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Abstract. Spin-polarization effects may play an important role in free radicals and in the magnetic 

coupling between radical centers. Starting from restricted open-shell calculations, i.e. a closed-shell 

description of the non-magnetic core electrons, a low-order perturbation expansion identifies the spin 

polarization contribution to the energy of mono-radicals and to singlet-triplet energy differences in 

diradicals. Broken-symmetry (BS) single-determinant calculations introduce only a fraction of spin 

polarization effects, and in a biased manner, since BS determinants are not spin eigenfunctions. We 

propose a simple technique to correctly evaluate spin-polarization energies by taking into account the 

effect of spin-flip components of one-hole one-particle excited configurations. Spin-decontamination 

corrections is shown to play a non-negligible role in BS evaluation of bond energies. The importance of 

spin-decontamination is illustrated on cases for which spin polarization is the leading contribution to the 

singlet-triplet gap, what characterizes twisted conjugated double-bonds and disjoint diradicals. 

* Corresponding author (malrieu@irsamc.ups-tlse.fr)



1. Introduction

The spin-polarization phenomenon has been identified and interpreted since the end of the fifties by 

Mc Connell and other experimentalists.1-4 The key phenomenon concerned the contact term in ESR 

spectra of conjugated radical hydrocarbons. Their unpaired electron is described by a π molecular orbital 

(MO) with zero density in the plane of the molecule, hence where protons lie. The experiments showed 

the existence of an interaction between electronic and nuclear spins. They further revealed that when the 

unpaired electron has mS = + ½ character, the spin density on in-plane protons is negative. This suggests 

that the two inner-shell non-magnetic (core) electrons which should occupy the same space MO according 

to the simplest representation (the σ-bond closed-shell core MOs) tend to occupy different space MOs 

according to their spin. This difference is due to the exchange field created by the unpaired electron, 

which acts differently on α and β electrons of the bond electron pair. In other words, the core is subject to 

a spin polarization phenomenon.  

The same phenomenon takes place in diradicals also, with two unpaired electrons essentially located 

in different regions of the molecule. The two electrons may be of parallel spins in a triplet state, or of 

opposite spins in a singlet state. The spin-polarization phenomenon may impact the energy difference 

between singlet and triplet states, ultimately modifying the magnetic coupling between the two magnetic 

centers. The most dramatic effect concerns the diradicals where the two magnetic orbitals are orthogonal, 

as it occurs for the 90°-twisted ethylene molecule, for which the singlet < triplet energy ordering is 

governed by the spin polarization contribution.5,6 But it is also the driving contribution in so-called 

“disjoint diradicals”, where magnetic centers are connected through atoms where spin density presents a 

node, provided that the two SOMOs do not present a significant through-space hopping integral.7 This is 

not the case, however, in tetra-methylene-ethane (TME, also called diallyle) (CH2)2C-C(CH2)2 - a typical 

representative of this class.8-13  Here, allyl SOMOs are connected through their nodal sites, but they 

exhibit a through-space hopping integral, whatever dihedral angle between allyl groups, hence non-zero 

kinetic exchange. In the hereafter studied systems the SOMOs will differ by symmetry and the kinetic 

exchange contribution will be zero. Whatever type of diradicals, spin-polarization effects may contribute 

significantly to their magnetic coupling anyway.14

The simplest approximation for introducing this phenomenon in a quantum chemical calculation 

consists in starting from a restricted open-shell (RO) single determinant, where “core” electrons are 

constrained to be paired in closed-shell MOs. In a second step, this constraint is released and the “core” 

electrons can now occupy distinct orbitals for α and β spins. This “unrestricted” single determinantal 

mean-field calculation,15,16 hereafter called “broken symmetry” (BS), proceeds by an energy 

minimization.17,18 Such calculations have two defects: (i) the corresponding wave functions are not 

eigenfunctions of the S2 spin operator, they are “spin-contaminated”, and (ii) these single-determinant 

calculations miss important corrections proceeding through double excitations from the RO determinant, 

which precisely restore the spin multiplicity. Both problems are internally related and have to be repaired. 



Of course, configuration interaction (CI) calculations are possible, but expensive, and one may be tempted 

to reach reasonable estimates using low-cost single-determinant calculations. An approximate spin-

decontamination formula proposed by Yamaguchi is frequently used for diradicals,19-21 but it has no 

foundation to take care of spin-polarization effects, as shown in a previous paper.22 The present work 

introduces new usage of RO and BS solutions which enables one to avoid spin contamination and to 

incorporate the effect of double excitations.

Section 2 will recall the basic features of the spin polarization phenomenon for a mono radical. On 

the mono-radical problem, a perturbative expansion is presented and confronted to the content of energy 

change between the RO and BS mean-field solutions. This enables a spin-decontaminated evaluation of 

the spin-polarization energy contribution. More general and less approximated projection techniques have 

been proposed by Scuseria et al.23-25 but they are of more complex use. In single-bond breakings, the 

products of the reaction are free radicals, whose energy are lowered by spin polarization. A correct 

evaluation of this term may be important for a proper evaluation of the bond energy, as shown by our 

numerical study.  

Section 3 briefly recalls the role of the spin-polarization correction in diradicals, on both singlet and 

triplet states, and on their energy difference. Exploiting the RO and BS energies of the mS=1 and mS=0 

solutions, one proposes an evaluation of spin polarization contribution to the magnetic coupling, free from 

spin contamination problem and incorporating double spin-flip excitations corrections. This section 

presents numerical applications concerning the singlet-triplet gap on systems where kinetic exchange, i.e. 

the antiferromagnetic contribution brought by mixing with valence-bond (VB) ionic configurations, is 

either zero for symmetry reasons or negligible, as in disjoint diradicals. In these systems, spin 

decontamination significantly increases the singlet-to-triplet gap.  

For both mono- and di-radicals, the derivation motivating the present method can be summarized as 

follows. (i) First, one considers the interaction between the RO determinant and the singly-excited 

determinants as a perturbation, and defines their contributions to the first-order wave-function and the 

second-order energy. (ii) Then, one shows how the same effects are treated as a spin-dependent relaxation 

of the core MOs in the BS single-determinant variational treatment. One establishes the connection 

between the perturbative and BS variational treatments. (iii) Next, one considers spin-flip excitations, 

generating determinants belonging to the same space-configurations as the singly-excited determinants. 

The perturbation expansion establishes the simple relations between the effects of single excitations and 

those of spin-flip excitations. The first-order wave function adding the single excitations and the spin-flip 

excitation  is an eigenfunction of the S2 operator. (iv) Last, one takes benefit of the relations between the 

BS calculation, the effect of the single excitations and the effect of the spin-flip excitations to propose a 

spin-decontaminated evaluation of the total spin polarization contribution to the energy from the spin-

contaminated BS calculation. 



2. Spin polarization in monoradicals

A) Analytic derivation

Let us start with the RO single determinant 

kka kR = .  

where a is the singly occupied MO, bearing the unpaired electron, and k runs the closed-shell MOs. The 

mean-field Fock operator for the core electrons is  

2/)2( aakkk KJKJhF −+−+=

where h is the mono-electronic operator, J and K coulomb and exchange operators respectively. If r is a 

virtual MO, Brillouin’s theorem imposes 

0)( =+ ++

RRirir Haaaa  , 

i. e. that all matrix elements between occupied and virtual orbitals are zero:

0=rFi .

Despite this condition, the
R determinant interacts with singly-excited determinants, the excitation 

involving either the α spin electron of shell i 

kkira ikri → = .

or the β spin electron of the same shell

kkria ikri →
= . .  

The interaction between the RO single determinant and these singly excited determinants are opposite. For 

the α spin excitation, the exchange operator with the single electron is –Ka , not –Ka/2 as appearing in the 

Fock operator above, 

rKiH ariR 2/−= → , 

while for the β spin excitation there is no exchange with the unpaired electron and 

rKiH ariR 2/=
→

. 

These interactions are governed by the exchange operator of singly-occupied orbital a, acting oppositely 

on α and β spin singly-excited determinants. The interaction between the restricted determinant and these 

singly-excited determinants, acting as perturbers, may be treated as a perturbation. The perturbing 



operator is the interaction between single determinants, and it gives a second-order spin-polarization 

energy correction, due to single excitations only:  
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Here the excitation energy from i to r has been approximated by the difference between the diagonal 

energies of the Fock operator, as usual in the so-called Moller–Plesset expansion. The BS single 

determinant is obtained by a spin-dependent relaxation of doubly occupied MOs, leading to the single 

determinant 

"'. iia iBS = . 

It is well-known that orbital relaxation and CI interaction between reference and singly-excited 

determinants are related. To the first order of perturbation, the α spin-orbital i’ may be approximated as  
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The orbital relaxation of the BS solution may be approximated by a first-order expansion of the wave 

function: 
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Notice that the function 
riri →→ −  is the product of an ms=0 triplet excitation in the core by a doublet 

and is not an eigenfunction of the S2 operator, which is a consistent defect of the BS wave function. The 

energy stabilization obtained by relaxing the core MOs, i.e. by going from RO to BS determinants, can be 

approximated to a 2nd order energy correction as 
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One should not omit that other determinants of the same space part contribute to the energy, and restore 

the correct spin multiplicity, namely the so-called spin-flip determinants 

kkria ikaria →
= . , 

which changes the ms value from ½ to -½ , and creates an excitation to an ms=1 triplet in the core. 

These doubly-excited determinants interact with R  by 

rKirariaH aariaR == −

→

1

12  . 

In a Moller-Plesset definition of the zero-order Hamiltonian the denominator relative to the spin-flip 

determinant is the same as the one relative to the i→ r single excitation, namely Fii-Frr. The contribution 

of the spin-flip excitations to the energy is 
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i.e. twice the energy lowering obtained when going from the RO to the BS solutions. This effect of double

excitations pertains to the same physics as spin-polarization single excitations since they involve the same 

bielectronic integrals and the same spatial configuration. Working with spin-eigenstate configurations 

instead of single determinants would take the spin-flip determinants into account, as the total spin-

polarization actually does. One may consequently write the total spin-polarization as  
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and the energy of the doublet ground state may finally be written as 
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Adding the spin flip determinants to the first-order wave function restores the S2 eigenfunction,   
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as it is a linear combination of doublet states.        

B) Impact on bond-breaking energies

Breaking homolytically a covalent single bond leads to two free radicals: 

A—B → A. +
  .B



The corresponding binding energy is evaluated as E(A.) + E(B.) - E(A—B). The spin polarization of the

two radicals may contribute to the binding energy. If the A—B molecule is not subject to symmetry 

breaking, its energy may be estimated from a closed-shell calculation within the mean field 

approximation. Consistently, energies of the free radicals may be calculated in one of the following 

formalisms: RO, BS, or spin-decontaminated description. It is interesting to evaluate the importance of the 

spin polarization contribution on a few basic examples of bond dissociation energies. 

We considered two examples of C-C single bonds breakings. The first one is the dissociation of 

ethane into two CH3 radicals, which adopt a planar geometry. Using the B3LYP exchange-correlation 

functional in density functional theory (DFT),26,27 the RO energy of the radical is -39.85232 a.u., while the 

unrestricted solution, at -39.85376 a.u., is 0.9 kcal/mol below. The spin decontamination correction would 

be three times larger, contributing to the CC bond energy by as much as -5.4 kcal/mol, which represents 

about five percent of a CC single-bond energy - a non-negligible quantity.28 

In another example, we consider the dissociation of the CC bond connecting the two 

cyclopentadienyl rings in hypothetical bicyclopentadienyl (Scheme 1). The RO-DFT energy of each 

radical fragment is -193.51054 a.u. and the unrestricted solution is -193.51298 a.u., lying therefore 1.5 

kcal/mol below. The spin-decontaminated spin polarization energy here lowers the bond energy by as 

Scheme 1 

much as 9.1 kcal/mol, a rather large quantity in regard to the weak homolytic dissociation energy 

calculated in this system at 45.3 kcal/mol (not including ZPE corrections). Such a noticeable twenty-

percent lowering of the bond energy is not unexpected here, as the spin polarization effect is larger in 

conjugated π radicals than in localized ones. 

C) Additional issues

Spin densities. The spin contamination has important impact on the energy, but it does not have a 

similar importance for spin densities. Actually the spin density operator ρs is mono-electronic. If we define  

RBSBS −= , 

 the leading correction to spin density comes from the cross term 



RsBSs =  2)1( , 

which is a first-order correction. The spin-decontaminating corrections to the wave function are doubly 

excited with respect to 
R and do not contribute to the cross-term. It can only contribute to the spin 

density by second-order corrections, negligible in comparison to )1(

s . If one considers the spin density on 

an Atomic Orbital p, the coefficients of which in the MOs i and r are respectively cip and crp, the first-

order correction, coming the singly excited determinants, is  
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The spin-flip determinants contribute to this spin density to the second order by 
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In conjugated hydrocarbons, where the unpaired electron is in a π MO, the spin-polarization of the σ 

system proceeds through excitations from σ bonding to σ* antibonding MOs which have the same 

amplitude on the p AO, and the first-order contribution prevails largely. The only case where the 

contribution of the spin-flip component would prevail would concern excitation where either cip or crp 

would be negligible. 

Dependence to <S2> deviation. It may be interesting to establish a connection between the spin-

polarization energy and the deviation of <S2>, as calculated in the broken-symmetry single determinant, 

from its value for a pure doublet state, namely 0.75. It is governed by the same summations over single 

excitations from core to virtual MOs. Assuming all i→r excitation energies are identical and equal to a 

value Δ, according to a convenient closure approximation, the spin-polarization energy would be 
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The BS determinant may be developed to first-order as 
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The singly-excited components are a mixture of doublet and quartet states. The quartet state of the three-

open shells space function is  

3/).( airariraicoreQ
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And its overlap with the BS determinant is 
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The weight of the BS determinant on the quartet manifold is 
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the other components are doublets. The S2  operator only acts inside a space configuration, and its value 

for a quartet is 15/4. Performing the same closure approximation on energy denominators as the one we 

did for spin polarization energy, for the BS determinant the deviation from 0.75 of <S2> is 
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Equations (4) and (5) make clear the relation between the spin-polarization energy and the deviation 

of the mean value of the S2 operator from its expected eigenvalue. The numerators are identical, but the 

excitation energies relative to the processes responsible for spin polarization also are specific of the 

molecule. From (4) and (5) one gets an evaluation of the mean energy of the excitations involved in the 

spin-polarization process: 
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This relation has been applied to a set of typical monoradicals (Table 1). As expected, the so-calculated 

mean excitation energies are lower in conjugated hydrocarbons than in saturated ones, and they decrease 

with the extent of electronic delocalization, as particularly manifest in the linear polyenyl series. 

Geometry alteration. One may wonder to which extent spin-decontamination could impact the 

calculated geometries of monoradicals. As done for singlet states of diradicals,30 an extrapolation 

procedure could be envisaged to get spin-decontaminated geometries by exploiting the optimized 

geometries obtained at RO level and from BS determinants. This possibility is however tempered by the 

fact that geometry changes between the two RO and BS solutions are quite negligible.  

3. Spin polarization in diradicals

A) Analytic derivation.

In their simplest description, the two single electrons are described by two localized and orthogonal 

singly-occupied molecular orbitals (SOMO), a and b. The calculation of a RO configuration, 

approximating either the singlet or the triplet state, provides such SOMOs. The experience shows that at 

this level the SOMOs of the two solutions are almost identical.31,32 



In a RO description, the mS=0 reference function is written as a combination of two determinants 

2/).(1 baabkkkab += . 

Alternatively, in the BS approach, one may consider that one starts from the mS=0 determinant 

bakkkba
.= , (6) 

with the same frozen core. Its energy can be obtained from those of the restricted open-shell calculations 

on 1

ab and of the corresponding triplet state 2/).(3 baabkkkab −= . The value of the direct exchange 

2Kab between the two unpaired electrons in their singly-occupied MOs, a ferromagnetic contribution may 

be obtained from the energy difference between the two spin eigenfunctions of the same space 

configuration 

33112 ababababab HHK −= , 

quantities given by standard codes. The energy of the single determinant bakkkba
.=  is equal to 
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One may now consider the spin relaxation of the core orbitals, while keeping unmodified the magnetic 

orbitals,  which leads to a BS determinant  
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."'

,
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As done for the mono radical, we shall identify the relaxation energy treated by the BS calculation to the  

second-order perturbation energy resulting from the interaction between the reference determinant and the 

determinants obtained by single excitations on the top of the reference. To first order, the BS description 

incorporates the effect of the determinants   
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Full consideration of the effect of k → r excitations on the top of the singlet configuration, must include 

the spin-flip determinants which change the ms value of the electrons in singly-occupied MOs and in the 

singly-excited core, 
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Both of them interact with the reference by the integral   <r|Kb-Ka|r>/√2, so that the 2nd-order correction 

brought by the spin-flip determinants is equal to 
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One sees that the full spin-polarization contribution to the energy stabilization of the singlet state is given 

by 
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Accordingly, the total spin-polarization energy for the singlet is three times larger than its evaluation from 

the single determinant evaluation 
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In the absence of kinetic exchange contribution, the energy of the spin-decontaminated singlet is given by 
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 The restricted description of the mS=1 triplet state is 

abkkkR .3 = .  

Let us call its energy 
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The Fock operator for the closed-shell MOs is 
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K
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The unrestricted single determinant 

abkkkU ."'3 =

introduces the spin polarization of the closed shell under the effect of the singly-excited determinants of 

the type  
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and to 2nd-order, the energy lowering may be approximated as 
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This introduces the effect of the single excitations only, and it must add the effect of doubly-excited 

determinants involving a spin-flip between core and magnetic MOs.30 The determinant 
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interacts with the reference through the integral <r|Kb|k>, while the determinant 
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interacts with the reference through the integral <r|Ka|k>. They lead to a 2nd- order correction due to spin-

flip determinants 
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One may rewrite the full spin-polarization energy lowering for the triplet as  
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It is interesting that one may express the full spin polarization of the triplet state from the energy lowering 

of the single determinants: 
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The final energy of the triplet state may be written 

)2(333
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Equations (8) and (10) take into account the contributions of one-hole one-particle (1h-1p) excited 

determinants which are omitted in the unrestricted single-determinant calculations and which must be 

formally introduced to restore spin symmetry. These simple expressions should give a good 

approximation to the energy coming out of the CI calculation, running over all determinants of the 1h-1p 

configurations, and may be considered as spin-contamination free. Notice that the unrestricted solutions 

are those obtained by freezing magnetic orbitals, according to the strategy of decomposition of magnetic 

couplings developed by Coulaud et al.31,32 The unrestricted mS=0 solutions usually introduces a 

delocalization of  magnetic orbitals a and b, and consequently of ionic components responsible for the so-

called kinetic exchange, a frequently dominant antiferromagnetic contribution not considered in the 

present work. 



B) Applications to disjoint diradicals, torsional barriers, and isomerization energies

The singlet-to-triplet gap of most anti-ferromagnetic diradicals (i.e. those having a singlet ground 

state) is governed by the interplay of three main physical contributions.33 Starting from the definition of 

two orthogonal magnetic orbitals a and b, as given by a closed-shell core description (equation 6), one 

may distinguish: (i) a ferromagnetic direct exchange, (ii) an antiferromagnetic “kinetic exchange”, due to 

the ionic VB component in the singlet state, and (iii) the spin polarization contributions of both states, 

whose sign is ruled by the topology of chemical connection between magnetic centers. For sake of 

simplicity we shall only consider systems where, for symmetry reasons, the kinetic exchange is zero. In 

this case, symmetry breaking is only due to spin polarization. In general, mixing with ionic VB 

component in an unrestricted single determinant is responsible for another symmetry breaking, and it is 

difficult to disentangle the two effects.  

Disjoint diradicals are systems in which the two unpaired electrons occupy two magnetic orbitals a 

and b which have a small or zero interaction.7 The direct exchange Kab is then very small and the extra-

diagonal matrix element of the Fock operator between the two localized magnetic orbitals is close to zero, 

(|tab| ≈ 0). As the energy difference U between ionic and neutral VB components is large, the kinetic 

exchange -4(tab)2/U, is very small too. Commonly, disjoint diradicals exhibit two magnetic MOs 

connected by their nodal positions, i.e. through atoms where the SOMOs have zero coefficients. Provided 

that tab develops over hopping integrals between sufficiently distant atoms (this is not the case in TME), 

the leading contribution to magnetic coupling is then the spin polarization mechanism. It is ruled by intra-

atomic preference to high spin multiplicity, and by spin alternation between adjacent atoms - spin-ordering 

effects plainly expressed by Ovchinnokov’s rule.34 

Other special diradicals are those where a and b belong to different irreducible representations, i.e. 

when tab = 0 for symmetry reasons. A simple and famous example for this class is ethylene in its 90°-

twisted geometry (Scheme 2, left), where the two unpaired electrons occupy 2px and 2py orthogonal 

orbitals. Kollmar and Staemmler have shown why the spin-polarization correction is larger in the singlet 

state than in the triplet state, and why this antiferromagnetic correction prevails over the ferromagnetic 

direct exchange.5 The differential spin-polarization mechanism here goes through σ→σ* single excitations 

relative to the central CC bond, and only acts on the singlet state for symmetry reasons. Let us detail the 

results for this system and its variant twisted styrene (Scheme 2, right). 



Scheme 2 

Taken from RO-DFT calculations, the direct exchange Kab in twisted ethylene is calculated at 

Kab=0.00066 a.u.. Comparing directly the BS energies for mS=1 and mS=0, which leads to an energy 

difference of 0.00138 a.u. (0.9 kcal/mol) in favor of the singlet, is not fair since one omits the lack of a Kab 

term in the singlet energy, and makes use of spin-contaminated spin-polarization energies. After spin 

decontamination, the spin polarization energy of the triplet (-0.00801 a.u.) is weaker than that of the 

singlet (-0.01207 a.u.), and the resulting energy difference between singlet and triplet is finally 1.7 

kcal/mol. In this case, the correction to the ST gap is close to the classical multiplication by two of the 

difference between mS=1 and mS=0 UDFT solutions.22 At this geometry, the spin-decontaminated estimate 

of the vertical ST gap (1.7 kcal/mol) is in excellent agreement with that given by an accurate multi-

reference CI calculation (1.5 kcal/mol).35 We can put to profit this improved energy to estimate a spin-

decontaminated rotational barrier. As can be seen in Table 2, bottom, the spin-decontamination correction 

lowers the rotational barrier by 4.7 kcal/mol, corresponding to a seven-percent reduction of the raw 

barrier.36  

In ground-state twisted styrene, from a value of  Kab calculated at 0.00044, one gets a correction for 

the ST gap of 0.6 kcal/mol, lowering it to 1.2 kcal/mol (cf Table 2). As in the preceding case, and not 

unexpectedly, it corresponds, here also, to a multiplication by a factor of two. The correction brought to 

the torsional barrier around C=C by the spin decontamination is a decrease of 6.1 kcal/mol, corresponding 

to an eleven-percent lowering, giving a final barrier at 48 kcal/mol. 

Further strictly disjoint diradicals can be conceived, such as those obtained by spirannically coupling 

polyenic radicals. As the spiro attachment takes place through a common saturated carbon atom where the 

SOMOs of two radicals have zero amplitude, this generates a disjoint diradical. If in addition the two 

radical moieties are in orthogonal planes, the diradical will be strictly disjoint, the hopping integral 

between the two SOMOs being zero for symmetry reasons.37 We have examined the case of two coupled 

pentadienyl radicals lying on a spiro-undecane frame (Scheme 3). The direct exchange integral is here  



Scheme 3 

0.00090 a.u. The spin polarization energy of the singlet (-0.02023 a.u.) is now lower than that of the triplet 

(-0.02094 a.u.), and the final energy difference is in favor of the triplet by 1.0 kcal/mol. This is larger than 

what would suggest the simple energy difference between the BS solutions (0.8 kcal/mol), but the factor 

of two is here no longer appropriate. These examples show the importance of spin decontamination of spin 

polarization energy, at least when it becomes of the same order of magnitude as the direct exchange and in 

the absence of kinetic exchange. 

As a last example, let us consider the energy difference between singlet closed-shell para-xylylene 

and its diradical isomer meta-xylylene in its triplet ground state (Scheme 4), and ask to which extent spin-

polarization impacts this energy difference, before and after spin decontamination. In the restricted 

formalism, the para isomer is more stable than the meta isomer by 25.8 kcal/mol. Spin polarization of 

course diminishes this difference, which only concerns the meta compound. Unrestricted treatment of the 

meta compound reduces the energy difference to 21.1 kcal/mol. According to equation (6), spin 

decontamination significantly increases the spin-polarization correction from 4.7 kcal/mol to 11.7 

kcal/mol, so that the energy difference between the two isomers finally falls to 14.1 kcal/mol. Far from an 

exaustive study on xylylene isomerism, this exemple calls attention to the role of spin polarization and its 

correct treatment when comparing energies of closed-shell and open shell isomers. 

CH2

CH2

CH2

CH2

para meta

Scheme 4 



5. Conclusion

In electronic structure calculations where spin-polarization may play an important role, as with 

mono- and polyradicals, as well as with transition states of most chemical reactions, one cannot rely on the 

RO formalism, which misses this effect. Its most accurate treatment consists in performing a perturbative 

or a variational expansion of the multi-determinant wave function. In this route, it is indeed possible to 

identify the excitations responsible for the spin-polarization effect. The corresponding electronic 

configurations belong to the class of the 1h-1p excited configurations. Although simpler than the 

variational treatment, the perturbative expansion of their effect remains quite expensive since it requires 

the calculation of numerous bi-electronic integrals. BS approaches remaining in the single-determinant 

formalism are of much easier usage, and their simplicity explains their popularity, especially for the study 

of large molecular systems. But the resulting wave functions are not eigenfunctions of the S2 operator, 

they only incorporate the effect of single excitations on the top of the reference restricted determinants and 

miss the effect of the doubly excited counterparts, which involve a spin flip in both the magnetic orbitals 

and in the core. Introducing these spin-flipped determinants restores S2 eigenfunctions. The present work 

exploits the internal link between the coefficients of the singly excited determinants and those of the spin-

flipped determinants to exploit fully the unrestricted calculations.  

The present work has presented first a convenient recipe which furnishes, through equation (3), a 

simple evaluation of the spin-decontaminated spin-polarization energy in free radicals. Numerical 

illustrations show the impact of the so-evaluated energies on the calculated bond energies when bond 

breaking leads to two free radical moieties. Then the spin-polarization energy of diradicals was 

considered, for both the triplet and the singlet eigenstates. Again the effect of the spin-flipped 

determinants was taken into account. Simple expressions, exploiting ms=1 and ms=0 UDFT single 

determinants, have been derived to produce spin-decontaminated spin-polarization energies, through 

equations (8) and (10). The numerical studies have been focused on systems where the so-called kinetic 

exchange is zero for symmetry reasons, and where spin-polarization is the leading factor governing 

singlet-to-triplet gaps. They show the importance of  spin-decontamination on torsional barriers around 

double bonds in conjugated hydrocarbons. The numerical computations were performed in the DFT frame, 

but the developments apply to unrestricted Hartree-Fock calculations as well. 

A further work will propose a general procedure for the treatment of those diradicals where both spin 

polarization and kinetic exchange contribute to the singlet-to-triplet gap. In this novel procedure, 

evaluations of these contributions will be free from spin contamination. Moreover, as it will also take into 

account the fact that spin polarization only concerns the neutral VB components of the singlet wave 

function, hence some non-additivity of kinetic exchange and spin polarization, it should thus correct the 

defects of Yamaguchi’s formula19-21 and of our previous proposals.22,31,32 
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Table1: Confrontation of spin-polarization energies ( )2(

SPE , in kcal/mol) and mean excitation energies of 

spin-polarizing single excitations (, in eV) with calculated <S2>  in typical monoradicals. 

 

 

 

 

 

 

radical <S2> 
)2(

SPE  

methyl CH3 0.7535 2.7 27.83 

tri-methyl-methyl C(CH3)3 0.7540 2.8 25.71 

tri-phenyl-methyl (free D3) C(C6H5)3 0.7757 4.4 6.18 

tri-phenyl-methyl (bridged C3v) C(C6H3CH2)3 0.7788 4.2 5.32 

cyclopentadienyl C5H5 0.7684 4.6 9.03 

benzyl C7H7 0.7812 5.7 6.65 

phenalene C13H9 0.7977 6.6 4.99 

allyl C3H5 0.7789 7.2 9.03 

pentadienyl C5H7 0.7935 7.9 6.54 

heptatrienyl C7H9 0.8071 8.1 5.15 

nonatetraenyl C9H11 0.8210 8.3 4.23 

undecapentaenyl C11H13 0.8355 8.5 3.58 



 Table 2. Summary of energy increments (in au) for twisted ethylene, twisted styrene, and spiro-bis-pentadienyl diradical at their BS ms=0 geometry. 

a In kcal/mol. 

b Positive sign indicates a singlet ground state.

energy contributions notations 
twisted 

ethylene 

twisted 

styrene 

spiro-bis- 

pentadienyl 

triplet restricted 
RE3 -78.50913 -309.63596 -425.16935

frozen-core ms=0 
ba

E -78.50847 -309.63552 -425.16845

frozen-core singlet 
RE1 -78.50782 -309.63508 -425.16755

direct exchange integral 
abK 0.00066 0.00044 0.00090 

triplet  ms=1 unrestricted 
UE3 -78.51112 -309.63960 -425.17644

BS  ms=0 unrestricted 
baU

E
,

-78.51250 -309.64056 -425.17519

spin polarization from monoexcitations for ms =1 
RU EE 33 − -0.00200 -0.00364 -0.00710

spin polarization from monoexcitations for ms=0 
babaU

EE −
,

-0.00402 -0.00504 -0.00674

total spin polarization for triplet )2(3

SPE -0.00801 -0.01232 -0.02094

total spin polarization for singlet )2(1

SPE -0.01207 -0.01512 -0.02023

spin-decontaminated triplet 
TE -78.51714 -309.64828 -425.19028

spin-decontaminated singlet 
SE -78.51989 -309.65020 -425.18868

S-T gap before spin decontamination a,b

USTE , 0.9 0.6 -0.8

S-T gap after spin decontamination a,b

ST
E 1.7 1.2 -1.0

energy of closed-shell planar minimum -78.61398 -309.72721

torsional barrier before spin decontamination a 63.7 54.4

torsional barrier after spin decontamination a 59.0 48.3 
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