-minute and 5-minute frequencies. We consider a wide range

of values of θ and allow for the initial value to vary from 0 to 7. We set ρ to zero for simplicity. The

magnitude of the drift increases under three circumstances: 1) if the sampling frequency is lower, 2)

if the initial value becomes larger, and 3) if θ moves away from zero. Additionally, the unconditional

mean m̄1(K) has the order of magnitude of 10−3, which is the same as that presented in Figure

1. This result suggests that the parameter settings being considered are empirically realistic and

hence will be used for the simulations performed subsequently.
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Figure 4: Average drift of log returns over one day for various combinations of θ, y0 and ∆.
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(b) 5-minute ∆ = 1/80
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3.1 Unbiasedness of the Sample Mean and Median

Lemma 3.2 Under the linear drift-diffusion process (8), both the sample mean and the median are

unbiased estimators of the unconditional mean m̄ti(K), i.e.,

E (m̂ti(K)) = E
(
m̂∗ti(K)

)
= m̄ti(K). (12)

The unbiasedness of the sample mean follows directly from (11). The derivation of the unbi-

asedness of the median is, however, rather difficult. The literature on the finite sample distribution

of order statistics with correlated and nonidentically distributed underlying variables is rather thin

(Rychlik, 1994; Gupta et al., 1973; Chen, 2014). This question is further complicated by the time-

varying correlation structure among returns. Nevertheless, the asymptotic distribution of quantile

estimators in non i.i.d settings is well known (see, e.g., Koenker et al. (2005); Wu et al. (2005);

Dominicy et al. (2013)). The median converges to the true mean m̄ti(K) at a rate of Op(
√
K) and

follows a normal distribution in the limit.

We resort to simulations to show the unbiasedness of the median. The data generating process

is (9). The settings for ρ, θ and y0 are the same as in Figure 4. The error term ηti+1 is specified by

ηti+1 = σti+1

√
∆εti+1 (13)

σ2
ti+1

= α0 + σ2
ti(β1 + α1

√
∆vti+1), (14)

where εti+1 and vti+1 are two independent standard normal random variables. The volatility dynamic

14



(14) is a Euler discretization of the GARCH(1,1) diffusion process of Nelson (1991), which is

dσ2
t = κ

(
ω − σ2

t

)
dt+

√
2λκσ2

t dWt, (15)

where κ > 0, ω > 0, and 0 < λ < 1. The parameters are related as follows: α0 = κω∆, β1 = 1−κ∆,

and α1 =
√

2λκ. We follow Andersen and Bollerslev (1998) and choose the parameters κ = 0.035

and λ = 0.296 to simulate a realistic log price process with very persistent GARCH effects and set

ω = 10−4 such that E(σ2
ti+1

) = 10−4. The initial value of the volatility dynamic is set to be the

unconditional volatility.

For each parameter constellation, we simulate 104 data series at the one second frequency and

obtain data at the 1-minute (∆ = 1/400) and 5-minute (∆ = 1/80) frequencies by aggregation. The

sample size is T = 1/∆. The median of the log returns of each data series is denoted by m̂∗tT (K)j

with j = 1, · · · , 104 and K = T . The expected value of the median estimator is approximated by

its sample counterpart, i.e.,

E
(
m̂∗ti(K)

)
' 1

104

104∑
j=1

m̂∗ti (K)j .

Figure 5 plots the ratio E
(
m̂∗ti(K)

)
/ m̄ti(K). It is clear from the graph that the ratio is close to

one for all parameter settings, which suggests the unbiasedness of the median as an estimator of

the unconditional mean.

Figure 5: Ratio of E
(
m̂∗ti(K)

)
and the unconditional mean m̄ti(K).
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3.2 Realized Volatility Estimators

Proposition 3.1 Under the linear diffusion process (8), the finite sample bias of the realized vari-

ance is zero if θ = 0. If θ 6= 0,

E
(
RVti(K)−

∫ ti

ti−K
σ2
udu

)
= (y0 − ρ)2

(
eθ∆ − 1

)2
e2θti−K

1− e2θ∆K

1− e2θ∆
+
d0K

θ

(
eθ∆ − 1

)

+
(
eθ∆ − 1

)2 d0

2θ
e2θti−K

1− e2θ∆K

1− e2θ∆
− d0K∆

≡ E ,

where d0 = E(σ2
t ).

Similar to the constant drift-diffusion process (2), the drift coefficient µt = θ(yt − ρ) in (8) has

a finite sample impact on the realized variance estimator if both y0 and θ 6= 0.7 The bias E arises

from the nonzero mean of rt and the interaction between the drift and diffusion terms. The finite

sample biases of the modified realized volatility estimators under the linear drift-diffusion process

are illustrated in Proposition 3.2.

Proposition 3.2 Under the linear diffusion process (8), the finite sample biases of the modified

realized variance estimators RV † and RV ∗ are zero if θ = 0. If θ 6= 0,

(1) the bias of RV † is

E
(
RV †ti(K)−

∫ ti

ti−K
σ2
udu

)
= E −K E

(
m̂2
ti

)
.

with K E
(
m̂2
ti

)
equal

1

K

{
(y0 − ρ)2 e2θti−K

(
eθK∆ − 1

)2
− d0

2θ

(
eθ∆K − 1

)2 (
1− e2θti−K

)
− d0

2θ

(
1− e2θ∆

) e2θ∆K − 1

e2θ∆ − 1

}
;

(2) the bias of RV ∗ is

E
(
RV ∗ti (K)−

∫ ti

ti−K
σ2
udu

)
= E − 2K E

(
m̂∗tim̂ti

)
+K E(m̂∗2ti ), (16)

7The finite sample bias of the realized variance estimator was first documented in Meddahi (2002), where the drift
coefficient was assumed to be a square-integrable function of the state variable St such that µt =

∑p
i=0 giΠi,St , where∑p

i=0 |gi| <∞.

16



where the quantities E
(
m̂∗tim̂ti

)
and E(m̂∗2ti ) can be obtained via simulations.

The overall bias is reduced substantially due to the use of centered log returns in the calculation.

The magnitude of reduction is visualized in the next subsection.

3.3 Visualization of the Bias

3.3.1 Realized Volatilities

Figure 6 plots the bias of the realized volatilities RV , RV † and RV ∗, calculated from Propositions

3.1 and 3.2. The top panel plots all three estimators, while the bottom panel shows only the

modified ones for further comparison. The parameter settings are the same as those in Figure 5.

The unconditional variance d0 is set to 10−4. The quantities E
(
m̂2
ti

)
, E
(
m̂∗tim̂ti

)
, and E(m̂∗2ti ) are

obtained via Monte Carlo simulations with DGP (9) and 104 replications.

Figure 6: Bias of the realized variance and modified realized variances under the linear drift-diffusion
process.
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(b) 5-minute ∆ = 1/80
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(c) 1-minute ∆ = 1/400
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(d) 5-minute ∆ = 1/80
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Recall that the unconditional mean (drift) of log returns increases with |θ| and the initial value

y0 (see Figure 4). It is clear from Figure 6 that the bias of the realized variance increases nonlinearly

with the magnitude of the drift, especially at the 5-minute frequency. Furthermore, the biases of

the modified volatility estimators RV † and RV ∗ are of a much smaller magnitude. Similar to the

constant drift case, the bias of RV † is slightly smaller than that of RV ∗.

3.4 Bipower Variations

As explained above, the derivation of the finite sample bias of the bipower variation and its modified

versions under the linear drift-diffusion process is rather complicated and left for future research.

Here, we compare the performance of the bipower variation and its modified versions via simulations

when the DGP is a linear drift-diffusion process with additive jumps.

We consider a DGP that generalizes (9) by allowing for k additive jumps:

yti+1 = g(θ) + α(θ)yti +
k∑
j=1

φjti+1
Ijti+1

+ ηti+1 , (17)

where Ijti+1
is a dummy variable indicating the location of the jth jump (the occurrence of which is

random), and φjti+1
is the corresponding jump size. For simplicity, we allow for one negative jump

per day with the size equal to 60% of the spot volatility (i.e., φ1
ti+1

= −0.6σti+1). The volatility

dynamic and the settings of the remaining parameters are as in Section 3.1.

We report in Figure 7 the bias of the bipower variation and the modified bipower volatility

estimators for the last observation of the day (i.e., tT ), denoted by BVtT (K), BV †tT (K) and BV ∗tT (K),

respectively. They are calculated at the end of each day using the K = T observations of that day.

The top panel displays the biases of all three estimators, and the bottom panel presents only the

two modified bipower volatility estimators.

As in Figure 2, there is almost no difference in the estimation accuracy among the three esti-

mators if either θ or y0 equals zero. We observe an upward bias of bipower variation when both θ

or y0 are not zero. The bias becomes larger as the sampling frequency decreases and as |θ| and y0

increase. As expected, the modified bipower volatility estimators BV † and BV ∗ provide much more

accurate estimates of the integrated variance. Indeed, the biases of BV † and BV ∗ are very small
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for all combinations of parameters considered in this simulation. Furthermore, the bias of BV ∗ is

always smaller than that of BV †. This is because the median provides more accurate estimate of

the unconditional expectation of log returns than does the sample mean in the presence of jumps

(see Appendix B for an illustration).8

Figure 7: Empirical bias of the bipower and the modified bipower volatility estimators under the
linear drift-diffusion process.
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(b) 5-minute ∆ = 1/80
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(c) 1-minute ∆ = 1/400
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(d) 5-minute ∆ = 1/80
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A similar correction can be applied to other jump-robust estimators of the integrated variance.

We have also performed Monte Carlo simulations, considering the MedRV of Andersen et al. (2012)

and the threshold realized variance of Mancini (2009). The results are qualitatively the same as for

BV, BV † and BV ∗ in Figure 7 and are therefore not reported to save space.

8It is well known in the robust statistics literature that the median is less sensitive to outliers (i.e., jumps in our
framework) than is the sample mean. Indeed, the asymptotic breakdown point is 0 for the sample mean and 1/2 for
the median (see Maronna et al., 2006, etc.).
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4 Volatility Estimation with Ultrahigh-frequency Data

One might expect that with ultrahigh-frequency data, the drift component will be extremely close

to zero; hence, the discrepancy between the original volatility estimators (based on log returns) and

the modified ones (based on centered log returns) will diminish. We show in this section that this

is unfortunately untrue for the noise-robust volatility estimator of Podolskij and Vetter (2009).

Assume that the noise-contaminated log price y◦ti is

y◦ti = yti + ηti , (18)

where (ηti)1≤i≤T is a noise process with mean zero and variance q2, independent of yti . Assume

also that the noise process is serially correlated of order s− 1.

The estimator of Podolskij and Vetter (2009) is constructed as follows. Define Γ-return r
(Γ)
ti

as

r
(Γ)
ti

= y◦ti − y
◦
ti−Γ

,

where Γ = γ1K
1/2 with γ1 > 0. We divide the past K Γ-returns into B nonoverlapping blocks. The

number of blocks is B = γ2Γ with γ2 > 1, and the size of the blocks is S = K/B. The average log

return of block b is

r̄ti,b =
1

S

i−(B−b)S∑
j=i−(B−b+1)S+1

r
(Γ)
tj
. (19)

Podolskij and Vetter (2009) propose computing the bipower variation for noise-contaminated

data using pre-averaged returns, i.e.,

BV N
ti (K) =

π

2

B

B − 1

B∑
b=2

|r̄ti,b||r̄ti,b−1|. (20)

One can obtain a consistent estimator of the integrated variance ÎV ti(K) by removing the variation

induced by the market microstructure noise from the bipower variation:

ÎV ti(K) :=
γ1γ2BV

N
ti (K)− v2q̂

2
ti(K)

v1
→
∫ ti

ti−K

σ2
udu, (21)
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where q̂2
ti(K) is a consistent estimator of the noise variance q2 and is defined as

q̂2
ti(K) =

1

2(K − s)

i∑
j=i−K+s+1

(y◦tj − y
◦
tj−s)

2,

v1 =
γ1[3γ2 − 4 + max{(2− γ3

2), 0}]
3(γ2 − 1)2

and v2 =
2 min{(γ2 − 1), 1}

γ1(γ2 − 1)2
.

While the drift component of log returns is extremely close to zero in the ultrahigh-frequency

setting, the drift of pre-averaged returns r̄ti,b (of which the bipower variation is computed) might

be of a nonnegligible magnitude. For the sake of illustration, we consider a data generating process

following (17), (13)-(14) and (18). The parameter settings of the non-noise components remain

unchanged. We assume i.i.d. noise (i.e., s = 1) for simplicity. The variance of the noise is set to

be proportional to the variance of the underlying process as in Bandi and Russell (2006); Boudt

et al. (2017); Lee and Mykland (2012). Specifically, q2 = 0.01
√∫ 1

0 σ
4(s)ds and hence q ≈ 0.1%. We

simulate one day of 1-second data with one small jump per day (for a total of 104 replications).

Figure 8: Median of r̄ti,b for various combinations of θ and y0.
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Figure 8 displays the average (over 104 replications) of the median of pre-averaged returns,

denoted by m̃∗ti(K) = median(r̄ti,1, · · · , r̄ti,B), for various combinations of θ and y0. This figure

shows that the median increases as the process deviates from the random walk, and the magnitude

is comparable to the median of 5-minute log returns plotted in Figure 4. As before, this deviation

is expected to affect the performance of the integrated variance estimator.

Analogously, we propose modifying the estimator of Podolskij and Vetter (2009) by computing
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the bipower variation using centered pre-averaged returns, i.e.,

BV N∗
ti (K) =

π

2

B

B − 1

B∑
b=2

|r̄ti,b − m̃
∗
ti(K)||r̄ti,b−1 − m̃∗ti(K)|, (22)

and

ÎV
∗
ti(K) :=

γ1γ2BV
N∗
ti (K)− v2q̂

2
ti(K)

v1
→
∫ ti

ti−K

σ2
udu.

The consistency of ÎV
∗
ti(K) follows directly from Podolskij and Vetter (2009).

We compute the bias of the two noise- and jump-robust estimators ÎV ti(K) and ÎV
∗
ti(K) in

the same simulation setting. The results are presented in Figure 9. We observe patterns similar to

those in Figure 7. While the estimation accuracy of the original volatility estimator deteriorates

substantially as |θ| and y0 deviate from zero, the new estimator is much more accurate.9

Figure 9: Estimation bias of ÎV ti(K) and ÎV
∗
ti(K).
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5 Jump Tests

Testing for jumps and precisely identifying their occurrences is of overwhelming importance in

finance since jumps have implications in risk management, portfolio allocation and derivative pricing

(Aı̈t-Sahalia, 2004). Several tests have been proposed in the literature (see Mancini and Calvori,

2012 for a survey). The most popular test is probably the test for finite-activity jumps10 proposed

9The results for ÎV
†
ti(K) that uses the sample mean of the pre-average return (i.e., 1

K

∑B
b=1 r̄ti,b) for centering are

similar to those of ÎV
∗
ti(K) and hence are not reported for brevity.

10Lee and Hannig (2010) propose a test for the presence of infinite-activity jumps (i.e., a Levy jump-diffusion
process).
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independently by Andersen et al. (2007) and Lee and Mykland (2008) and extended by Lee and

Mykland (2012) to account for the presence of microstructure noise. These tests (especially the

LM08 test) have been shown to have the overall best performance by Dumitru and Urga (2012) in a

comprehensive Monte Carlo simulation comparing nine jump detection procedures available in the

literature.

We show in this section that the finite sample bias of volatility estimators (due to nonzero drift

components) leads to a significant downward size distortion and power loss for the LM08 test when

applied to relatively low-frequency (e.g., 5-minute) data. Despite the fact that the LM12 test is

designed for ultrahigh-frequency (e.g., 1-second) data and can be applied to very short time spans

(e.g., 1 hour), it is observed to be also undersized if the log price process has a nonzero drift.

We propose a modification of both tests that relies on modified bipower variations and show the

importance of this correction for the finite sample performance of the tests through Monte Carlo

simulations.

5.1 Lee and Mykland (2008) Tests

Andersen et al. (2007) and Lee and Mykland (2008) independently proposed a test statistic for

jumps, denoted by Jti below, for which they derived the asymptotic distribution in the zero drift

case, while Lee and Mykland (2008) also proposed another test statistic, denoted by J̃ti below, for

the nonzero drift case. The two statistics are defined as follows:

Jti =
rti

σ̂ti(K)
and J̃ti =

rti − m̂ti(K)

σ̂ti(K)
. (23)

Lee and Mykland (2008) proposed estimating the instantaneous volatility σ̂ti(K) using a rolling

window of K log returns as follows:

σ̂ti(K) =

√
1

K
BVti(K). (24)

The construction of both test statistics, Jti and J̃ti , involves the bipower variation. As discussed

in the previous section, the finite sample performance of this volatility estimator is unsatisfactory if

the process has a nonzero drift. Additionally, the demeaned test statistic J̃ is based on the sample
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mean, the performance of which is inferior to that of the median in the presence of jumps, as shown

in Appendix B. To improve the finite sample performance of the tests, we propose a correction to

these jump test statistics. The new test statistic is denoted by J∗ti and defined as11

J∗ti =
rti − m̂∗ti(K)

σ̂∗ti(K)
. (25)

We replace m̂ti(K) by the median m̂∗ti(K) and σ̂ti(K) by σ̂∗ti(K), an estimator of the instantaneous

volatility based on the bipower variation computed from centered log returns, i.e.,

σ̂∗ti(K) =

√
1

K
BV ∗ti (K). (26)

The asymptotic properties of both test statistics have been studied by Lee and Mykland (2008).

More specifically, they show that in the absence of jumps, Jti and J̃ti converge to a standard normal

distribution as the sampling interval ∆ tends to zero, provided that K is sufficiently large and the

drift and diffusion coefficients in (1) do not change dramatically over a short time interval (i.e.,

Op(∆
1/2)). Since the drift component is asymptotically negligible, the proposed correction will not

alter the limiting distribution of the test statistic. Therefore, if K = Op(∆
α) with −1 < α < −0.5,

we have

sup
i∈{1,··· ,T}

|Sti − U | = Op(∆
η),

where Sti =
{
Jti , J̃ti , J

∗
ti

}
and −ε < η < 3

2 + α− ε for any ε ≥ 0.

The jump test is implemented for each individual observation within the day. To control for the

size of multiple tests, while Andersen et al. (2007) use a Bonferroni correction, Lee and Mykland

(2008) suggest using critical values based on the extreme value theory. The maximum of a set

of L i.i.d. realizations of the absolute value of the standard normal random distribution Ui (for

i = 1, . . . , L) asymptotically follows a Gumbel distribution (see, e.g., Aldous, 1989; Mutangi and

Matarise, 2011), i.e.,

max
i
|Ui| − CL
SL

→ ξ, (27)

11A similar extension of the Lee and Hannig (2010) test, which is robust to infinite-activity jumps, is possible but
beyond the scope of this paper.
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where CL = (2 logL)1/2− 1
2(2 logL)−1/2[log π+log(logL)], SL = (2 logL)−1/2 and ξ is the standard

Gumbel distribution with the cumulative distribution function P{ξ ≤ x} = exp [− exp(−x)].

Since, under the null hypothesis of no jump, Sti follows a standard normal distribution, the

probability of max
i
|Sti | (over a set of L values) exceeding the critical value cvL,β is 100β% such that

P

{
max
i
|Sti | > cvL,β

}
= 1− exp

[
− exp

(
−
cvL,β − CL

SL

)]
= β,

and hence,

cvL,β = CL − SL log [− log (1− β)] . (28)

Therefore, we declare that there is a jump at time ti according to Jti (respectively, J̃ti and J∗ti)

statistic if |Jti | > cvL,β (respectively,
∣∣∣J̃ti∣∣∣ > cvL,β and

∣∣J∗ti∣∣ > cvL,β). If we set L to be the number

of observations per day, the probability of finding at least one spurious jump (either positive or

negative) within each day is 100β%.12

5.2 Finite Sample Performance of Jump Tests

In this section, we investigate the finite sample performance of the LM08 tests J and J̃ , and our

modified test J∗. The data generating process used to study the size of the tests is (9), while we

rely on (17) to study their power. The volatility dynamic is specified by (13)-(14). The parameter

settings are the same as in Section 3.1. Under the alternative, there is one jump per day with the

magnitude of φ1
ti+1

= −0.6σti+1 .

We generate 48, 000 observations corresponding to two days of 1-second data of an asset and

aggregate them at the 1-minute and 5-minute frequencies as above. The first day is used as a burn-

in period; we focus on the detection results of the second day. Therefore, the time span of interest

is one day (N = 1), the sample size T equals the number of observations per day, and the time

interval is ∆ = 1/T . The sample mean and median and the instantaneous volatility are estimated

12Given the rolling window calculation of the test statistics, the i.i.d assumption required by the extreme value
theorem is likely to be violated for the jump tests. As a consequence, the multiplicity issue might not have been
perfectly controlled for with the proposed critical values. One can observe from Tables 1 and 2 that there is a small
upward size distortion remaining for the modified LM tests. This is, however, not the focus of this paper. A solid
investigation of this problem is left to future research.
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from a rolling window of K log returns, which is required to be between
√
T and T . We choose K

to be closer to the upper bound (i.e., K = T − 1) to ensure that there are sufficient observations

to estimate the integrated variance before rescaling it to obtain an estimate of the instantaneous

volatility of rti .

For the critical values, we set L = T and β = 0.1% so that the probability of finding at least

one spurious jump within each day is 0.1%, or equivalently, we expect that one out of 1000 days

contains at least one spurious jump. Therefore, the critical values used in this simulation are

cv24000,0.1% = 5.64, cv400,0.1% = 5.03 and cv80,0.1% = 4.85 when the tests are applied to 1-second,

1-minute and 5-minute data, respectively. Note that the asymptotic critical values cvL,β in (28)

depend on the values chosen for both L and β. Here, we control for the overall size of the test over

a day (L = T ) and set β = 0.1%. Alternatively, we could control the size of the test over a longer

period (e.g., a month or a year).

Table 1: Empirical sizes (%) of jump tests for a nominal size of 0.1%.

θ -0.05 -0.04 -0.03 -0.02 -0.01 0.0 0.01 0.02 0.03 0.04 0.05
1-minute: ∆ = 1/400

y0 = 1
J 0.037 0.038 0.046 0.043 0.044 0.042 0.042 0.054 0.030 0.039 0.042

J̃ 0.027 0.026 0.040 0.042 0.051 0.045 0.044 0.052 0.027 0.034 0.028
J∗ 0.049 0.045 0.051 0.053 0.055 0.048 0.049 0.065 0.042 0.058 0.062

y0 = 3
J 0.001 0.009 0.023 0.035 0.046 0.042 0.039 0.035 0.014 0.004 0.001

J̃ 0.000 0.000 0.004 0.019 0.039 0.045 0.032 0.020 0.002 0.000 0.000
J∗ 0.048 0.046 0.052 0.054 0.055 0.048 0.049 0.065 0.041 0.058 0.060

y0 = 6
J 0.000 0.000 0.000 0.010 0.035 0.042 0.031 0.010 0.000 0.000 0.000

J̃ 0.000 0.000 0.000 0.001 0.016 0.045 0.016 0.002 0.000 0.000 0.000
J∗ 0.051 0.047 0.053 0.054 0.056 0.048 0.049 0.064 0.042 0.056 0.060

5-minute: ∆ = 1/80
y0 = 1
J 0.034 0.047 0.066 0.083 0.079 0.082 0.082 0.070 0.052 0.050 0.028

J̃ 0.010 0.014 0.031 0.062 0.071 0.091 0.077 0.051 0.021 0.018 0.006
J∗ 0.134 0.151 0.150 0.152 0.130 0.150 0.127 0.140 0.137 0.144 0.127

y0 = 3
J 0.000 0.000 0.000 0.022 0.064 0.082 0.071 0.017 0.000 0.000 0.000

J̃ 0.000 0.000 0.000 0.004 0.037 0.091 0.041 0.001 0.000 0.000 0.000
J∗ 0.140 0.152 0.151 0.154 0.129 0.150 0.126 0.141 0.140 0.154 0.135

y0 = 6
J 0.000 0.000 0.000 0.000 0.019 0.082 0.019 0.000 0.000 0.000 0.000

J̃ 0.000 0.000 0.000 0.000 0.004 0.091 0.003 0.000 0.000 0.000 0.000
J∗ 0.142 0.150 0.149 0.154 0.129 0.150 0.125 0.143 0.135 0.158 0.138

The empirical sizes (with 105 replications) of the LM08 statistics J and J̃ and the modified
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Figure 10: Empirical performance of (modified) LM08 tests.
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(b) Power: 5-minute ∆ = 1/80

0
0.05 0

20

40

2

60

y
0

80

0 4

100

6
-0.05 8

LM08 statistic J∗ are reported in Table 1, while the powers are plotted in Figure 10 for the two

sampling frequencies. We observe that if log prices follow a random walk (i.e., θ = 0), the empirical

sizes of the LM08 tests J and J̃ are close to the nominal size of 0.1%.13 On the contrary, we observe

a significant downward size distortion for both tests as the dynamic of log price deviates from the

random walk (i.e., θ 6= 0) and the initial value y0 increases.14 The undersize problem becomes even

more severe if the sampling frequency is lower. Indeed, if the tests are applied to 5-minute data,

the null hypothesis of no jump is almost never rejected for both tests15 if |θ| ≥ 0.03 and y0 ≥ 3.

Figure 10a shows that the powers of both tests are close to 100% for all specifications if the tests

are applied to data at the 1-minute frequency (except the bottom left and right corners when both

θ and y0 are large). For 5-minute data, power values are approximately 65% if asset prices follow a

random walk with additive jumps. As expected, in the absence of microstructure noise, jumps are

easier to detect if the sampling frequency increases. However, the assumption of no microstructure

noise for data sampled at a frequency higher than 1-minute is unrealistic. Therefore, the LM08 tests

are usually applied to 5-minute data to reduce the impact of microstructure noise at the cost of a

slight power loss. If 5-minute data are used (see Figure 10b), the downward size distortion problem

of both tests translates into a dramatic loss of power if the process has a large nonzero drift. In

13We obtained qualitatively the same results for the case of constant volatility and for other quantiles (5% and
0.1%). The results are not reported to save space.

14When the LM08 tests are applied to 1-second data (without microstructure noise), both tests have an empirical
size close to the nominal size of 0.1% for all combinations of parameters and a power of 100%. The results are not
reported here to save space.

15Importantly, a close-to-zero rate of rejection is also observed when using a higher critical value of β = 5%.
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particular, both tests have a power close to 0 if |θ| ≥ 0.03 and y0 ≥ 3. This result is consistent with

our expectation that the nonnegligible mean of log returns affects the performance of the LM08

tests in finite samples. Importantly, the demeaned version of the test (i.e., J̃), which relies on m̂

and BV (rather than m̂∗ and BV ∗), does not improve the performance of the test.

The new jump test has an outstanding performance. The empirical size of the test is reasonably

close to the nominal size of 1% for both sampling frequencies. The empirical power of the test is

100% if the sampling frequency is high (i.e., 1-minute) and approximately 65% if applied to 5-minute

data. This result is in sharp contrast to those of J and J̃ , where both tests suffer from serious size

distortion toward 0 and a lack of power for 1/∆ = 80 and |θ| 6= 0.

5.3 Intraday Periodicity

For ease of exposition, we have so far ignored intraday periodicity effects in the spot volatility.

However, since the studies of Taylor and Xu (1997) and Andersen and Bollerslev (998b), it has been

well known that the opening, lunch period and closing of financial markets induce a strong periodic

pattern in the volatility of high-frequency returns. More recently, Boudt et al. (2011) proposed

several nonparametric robust-to-jumps estimators of the intraday (or intraweek) periodicity and a

correction to the LM08 jump statistics by allowing for the spot volatility to depend on the estimated

periodicity. They show that this modification helps increase the power to detect the relatively small

jumps occurring at times of the volatility being periodically low and to reduce the number of

spurious jump detections at times when the volatility is periodically high.

The most efficient nonparametric periodicity estimator of Boudt et al. (2011), denoted by f̂ti , is

the weighted standard deviation (WSD). Assuming for simplicity that the length of the periodicity

cycle is one day and that the intraday periodicity is estimated on 5-minute data, the WSD estimator

corresponds to the standard deviation of weighted standardized log returns Jti computed on all the

observations belonging to the same 5-minute interval (across T days) and multiplied by a correction

factor to ensure its consistency in the absence of jumps. Observation Jti receives a weight of either

zero if J2
ti is higher than a high quantile (e.g., 99%) of χ2

1 distribution (i.e., the distribution of J2
ti

in the absence of jumps) or one otherwise. We refer the reader to Boudt et al. (2011) for details
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on the WSD estimator.16 It is important to note that this estimator of intraday periodicity relies

on the assumption that, in the absence of jumps, Jti follows a standard normal distribution, while

we have observed in Section 5.2 that this assumption is likely to be violated in finite samples if the

process has a nonzero drift.

Consequently, we propose a modified WSD estimator, denoted by f̂∗ti , where the periodicity is

estimated on J∗ti rather than Jti . Finally, as in Boudt et al. (2011), we also modify our newly

proposed J∗ statistic by multiplying σ̂∗ti in (25) by the estimated intraday periodicity f̂∗ti . The

periodicity-adjusted jump test statistic is denoted by J∗Pti and defined as

J∗Pti =
rti − m̂∗ti(K)

f̂∗ti σ̂
∗
ti

(K)
. (29)

Periodicity-adjusted jump test statistics Jti and J̃ti can be obtained similarly, i.e., JPti = Jti/f̂ti and

J̃Pti = J̃ti/f̂ti .

To study the finite sample properties of the modified WSD estimator and the periodicity-adjusted

jump test statistic, we extend the previous simulation by introducing intraday periodicity in addition

to GARCH(1,1) dynamics in the conditional variance. To this end, we simulate the data according

to (17), where

ηti+1 = σtifti
√

∆εti+1 , (30)

with σti following (14) and fti capturing the volatility periodicity. The periodicity component

depicts the usual U-shaped pattern during the day and is restricted to be the same on all days. We

simulate 252 days of one-second data. The first 251 days serve as a burn-in period to estimate the

periodicity using 5-minute data, while the last day is used to study the size and power of J∗Pti test

statistic (also computed on 5-minute data). The burn-in period contains on average one jump per

day (with size φ1
ti+1

= −0.6σti+1fti). The last day contains no jump under the null hypothesis and

one jump under the alternative.

The true periodicity of the simulated 5-minute data (i.e., fti) is plotted in Figure 11 together

with the averages (over 105 replications) of f̂ti and f̂∗ti . To study the impact of a nonzero drift on the

16Note that, as in Boudt et al. (2011), we normalize f̂ti so that f̂2
ti averages to the inverse of the length of the

periodicity cycle (e.g., one day or one week).
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estimation of fti , θ is set to a nonzero value for either 20 (left panel) or 50 (right panel) randomly

chosen days (out of the first 251 days) and to 0 on the remaining days. Figure 11 corresponds to

the most extreme case, i.e., y0 = 7 and θ = 0.05 for 20 or 50 days. The results suggest that unlike

the bias of f̂ti , the bias of the modified WSD estimator f̂∗ti is negligible in both cases, even in this

very extreme scenario.

Figure 11: Simulated intraday periodicity and periodicity estimators.

(a) 20 days

0 10 20 30 40 50 60 70 80

0.6

0.8

1.0

1.2

1.4

1.6

(b) 50 days

True Periodicity 
Averaged centered WSD 
Averaged non-centered WSD 

0 10 20 30 40 50 60 70 80

0.6

0.8

1.0

1.2

1.4

1.6

True Periodicity 
Averaged centered WSD 
Averaged non-centered WSD 

Finally, we explore the performance of the periodicity-adjusted jump test. Table 2 contains the

rejection frequency of J∗P test under the null hypothesis of no jump, while its rejection frequency

under the alternative of one jump is plotted in Figure 12. The same DGP is used as above. We

consider the same range of values of θ and y0 as in the previous simulations for the last day of the

simulated sample (i.e., day 252). For the first 251 days, we assume that 20 random days deviate

from the random walk (i.e., θ 6= 0).17 The general conclusion from Table 2 and Figure 12 is that our

periodicity-adjusted jump test J∗P behaves similarly to the unadjusted one using J∗ in the absence

of periodicity. The test is slightly oversized for 5-minute data but is reasonably close to the nominal

size for 1-minute data, and the power is satisfactory.

5.4 Ultrahigh-Frequency Jump Tests

Lee and Mykland (2012) extend the LM08 tests to the ultrahigh-frequency setting, allowing for the

presence of market microstructure noise. Interestingly, examining noise-contaminated one-second

data, we observe similar patterns of size distortion and power loss of the LM12 test if θ and y0

17The results are qualitatively the same for 50 days and are not reported here to save space.
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Table 2: Empirical size (%) of the periodicity-adjusted jump test J∗P . The nominal size is 0.1%.

θ -0.05 -0.04 -0.03 -0.02 -0.01 0.0 0.01 0.02 0.03 0.04 0.05
1-minute: ∆ = 1/400

y0 = 1 0.118 0.102 0.115 0.107 0.106 0.116 0.118 0.115 0.124 0.133 0.115
y0 = 3 0.113 0.105 0.116 0.107 0.106 0.116 0.118 0.115 0.123 0.133 0.114
y0 = 6 0.114 0.108 0.117 0.107 0.106 0.116 0.118 0.116 0.122 0.128 0.116

5-minute: ∆ = 1/80
y0 = 1 0.277 0.286 0.311 0.240 0.280 0.246 0.267 0.274 0.303 0.304 0.257
y0 = 3 0.288 0.289 0.311 0.240 0.281 0.246 0.266 0.275 0.299 0.306 0.256
y0 = 6 0.298 0.288 0.312 0.242 0.280 0.246 0.265 0.279 0.300 0.301 0.274

Figure 12: Power of the periodicity-adjusted jump test J∗P .
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deviate from zero and show that a similar correction to the test statistic dramatically improves its

finite sample performance.

The noise-contaminated log price is y◦ti , as defined by (18). Recall that the noise is assumed

to be serially correlated of order s. Let Γ̃ = sM with M̃ = CT
1/2
1 (where C is a constant and

T1 = T/s). For every sth observation, we calculate the Γ̃−differenced log return as

r
(Γ̃)
tjs

= y◦tjs − y
◦
tjs−Γ̃

with j = M̃ + 1, · · · , T1. Let us divide the sequence {r(Γ̃)
tjs
}T1
j=M+1 into B̃ blocks of size M̃ . For each

block b, we calculate the average log return over the block as follows:

r̄b =
1

M̃

M̃∑
j=1

r
(Γ̃)
tbMs+js

with b = 1, 2, · · · , B̃.

The Lee and Mykland (2012) test statistics for the presence of jumps in log prices between tbsM
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and t(b+1)sM are

Lb =
√
M̃

r̄b√
V̂b(K)

and L̃b =
√
M̃
r̄b − m̂b(K)√

V̂b(K)
, (31)

where V̂b(K) is an estimate of the variance of
√
Mr̄b, and m̂b(K) is the empirical mean of r̄b. Both

V̂b(K) and m̂b(K) are calculated using a rolling window of K returns (over D days). Specifically,

let B0 = K/M̃ . For b ≥ B0, we have m̂b(K) = 1
B0

∑B0−1
j=0 r̄b−j and

V̂b(K) =
2

3
ÎV b(K)C2D + 2q̂2

b (K), (32)

where ÎV b(K) and q̂2
b (K) are as in Section 4.

To improve the finite sample accuracy of the two test statistics in (31), we propose a modification

similar to that in (25). The new test statistic is

L∗b =
√
M
r̄b − m̂∗b(K)√

V̂ ∗b (K)
, (33)

where m̂∗b(K) = median(r̄b−B0+1, · · · , r̄b), and V̂ ∗b (K) is defined similarly to V̂b(K) with ÎV b(K)

replaced by ÎV
∗
b(K). All three test statistics (Lb, L̃b, and L∗tb) converge to the standard normal

distribution under the null hypothesis of no jump.

To study the finite sample properties of the three tests, we consider the same data generating

process and parameter settings as in Section 4. However, for consistency with the simulations and

application in Lee and Mykland (2012), we apply the tests to 1-second data over a very short period

of 1 hour (rather than 1 day as in Sections 5.2 and 5.3). To this end, we simulate observations over

a 2-hour period and use the first hour as a burn-in period. The rolling window size is set to T − 1.

Parameter C is set according to Table 5 of Lee and Mykland (2012). The optimal value of C is

1/18 for the value of q ≈ 0.1%. We set γ1 = 1 and γ2 = 1.6 as in Podolskij and Vetter (2009). The

nominal size of the test is again 0.1%.

The rejection frequencies of the Lb, L̃b, and L∗tb tests under the null hypothesis of no jump are

reported in Table 3 for three values of y0 (i.e., 1, 3 and 6), while the rejection frequencies under the

alternative of one jump are plotted in Figure 13 for a larger and finer range of values of y0.
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Table 3: Empirical size (%) of the Lb, L̃b and L∗b tests. The nominal size is 0.1%.

θ -0.05 -0.04 -0.03 -0.02 -0.01 0.0 0.01 0.02 0.03 0.04 0.05
y0 = 1
Lb 0.070 0.100 0.110 0.040 0.170 0.100 0.100 0.100 0.070 0.070 0.050

L̃b 0.060 0.100 0.140 0.040 0.180 0.100 0.090 0.110 0.060 0.050 0.040
L∗b 0.090 0.140 0.140 0.060 0.200 0.100 0.120 0.110 0.080 0.110 0.120

y0 = 3
Lb 0.000 0.020 0.040 0.000 0.130 0.100 0.070 0.050 0.010 0.000 0.000

L̃b 0.000 0.000 0.030 0.000 0.120 0.100 0.070 0.040 0.010 0.000 0.000
L∗b 0.090 0.140 0.140 0.060 0.200 0.100 0.100 0.110 0.080 0.080 0.120

y0 = 6
Lb 0.000 0.000 0.000 0.000 0.050 0.100 0.040 0.000 0.000 0.000 0.000

L̃b 0.000 0.000 0.000 0.000 0.050 0.100 0.040 0.000 0.000 0.000 0.000
L∗b 0.090 0.150 0.140 0.050 0.200 0.100 0.100 0.110 0.060 0.070 0.090

Figure 13: Power of the Lb, L̃b and L∗b tests.
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First, there is no visible difference in the empirical performance (in both size and power) of the Lb

and L̃b tests. Second, we observe a downward size distortion and a power deterioration in both tests

as the process deviates from the random walk and the initial value y0 increases. Importantly, the

size of the new test L∗b fluctuates around the nominal size 0.1%, while its power is approximately

65% for all configurations of θ and y0. These results are unsurprising, given our discussion and

findings in Section 4 regarding the ultrahigh-frequency volatility estimators based on pre-averaging.

6 Empirical Application

The NASDAQ stock price index is sampled from 1996 to 2016 at the 5-minute frequency. All trades

before 9:30 am or after 4:00 pm and the first trade after 9:30 am are discarded, which is the usual

method of avoiding the overnight effect. The choice of this series is dictated by the fact that several

studies (see Phillips et al., 2011, Homm and Breitung, 2012, and Shi and Song, 2016, etc.) have
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shown evidence of deviations from the unit root in weekly and monthly data of the NASDAQ in the

late 1990s. The log prices are plotted in Figure 14. We observe a very rapid expansion in the log

prices in the late 1990s. The NASDAQ stock price has been rising steadily after the global financial

crisis in 2008.

Figure 14: 5-minute log prices of the NASDAQ stock index over the period 1996-2016.

98 01 04 06 09 12 14
0

1000

2000

3000

4000

5000

6000

The daily bipower variation BV is plotted in the left panel of Figure 15, while the discrepancy

between BV and the modified version BV ∗, measured as (BV −BV ∗) /BV ∗, is plotted in the right

panel. As expected, the daily bipower variation is of a much higher magnitude during crisis periods

(e.g., after the dot-com bubble in the early 2000s and during the 2008 subprime mortgage crisis).

Interestingly, Figure 15b suggests that the conventional bipower variation very often overestimates

the integrated variance (on average by 2.5% but, in some cases, by more than 40%).

Figure 15: Estimated bipower variation (BV ) of the NASDAQ stock market index and the discrep-
ancy between BV and the modified bipower variation (BV ∗).
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To compute the periodicity-adjusted J test statistics, we first estimate the intraday periodicity
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f̂ti and f̂∗ti year-by-year with a cycle length of one week (to allow for different day-of-week effects as

in Boudt et al., 2011) with the procedures described in Section 5.3. The results of the three tests

(JP , J̃P and J∗P ) are reported in Table 4. For the critical value cvL,β, we set L to the total number

of 5-minute log returns per day (i.e., L = 78 and β = 0.1%). The values are reported in the three

columns below: ‘Significant jumps’ correspond to the number of jump statistics greater than the

critical value, while those below ‘Significant days’ correspond to the number of days in which at

least one significant jump is detected.

Table 4: Descriptive statistics of significant jumps.

Significant jumps Significant days

JP J̃P J∗P JP J̃P J∗P

1996 42 39 50 32 30 35
1997 41 44 51 34 34 40
1998 41 47 50 30 35 37
1999 22 21 28 19 18 24
2000 25 30 35 21 24 28
2001 27 28 28 24 23 23
2002 20 25 29 18 23 27
2003 36 39 44 31 33 38
2004 43 48 54 35 39 44
2005 73 75 81 53 54 57
2006 60 58 61 44 43 45
2007 60 59 71 42 41 48
2008 34 32 33 29 27 28
2009 45 39 49 35 31 38
2010 56 52 57 40 37 41
2011 34 44 43 30 37 37
2012 42 41 45 34 34 37
2013 47 48 49 35 36 36
2014 47 46 51 38 38 40
2015 31 32 37 25 26 30
2016 38 36 38 26 26 26
Total 864 883 984 675 689 759

The first conclusion we can draw from Table 4 is that for each year, the numbers of jumps

detected by the three tests are not dramatically different. However, our proposed J∗P statistic

allows us to almost systematically detect more jumps. Over 21 years, 864, 883 and 984 jumps are

detected using the statistics JP , J̃P and J∗P , respectively, which correspond to 675, 689 and 759
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days with at least one significant jump. This result is consistent with our simulation findings that

if the log price process has a nonzero drift, the newly proposed test J∗P has a higher power than

that of the other two tests.

We can identify 87 days during which a jump is only detected by the J∗P statistic (i.e., JP∗ >

cv78,0.1% while JP and J̃P ≤ cv78,0.1%).18 To better understand the difference between the tests,

the log prices on 4 randomly selected days (out of these 87 days) are plotted in Figure 16. On each

graph we plot the log prices of the day for which a jump is detected using our modified LM test as

well as the log prices of the proceeding day (recall that the LM test statistics are backward looking).

Log prices for which a jump is detected by JP , J̃P and J∗P are highlighted by a cross, a plus and

a circle, respectively. There is one jump in each panel that is identified by J∗P but not by JP and

J̃P . The shaded area corresponds to the data period entering the calculation of the test statistics

for this jump. Note that multiple jumps might be detected within a day. For instance, two jumps

are identified on September 19, 2016 (bottom right panel). The first one is detected only by J∗P

while the second one is identified by all three tests.

The vertical (purple) dotted line corresponds to the first price of the second day. Recall that

log returns corresponding to the first prices of the day (i.e., overnight returns) are removed from all

calculations. Interestingly, all four shaded areas are characterized by strong upward or downward

trends which we attribute to nonzero drifts. This observation is consistent with our simulation

results in Section 5 that if the process has a nonzero drift, the original LM (2008) tests applied to

5-minute data are undersized and have significantly lower power than J∗.

18There is on average one jump per year where the LM tests detect the jump but J∗P does not. We attribute such
results to type I errors and do not report them here for brevity.
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Figure 16: Log prices on four randomly selected days on which there is one jump identified by J∗P

but not by JP and J̃P . The shaded areas correspond to the data periods entering the calculation
of the test statistics for the jump identified only by J∗P .
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7 Conclusions

The finite sample theory, together with extensive simulations, reveal that with a rather low but

realistic sampling frequency (e.g., 5 minutes), the realized variance and the bipower variation tend

to overestimate the integrated variance in the presence of a nonzero drift, and the bias increases

with the magnitude of the drift. Moreover, despite the drift becoming extremely close to zero as the

sampling frequency increases, our simulations show that the volatility estimator of Podolskij and

Vetter (2009), which is robust to microstructure noise and designed for ultrahigh-frequency data,

suffers from the same problem due to the use of pre-averaged returns. Consequently, the procedures

derived from these integrated variance estimators such as the intraday periodicity estimator of Boudt

et al. (2011) and the jump tests of Lee and Mykland (2008, 2012) have unsatisfactory performance

in finite samples if log prices have a nonzero drift. In particular, we demonstrate that in the presence
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of a nonzero drift, the jump tests have strong size distortions and power losses.

We propose an alternative construction of these realized estimators and jump test statistics.

The finite sample theory for the modified volatility estimators and simulations show significant

improvement in the estimation accuracy of volatility, while simulation studies of the jump tests

reveal a dramatic increase in powers. The newly proposed volatility estimators and the jump test,

along with their original versions, are applied to 5-minute log returns of the NASDAQ for the

period from 1996 to 2016. For most observations, the new estimator provides a lower estimate of

the daily integrated variance than does the bipower variation, which is consistent with our theory

and simulations. Furthermore, more jumps are detected using the new jump test. Interestingly, on

days when jumps are detected only by the new test, log prices exhibit clear upward or downward

trend movements. We attribute these trends to the presence of a relatively large drift, which explains

why the original tests of Lee and Mykland (2008) fail to detect jumps on these days.
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Appendix A: Proofs

Proof Proposition 2.1

Proof. The bias of realized volatility is

E

 i∑
j=i−K+1

r2
tj −Kσ

2∆

 =

i∑
j=i−K+1

E(r2
tj )−Kσ

2∆ = Kµ2∆2
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because

E(r2
tj ) = E

(
µ∆ + σ

√
∆εtj

)2
= E

(
µ2∆2 + σ2∆ε2

tj + 2µ∆σ
√

∆εtj

)
= µ2∆2 + σ2∆E ε2

tj + 2µ∆σ
√

∆E εtj

= µ2∆2 + σ2∆.

The Proof of Lemma 2.1

Proof. The proof of unbiasedness of the sample mean is straightforward. We focus on the proof of

the unbiased property of the median under the DGP (2).

The estimation of the median is equivalent to running a quantile regression with the 50% quantile

and only a constant regressor. Let Qr(τ) = ξτ be the τ th quantile of rti and ρτ (u) denote the check

function:

ρτ (u) = u
(
τ − 1(u<0)

)
as in Koenker and Bassett (1978). The quantile ξτ can be estimated by solving the problem below:

ξτ ∈ argmin
ξ

E [ρτ (r − ξ)] = E
[
(r − ξ)

(
τ − 1(r<ξ)

)]
,

or equivalently by solving the first order condition E[1(r<ξτ )] = τ . For a sample containing K

observations (i.e., rt1 , . . . , rtK ), the first order condition implies

g (ξτ ) =
1

K

K∑
i=1

1(rti<ξτ)
− τ = 0.

The solution ξ̂τ satisfies the condition g
(
ξ̂τ

)
= 0.

It is obvious that the gradient function g(.) is monotonically increasing with ξτ . Therefore,

Pr
(
ξ̂τ > ξτ

)
= Pr [g (ξτ ) < 0] = Pr

[
K∑
i=1

1(rti<ξτ)
< Kτ

]
.
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Let X =
∑K

i=1 1(rti<ξτ)
be the number of successes (i.e. rti < ξτ ) among K trials. Since rti

i.i.d.∼

N(µ∆, σ2∆), we have

Fr (ξτ ) = Pr (rti < ξτ ) = Φ

(
ξτ − µ∆

σ
√

∆

)
for all i, (34)

where Φ (.) is the CDF of the standard normal distribution. Therefore, X follows a binomial

distribution with probability Fr (ξτ ), which is denoted by X ∼ Bin(K,Fr (ξτ )). Let p = dKτe be

the smallest integer that is greater than Kτ . The cumulative distribution of ξ̂τ takes the form of a

regularized incomplete beta function IFr(ξτ ) (p,K − p+ 1). That is,

Pr
(
ξ̂τ ≤ ξτ

)
= 1− Pr

[
K∑
i=1

1(rti<ξτ)
< Kτ

]

= 1− Pr(X ≤ p− 1)

= IFr(ξτ ) (p,K − p+ 1) .

Since Fr (ξτ ) = Φ
(
ξτ−µ∆

σ
√

∆

)
, we have ξ̂τ follows a beta-normal distribution (Eugene et al., 2002) such

that ξ̂τ ∼ BN(p,K − p+ 1, µ∆, σ
√

∆).

We denote the median by m̂∗ (K) := ξ̂0.5. If τ = 0.5, p ' K − p + 1. Therefore, m̂∗ (K) is a

symmetric beta-normal distribution with mean µ∆. That is,

E [m̂∗ (K)] = µ∆.

Proof of Proposition 2.2

Proof. (i) The sample mean of K log returns is

m̂ (K) =
1

K

i∑
j=i−K+1

rtj =
1

K

i∑
j=i−K+1

(
µ∆ + σ

√
∆εtj

)
= µ∆ + σ

√
∆

1

K

i∑
j=i−K+1

εtj .

Since εtj
i.i.d.∼ N (0, 1), the linear combination

∑i
j=i−K+1 εtj ∼ N (0,K) and hence

m̂ (K) ∼ N
(
µ∆,

1

K
σ2∆

)
.
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The bias of RV † is therefore

E


i∑

j=i−K+1

[
rtj − m̂ (K)

]2 −Kσ2∆


=

i∑
j=i−K+1

E
[
r2
tj + m̂ (K)2 − 2rtjm̂ (K)

]
−Kσ2∆

=

 i∑
j=i−K+1

E r2
tj −Kσ

2∆

+K E m̂ (K)2 − 2E

 i∑
j=i−K+1

rtj

 m̂ (K)


= Kµ2∆2 −K E

(
m̂ (K)2

)
= −K V (m̂ (K)) = −σ2∆.

(ii) The bias of RV ∗ is

E


i∑

j=i−K+1

(
rtj − m̂∗ (K)

)2 −Kσ2∆


=

i∑
j=i−K+1

E
[
r2
tj + m̂∗ (K)2 − 2rtjm̂

∗ (K)
]
−Kσ2∆

=

 i∑
j=i−K+1

E r2
tj −Kσ

2∆

+K E m̂∗ (K)2 − 2E

 i∑
j=i−K+1

rtj

 m̂∗ (K)


= Kµ2∆2 +K E

(
m̂∗ (K)2

)
− 2K E [m̂ (K) m̂∗ (K)]

= K [V (m̂∗ (K))− 2 cov (m̂ (K) , m̂∗ (K))] .

Proof of Proposition 2.3

Proof. (i) Since rti
i.i.d.∼ N(µ∆, σ2∆) , |rti | follows a folded normal distribution and

E |rti | = σ

√
2

π
∆e−

µ2∆

2σ2 + µ∆

[
1− 2Φ

(
−µ
√

∆

σ

)]
.
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The bias of bipower variation is

E

π
2

K

K − 1

i∑
j=i−K+2

∣∣rtj ∣∣ ∣∣rtj−1

∣∣−Kσ2∆



=
π

2

K

K − 1

i∑
j=i−K+2

E
∣∣rtj ∣∣E ∣∣rtj−1

∣∣−Kσ2∆

=
π

2

K

K − 1

i∑
j=i−K+2

{
σ

√
2

π
∆e−

µ2∆

2σ2 + µ∆

[
1− 2Φ

(
−µ
√

∆

σ

)]}2

−Kσ2∆

= Kσ2∆

(
e−

µ2∆

σ2 − 1

)
+
π

2
Kµ2∆2

[
1− 2Φ

(
−µ
√

∆

σ

)]2

+2Kµ∆3/2σ

√
π

2
e−

µ2∆

2σ2

[
1− 2Φ

(
−µ
√

∆

σ

)]
.

(ii) The bias of the modified bipower variation BV † is

E

π
2

K

K − 1

i∑
j=i−K+2

∣∣rtj − m̂ti (K)
∣∣ ∣∣rtj−1 − m̂ti (K)

∣∣−Kσ2∆

=
π

2

K

K − 1

i∑
j=i−K+2

E
∣∣rtj − m̂ti (K)

∣∣ ∣∣rtj−1 − m̂ti (K)
∣∣−Kσ2∆

≤ π

2

K

K − 1

i∑
j=i−K+2

√
E
∣∣rtj − m̂ti (K)

∣∣2√E
∣∣rtj−1 − m̂ti (K)

∣∣2 −Kσ2∆

=
π

2

K

K − 1

i∑
j=i−K+2

E
[
rtj − m̂ti (K)

]2 −Kσ2∆

by Hölder’s inequality. Since, by definition,

rtj − m̂ti (K) = σ
√

∆

[
εtj −

1

K

i∑
s=i−K+1

εts

]
= σ
√

∆

K − 1

K
εtj −

1

K

i∑
s=i−K+1,s 6=j

εts

 ,
we have

E
[
rtj − m̂ti (K)

]2
=
K − 1

K
σ2∆.
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The bias of BV † is, therefore,

E

π
2

K

K − 1

i∑
j=i−K+2

∣∣rtj − m̂ti (K)
∣∣ ∣∣rtj−1 − m̂ti (K)

∣∣−Kσ2∆

≤ π

2

K

K − 1

i∑
j=i−K+2

K − 1

K
σ2∆ =

(π
2
− 1
)
Kσ2∆− π

2
σ2∆.

(iii) Similarly, by Hölder’s inequality, the bias of the modified bipower variation computed on

centered (using the median) log returns is

E

π
2

K

K − 1

i∑
j=i−K+2

∣∣rtj − m̂∗ (K)
∣∣ ∣∣rtj−1 − m̂∗ (K)

∣∣−Kσ2∆

≤ π

2

K

K − 1

i∑
j=i−K+2

E
[
rtj − m̂∗ (K)

]2 −Kσ2∆.

Since E m̂∗ (K) = µ∆, the expected value of rtj − m̂∗ (K) is zero and

E
[
rtj − m̂∗ (K)

]2
= V

[
rtj − m̂∗ (K)

]
= V

(
rtj
)

+ V (m̂∗ (K))− 2
[
E
(
rtjm̂

∗ (K)
)
− µ2∆2

]
= σ2∆ + V (m̂∗ (K))− 2

[
E
(
rtjm̂

∗ (K)
)
− µ2∆2

]
.

Consequently,

i∑
j=i−K+2

E
[
rtj − m̂∗ (K)

]2

=
i∑

j=i−K+2

{
σ2∆ + V (m̂∗ (K))− 2

[
E
(
rtjm̂

∗ (K)
)
− µ2∆2

]}

= (K − 1)σ2∆ + (K − 1)V (m̂∗ (K))− 2
i∑

j=i−K+2

E
(
rtjm̂

∗ (K)
)

+ 2 (K − 1)µ2∆2

= (K − 1)σ2∆ + (K − 1)V (m̂∗ (K))− 2 (K − 1)E [m̂ (K) m̂∗ (K)] + 2 (K − 1)µ2∆2
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= (K − 1)σ2∆ + (K − 1)V (m̂∗ (K))− 2 (K − 1) cov (m̂ (K) , m̂∗ (K)) .

Therefore,

E

π
2

K

K − 1

i∑
j=i−K+2

∣∣rtj − m̂∗ (K)
∣∣ ∣∣rtj−1 − m̂∗ (K)

∣∣−Kσ2∆

≤ π

2

K

K − 1

[
(K − 1)σ2∆ + (K − 1)V (m̂∗ (K))− 2 (K − 1) cov (m̂ (K) , m̂∗ (K))

]
−Kσ2∆

=
(π

2
− 1
)
Kσ2∆ +

π

2
K [V (m̂∗ (K))− 2 cov (m̂ (K) , m̂∗ (K))] .

The proof of Lemma 3.1

Proof. (i) The error term

Replacing yt in the drift coefficient µt with (10), we have

µt = a (t) +

∫ t

0
b(t, s)σsdWs,

where a(t) = θ (y0 − ρ) eθt and b(t, s) = θeθ(t−s). The process yt can be rewritten as

yt = y0 +

∫ t

0
µsds+

∫ t

0
σsdWs

= y0 +A(t) +

∫ t

0
B(t, s)σsdWs +

∫ t

0
σsdWs,

where A(t) =
∫ t

0 a(r)dr and B(t, s) =
∫ t
s b(r, s)dr with t ≥ s. The log return rti follows a dynamic

of

rti = ∆iA+

∫ ti

ti−1

σsdWs +

∫ ti

ti−1

B(ti, s)σsdWs +

∫ ti−1

0
[B(ti, s)−B(ti−1, s)]σsdWs (35)

=

∫ ti

ti−1

σsdWs{1 + op(1)},

where ∆iA =
∫ ti
ti−1

a(r)dr. The second equality arises from the fact that ∆iA = Op(∆),
∫ ti
ti−1

σsdWs =

Op(∆
1/2), and the third and fourth terms on the right-hand side of the equation are Op(∆

3/2).
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Proof of Proposition 3.1

Proof. The bias of realized volatility is

E

 i∑
j=i−K+1

r2
tj −

∫ ti

ti−K
σ2
udu

 =

i∑
j=i−K+1

E r2
tj − E

(∫ ti

ti−K
σ2
udu

)
.

From Lemma 3.1,

rti = ∆iA+

∫ ti

ti−1

σsdWs +

∫ ti

ti−1

B(ti, s)σsdWs +

∫ ti−1

0
[B(ti, s)−B(ti−1, s)]σsdWs (36)

=

∫ ti

ti−1

a(r)dr + eθti
∫ ti

ti−1

e−θsσsdWs + eθti−1

(
eθ∆ − 1

)(∫ ti−1

0
e−θsσsdWs

)
. (37)

since, by construction,

B(tj , s) =

∫ tj

s
θeθ(r−s)dr = eθ(tj−s) − 1,

B(tj , s)−B(tj−1, s) = eθ(tj−1−s)
(
eθ∆ − 1

)
.

It is straightforward that when θ = 0, the bias of the realized volatility is zero. We focus on the

case of θ 6= 0 in the subsequent derivations. The expected value of the squared return is

E r2
ti =

(∫ ti

ti−1

a(r)dr

)2

+ e2θti E

(∫ ti

ti−1

e−θsσsdWs

)2

+ e2θti−1

(
eθ∆ − 1

)2
E
(∫ ti−1

0
e−θsσsdWs

)2

.

The first term can be rewritten as

(∫ ti

ti−1

a(r)dr

)2

= (y0 − ρ)2
(
eθti − eθti−1

)2
.

Since by Ito’s lemma,

(∫ ti

ti−1

e−θsσsdWs

)2

= 2

∫ ti

ti−1

(∫ u

ti−1

e−θsσsdWs

)
e−θuσudWu +

∫ ti

ti−1

e−2θuσ2
udu, (38)

50



the second term

e2θti E

(∫ ti

ti−1

e−θsσsdWs

)2

= e2θti

∫ ti

ti−1

e−2θu E
(
σ2
u

)
du = d0

1

2θ

(
e2θ∆ − 1

)
.

The third term

e2θti−1

(
eθ∆ − 1

)2
E
(∫ ti−1

0
e−θsσsdWs

)2

= e2θti−1

(
eθ∆ − 1

)2
∫ ti−1

0
e−2θu E

(
σ2
u

)
du

=
(
eθ∆ − 1

)2 d0

2θ

(
e2θti−1 − 1

)
.

Therefore,

E r2
ti = (y0 − ρ)2

(
eθtj − eθtj−1

)2
+ d0

1

2θ

(
e2θ∆ − 1

)
+
(
eθ∆ − 1

)2 d0

2θ

(
e2θti−1 − 1

)
and

i∑
j=i−K+1

E r2
tj

= (y0 − ρ)2
(
eθ∆ − 1

)2
i∑

j=i−K+1

e2θtj−1 + d0
K

2θ

(
e2θ∆ − 1

)
+
(
eθ∆ − 1

)2 d0

2θ

 i∑
j=i−K+1

e2θtj−1 −K



= (y0 − ρ)2
(
eθ∆ − 1

)2
e2θti−K

1− e2θ∆K

1− e2θ∆
+ d0

K

θ

(
eθ∆ − 1

)
+
(
eθ∆ − 1

)2 d0

2θ
e2θti−K

1− e2θ∆K

1− e2θ∆
.

Furthermore, we have

E
(∫ ti

ti−K
σ2
udu

)
=

(∫ ti

ti−K
E
(
σ2
u

)
du

)
= d0K∆.

Therefore, the bias of the realized volatility is zero when θ = 0 and when θ 6= 0

E

 i∑
j=i−K+1

r2
tj −

∫ ti

ti−K
σ2
udu

 = (y0 − ρ)2
(
eθ∆ − 1

)2
e2θti−K

1− e2θ∆K

1− e2θ∆
+
d0K

θ

(
eθ∆ − 1

)

+
(
eθ∆ − 1

)2 d0

2θ
e2θti−K

1− e2θ∆K

1− e2θ∆
− d0K∆

≡ E .
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Proof of Proposition 3.2

Proof. (1) For notational simplicity, we write m̂ti(K) as m̂ti . The bias of the modified realized

variance estimator RV † is

E


i∑

j=i−K+1

(
rtj − m̂ti

)2 − ∫ ti

ti−K
σ2
udu


= E


i∑

j=i−K+1

r2
tj − 2m̂ti

i∑
j=i−K+1

rtj +Km̂2
ti −

∫ ti

ti−K
σ2
udu


= E

 i∑
j=i−K+1

r2
tj −

∫ ti

ti−K
σ2
udu

− 2K E
(
m̂2
ti

)
+K E(m̂2

ti)

= E

 i∑
j=i−K+1

r2
tj −

∫ ti

ti−K
σ2
udu

−K E
(
m̂2
ti

)
.

From Lemma 3.1,

i∑
j=i−K+1

rtj =

∫ ti

ti−K

a(r)dr+

i∑
j=i−K+1

eθtj
∫ tj

tj−1

e−θsσsdWs+
(
eθ∆ − 1

) i∑
j=i−K+1

eθtj−1

(∫ tj−1

0
e−θsσsdWs

)
.

The second term of
∑i

j=i−K+1 rtj

i∑
j=i−K+1

eθtj
∫ tj

tj−1

e−θsσsdWs

= eθti−K+1

∫ ti−K+1

ti−K

e−θsσsdWs + eθti−K+2

∫ ti−K+2

ti−K+1

e−θsσsdWs + · · ·+ eθti
∫ ti

ti−1

e−θsσsdWs.

The third term of
∑i

j=i−K+1 rtj

(
eθ∆ − 1

) i∑
j=i−K+1

eθtj−1

(∫ tj−1

0
e−θsσsdWs

)

=
(
eθ∆ − 1

)[
eθti−K

∫ ti−K

0
e−θsσsdWs + eθti−K+1

∫ ti−K+1

0
e−θsσsdWs + . . .+ eθti−1

∫ ti−1

0
e−θsσsdWs

]
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=
(
eθ∆ − 1

)
eθti−K

∫ ti−K

0
e−θsσsdWs +

(
eθ∆ − 1

)
eθti−K+1

[∫ ti−K

0
e−θsσsdWs +

∫ ti−K+1

ti−K

e−θsσsdWs

]
+ . . .

+
(
eθ∆ − 1

)
eθti−1

[∫ ti−K

0
e−θsσsdWs +

∫ ti−K+1

ti−K

e−θsσsdWs + . . .+

∫ ti−1

ti−2

e−θsσsdWs

]

=
(
eθ∆ − 1

)(
eθti−K + eθti−K+1 + . . .+ eθti−1

)∫ ti−K

0
e−θsσsdWs +

(
eθ∆ − 1

)(
eθti−K+1 + eθti−K+2 . . .+ eθti−1

)∫ ti−K+1

ti−K

e−θsσsdWs + . . .+
(
eθ∆ − 1

)
eθti−1

∫ ti−1

ti−2

e−θsσsdWs

= eθti−K
(
eθ∆K − 1

)∫ ti−K

0
e−θsσsdWs + eθti−K+1

(
eθ∆(K−1) − 1

)∫ ti−K+1

ti−K

e−θsσsdWs

+ . . .+ eθti−1

(
eθ∆ − 1

)∫ ti−1

ti−2

e−θsσsdWs.

Therefore,

E

 i∑
j=i−K+1

rtj

2

=

(∫ ti

ti−K

a(r)dr

)2

+ E

 i∑
j=i−K+1

eθtj
∫ tj

tj−1

e−θsσsdWs

2

+
(
eθ∆ − 1

)2
E

 i∑
j=i−K+1

eθtj−1

(∫ tj−1

0
e−θsσsdWs

)2

+2

e2θti−K+1

(
eθ∆(K−1) − 1

)
E

(∫ ti−K+1

ti−K

e−θsσsdWs

)2

+ · · · e2θti−1

(
eθ∆ − 1

)
E

(∫ ti−1

ti−2

e−θsσsdWs

)2
 .

Next, we derive, one-by-one, the theoretical properties of terms on the right-hand side of the above

equation. The first term

(∫ ti

ti−K

a(r)dr

)2

= (y0 − ρ)2 e2θti−K
(
eθK∆ − 1

)2
.
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The second term

E

 i∑
j=i−K+1

e2θtj

(∫ tj

tj−1

e−θsσsdWs

)2

=
i∑

j=i−K+1

e2θtj E

(∫ tj

tj−1

e−θsσsdWs

)2

= d0

i∑
j=i−K+1

e2θtj

∫ tj

tj−1

e−2θudu

=
d0

2θ
K
(
e2θ∆ − 1

)
.

The third term

(
eθ∆ − 1

)2
E

 i∑
j=i−K+1

eθtj−1

(∫ tj−1

0
e−θsσsdWs

)2

= e2θti−K
(
eθ∆K − 1

)2
E
(∫ ti−K

0
e−θsσsdWs

)2

+ e2θti−K+1

(
eθ∆(K−1) − 1

)2
E

(∫ ti−K+1

ti−K

e−θsσsdWs

)2

+ . . .+ e2θti−1

(
eθ∆ − 1

)2
E

(∫ ti−1

ti−2

e−θsσsdWs

)2

= −d0

2θ

[(
eθ∆K − 1

)2 (
1− e2θti−K

)
+
(
eθ∆(K−1) − 1

)2 (
1− e2θ∆

)
+ . . .+

(
eθ∆ − 1

)2 (
1− e2θ∆

)]

= −d0

2θ

(
eθ∆K − 1

)2 (
1− e2θti−K

)
− d0

2θ

(
1− e2θ∆

)[(
eθ∆(K−1) − 1

)2
+ . . .+

(
eθ∆ − 1

)2
]

= −d0

2θ

(
eθ∆K − 1

)2 (
1− e2θti−K

)
− d0

2θ

(
1− e2θ∆

)[
(K − 1)− 2eθ∆

eθ∆(K−1) − 1

eθ∆ − 1
+ e2θ∆ e

2θ∆(K−1) − 1

e2θ∆ − 1

]
.

The fourth term

2

e2θti−K+1

(
eθ∆(K−1) − 1

)
E

(∫ ti−K+1

ti−K

e−θsσsdWs

)2

+ · · · e2θti−1

(
eθ∆ − 1

)
E

(∫ ti−1

ti−2

e−θsσsdWs

)2


= −d0

θ

(
1− e2θ∆

) [(
eθ∆(K−1) − 1

)
+ · · ·+

(
eθ∆ − 1

)]

= −d0

θ

(
1− e2θ∆

)[
eθ∆

eθ∆(K−1) − 1

eθ∆ − 1
− (K − 1)

]
.
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Therefore,

E

 i∑
j=i−K+1

rtj

2

= (y0 − ρ)2 e2θti−K
(
eθK∆ − 1

)2
+
d0

2θ
K
(
e2θ∆ − 1

)
− d0

2θ

(
eθ∆K − 1

)2 (
1− e2θti−K

)

−d0

2θ

(
1− e2θ∆

)[
(K − 1)− 2eθ∆

eθ∆(K−1) − 1

eθ∆ − 1
+ e2θ∆ e

2θ∆(K−1) − 1

e2θ∆ − 1

]

−d0

θ

(
1− e2θ∆

)[
eθ∆

eθ∆(K−1) − 1

eθ∆ − 1
− (K − 1)

]

= (y0 − ρ)2 e2θti−K
(
eθK∆ − 1

)2
− d0

2θ

(
eθ∆K − 1

)2 (
1− e2θti−K

)
− d0

2θ

(
1− e2θ∆

) e2θ∆K − 1

e2θ∆ − 1
.

Since

K E
(
m̂2
ti

)
=

1

K
E

 i∑
j=i−K+1

rtj

2

,

the bias of the modified realized variance estimator RV † is

E


i∑

j=i−K+1

(
rtj − m̂ti

)2 − ∫ ti

ti−K
σ2
udu

 = E −K E
(
m̂2
ti

)

= E − 1

K
(y0 − ρ)2 e2θti−K

(
eθK∆ − 1

)2
+

1

K

d0

2θ

(
eθ∆K − 1

)2 (
1− e2θti−K

)

+
d0

2θK

(
1− e2θ∆

) e2θ∆K − 1

e2θ∆ − 1

if θ 6= 0.

(2) We write m̂∗ti(K) as m̂∗ti for simplicity. The bias of the modified realized variance estimator

RV ∗ is

E


i∑

j=i−K+1

(
rtj − m̂∗ti

)2 − ∫ ti

ti−K
σ2
udu


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= E


i∑

j=i−K+1

r2
tj − 2m̂∗ti

i∑
j=i−K+1

rtj +Km̂∗2ti −
∫ ti

ti−K
σ2
udu


= E

 i∑
j=i−K+1

r2
tj −

∫ ti

ti−K
σ2
udu

− 2E

m̂∗ti i∑
j=i−K+1

rtj

+K E(m̂∗2ti )

= E − 2K E
(
m̂∗tim̂ti

)
+K E(m̂∗2ti ).

Appendix B: Sample Mean and Median

To compare the accuracy of m̂∗ti(K) and m̂ti(K) as estimators of the drift component in the presence

of jumps, we consider the data generating process as in Section 3.1. Two different settings for jumps

are considered. There is either one single large negative jump within a day with φ1
ti+1

= −1.5σti+1

or two small jumps with φjti+1
= −0.6σti+1 for j = 1, 2.19 The remaining parameters are the same

as in Section 3.1.

Figure 17: Bias of the sample mean and median in the presence of one single large jump (i.e.,
φ1
ti+1

= −1.5σti+1) and two small jumps (φjti+1
= −0.6σti+1 for j = 1, 2 ) at the 5-minute frequency.

(a) One large jump
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(b) Two small jumps
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The empirical mean and median of the last observation of each day, denoted by m̂tT (T ) and

m̂∗tT (T ), respectively, are compared to the true valuemtT . The superiority of the median is clear from

Figure 17, which shows that the bias is systematically smaller for the median than for the sample

19The simulation results are qualitatively the same for positive jumps and jumps with a random sign.
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mean for all combinations of parameters considered in the simulation. Therefore, we recommend

the use of the median instead of the sample mean in empirical applications if the presence of jumps

is suspected.
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