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Weak Néron models for cubic polynomial maps
over a non-Archimedean field

by

Jean-Yves Briend (Marseille)
and Liang-Chung Hsia (Taipei)

1. Introduction. Let V be smooth variety defined over a discretely
valued non-Archimedean field K and let φ : V → V be a morphism on
V . Assume that there exists a divisor E ∈ Div(V ) ⊗ R and a real number
α > 1 such that φ∗(E) is linear equivalent to αE. Call and Silverman [7]

showed that there exists a Weil local height function λ̂V,E,φ that plays a role
analogous to the Néron–Tate local height function on an Abelian variety. In
the case of Abelian varieties, the Néron–Tate local height can be computed
using intersection theory on the Néron model (see [13, 5]) of the Abelian
variety in question. This motivates defining an analogous notion for a variety
V to which a morphism φ : V → V is attached. Such a generalization was
proposed in the same paper [7] and gives rise to the notion of weak Néron
model of the couple (V/K, φ) over the ring of integers of K (see also [5,
pp. 73 ff.] for an alternative definition which has nothing to do with the
setting discussed here). It is shown in [7] that indeed if the pair (V/K, φ)

has a weak Néron model, then the local height λ̂V,E,φ can also be computed
using intersection theory on the model.

However, in general a weak Néron model for a given pair (V/K, φ) may
not exist. In [10], Hsia showed that for a rational map φ : P1 → P1 over K,
the existence of a weak Néron model is closely related to dynamical prop-
erties of φ and more precisely to the presence of points of the Julia set of φ
inside P1(K). This leads to the question of whether or not one can effectively
determine the existence of a weak Néron model for a given pair (P1/K, φ).
In the case of elliptic curves (one-dimensional Abelian variety), the Tate
algorithm [14] computes, among other things, the reduction type of an el-
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Key words and phrases: weak Néron model, Julia set, fixed point, non-Archimedean dy-
namics.



liptic curves given by a Weierstrass equation. Analogously to the situation
of elliptic curves, the question we raise here can be viewed as the search
for an algorithm determining the existence of the weak Néron model for a
given pair (P1/K, φ) and computing the model when it exists. However, for
general rational maps φ on P1/K, it does not seem clear that such an effec-
tive algorithm exists. On the other hand, in the case of polynomial maps we
think it might be plausible to have optimistic expectation (see Questions in
Section 4) The aim of this paper is to give a positive answer to this question
for cubic polynomial maps.

As mentioned above, whether or not a weak Néron model exists for a
pair (P1/K, φ) is closely related to the dynamics induced by the action of
the given morphism φ on P1(K). In this note, we consider the dynamics
of cubic polynomial maps over the non-Archimedean field K. In the classi-
cal theory of dynamical systems, dynamical properties of cubic polynomials
over C have received a lot of attention since the pioneering work of B. Bran-
ner and J. H. Hubbard in [6]. To understand the parameter space of those
polynomials one is naturally led to study the dynamics of cubic polynomials
over the field of Puiseux series over C (or Q) and this has been carried out
by J. Kiwi in [11].

Although the theory of non-Archimedean dynamical systems has its
origin in the study of arithmetic problems, Kiwi’s work shows that non-
Archimedean dynamics can be of great value in understanding complex dy-
namics as well. On the other hand, over a discrete valued field it seems
possible that one can describe every dynamics occurring for a cubic poly-
nomial, even though examples show that they can be very complicated. We
will be concerned with the determination of the K-rational Julia set (see
Section 2) associated to a given cubic polynomial φ(z) ∈ K[z]. As a conse-
quence of our main result (Theorem 2.1), we show that the non-emptiness of
the K-rational Julia set of φ is closely related to the existence of a K-rational
repelling fixed point of φ (see Theorem 2.2).

The plan of the paper is as follows. In Section 2 we recall the definition of
a weak Néron model for a given pair (V/K, φ) where we restrict ourselves to
the case V = P1. Then we state our main results (Theorems 2.1 and 2.2). Sec-
tion 3 is devoted to the proof of Theorem 2.1. In Section 4 we give examples
of polynomials maps with degree higher than three for which Theorem 2.2
does not hold.

2. Weak Néron models and Julia sets. Let us introduce some basic
notation. K will denote a field endowed with a non-Archimedean discrete
valuation v, which will be assumed to have Z as value group. We will fur-
thermore assume that (K, v) is Henselian (see [8] for instance). It is a well
known fact that for any algebraic extension L of K the valuation v has a



unique extension to a valuation on L (and thus that the Galois group acts
by isometries). We will use the same symbol v to denote the extension of the
valuation to the algebraic closure of K. We will denote by OK the valuation
ring of K and by MK its unique maximal ideal. The residue field is then
k = OK/MK. We fix a uniformizer π of K so that v(π) = 1 and we endow K
with an absolute value | · | associated to v so that |π| < 1.

Let φ ∈ K(z) be a rational map. As a map, it acts on P1(K) as well as on
P1(Cv), where Cv is the completion (with respect to the unique extension
of v) of an algebraic closure of K. On the latter, one can define the Julia
set of φ, which we denote by Jφ, as the set of points around which the
family of iterates of φ is not equicontinuous with respect to the chordal
metric on P1(Cv) (see [10]). In contrast with the complex case, the Julia
set may be empty, for instance if the polynomial φ has good reduction as
defined in [12] (see §2.1 for the definition). Furthermore, as usually K is far
from being algebraically closed, it is often the case that Jφ is non-empty
(and even rather large) while the K-rational Julia set Jφ(K) := Jφ ∩ P1(K)
is itself empty, meaning that all the complicated dynamical behavior of φ
takes place outside of K.

2.1. Reduction of a morphism and weak Néron model. One ad-
vantage of working over a non-Archimedean field is that one can reduce maps
modulo the maximal ideal MK. Fixing homogeneous coordinates [x, y] on P1

over K, we may write a rational map on P1 as φ([x, y]) = [f(x, y), g(x, y)]
where f, g ∈ OK[x, y] are homogeneous polynomials in x, y without com-
mon divisor. Multiplying both homogeneous coordinates by an appropriate
λ ∈ K∗, we may further assume that some coefficient of f, g is a unit of OK.
Let φ̃ = [f̃ , g̃], where f̃ , g̃ denote the reductions of the polynomials f, g
by reducing their coefficients modulo the maximal ideal MK respectively.
We say that φ has good reduction (with respect to the coordinate [x, y]) if

deg(φ̃) = deg(φ) when φ̃ is viewed as a morphism on P1 over the residue
field k (cf. [12, §4]). A morphism φ : P1 → P1 over K will be said to have
good reduction if there exists a possible change of coordinates over K such
that φ has good reduction with respect to the new system of coordinates.
Moreover, φ is said to have potential good reduction if there exists a finite
extension L over K so that after a change of coordinates over L the given
rational map φ has good reduction with respect to the new system of coor-
dinates.

Even if φ does not have good reduction, it is possible to define the re-
duction of φ by considering a weak Néron model of φ which is a dynamical
analogue of a Néron model for an Abelian variety over K. As in the arith-
metic theory of Abelian varieties, the notion of weak Néron model of a
morphism (first introduced by Call and Silverman in [7]) is devised to study



the canonical (local) height associated to a morphism φ : V → V on a
smooth, projective variety V/K. In the following, we recall the definition of
a weak Néron model by restricting ourselves to the case of rational maps on
P1 over K. We refer the readers to the paper [7] for a general definition.

Let S = Spec(OK). We say that (P1/K, φ) admits a weak Néron model
over S if there exists a smooth, separated scheme V of finite type over S
together with a morphism Φ : V/S → V/S such that the following conditions
hold:

(i) the generic fiber of V/S is isomorphic to P1 over K,
(ii) every point P ∈ P1(K) extends to a section P : S → V,

(iii) the restriction of Φ to the generic fiber of V is exactly φ.

To fix the terminology, we say that a separated scheme V/S is a model of
P1 (over S) if it satisfies (i); if furthermore it satisfies (ii) we say that it
has the extension property for étale points. The most basic example of a
map admitting a weak Néron model is that of a rational map having good
reduction, in which case we can take V = P1

S .
In general, one cannot expect that a weak Néron model always exists

for an arbitrary rational map φ. The link between the notions of Julia
set and weak Néron model was made by Hsia in [10] who proved that if
the K-rational Julia set is non-empty, (P1/K, φ) does not admit any weak
Néron model. This provides an easy way of constructing maps without weak
Néron model, by choosing one with a sufficiently complicated dynamics, or
even just one with a K-rational repelling fixed point. On the other hand,
some interesting families of rational maps, like Lattès maps arising from
isogenies on elliptic curves, have been proven to admit weak Néron models
(see [2, 3]). If φ is a polynomial, by [10, Theorems 4.3 and 4.8] we have a
better result: (P1/K, φ) admits a weak Néron model if and only if the K-
rational Julia set is empty. Thus, in practice, one can determine whether the
K-rational Julia set of a given polynomial map φ is empty or not, although
it can be very complicated.

2.2. Statement of the main result. Before we state our main result,
let us recall that a fixed point z ∈ Cv is a point such that φ(z) = z and that
z is repelling if v(φ′(z)) < 0 (equivalently |φ′(z)| > 1).

Theorem 2.1. Let φ ∈ K[z] be a polynomial of degree three. Then
(P1/K, φ) admits a weak Néron model if and only if φ admits no K-rational
repelling fixed point.

Remark 1. It follows from [10, Theorem 3.1] that (P1/K, φ) does not
admit a weak Néron model if there exists a repelling periodic point for φ.
A repelling periodic point is necessarily in the Julia set of φ, so that the
K-rational Julia set of φ is non-empty if φ admits a K-rational repelling



fixed point. The converse is not a priori clear as there could well exist some
high period repelling points in Jφ(K) that could be hard to detect due to
the high degree of the equation defining them.

Also, notice that computing or even determining non-emptiness of the K-
rational Julia set is often difficult in general (although it has been carried out
completely in the quadratic case in [1]) but for cubic polynomials we prove
the following theorem giving an easily verifiable criterion for determining
the existence of K-rational Julia set.

Theorem 2.2. With notation as above, let φ ∈ K[z] be a polynomial of
degree three. Then the K-rational Julia set Jφ(K) of φ is non-empty if and
only if it contains a repelling fixed point of φ.

As a direct consequence of Theorem 2.2, we have the following.

Corollary 2.1. If all K-rational fixed points are non-repelling, then all
periodic points in K are non-repelling.

We first show that Theorem 2.1 implies Theorem 2.2.

Proof of Theorem 2.2. As a repelling fixed point is necessarily in the
Julia set, we see that one direction of the implication is clear. So, let us
assume that there is no K-rational repelling fixed point of φ. By Theorem 2.1,
(P1/K, φ) admits a weak Néron model over S. We know that if (P1/K, φ)
admits a weak Néron model over S, then by Theorem 3.3 of [10], the family
of morphisms {φi}∞i=0 is equicontinuous on P1(K). It follows that the rational
Julia set Jφ(K) is empty as desired.

The proof of Theorem 2.1 will have the following simple corollary:

Corollary 2.2. Let φ ∈ K[z] be a polynomial of degree three. If all the
fixed points of φ (in Cv) are non-repelling, then Jφ is empty.

Remark 2.

(1) Corollary 2.2 is true only for non-Archimedean dynamics as the ex-
ample φ(z) = z3 + z shows: its complex Julia set is non-empty and
it admits a lot of repelling periodic points, although its only fixed
point 0 is non-repelling.

(2) Theorem 3 of Bézivin’s article [4] implies that for a degree 3 poly-
nomial with coefficients in Cp whose Cp-Julia set is non-empty, the
Julia set is equal to the closure of the set of repelling periodic points.

The remaining part of this note is devoted to proving Theorem 2.1.
We present our proof in the next section. In the final section, we give a
counterexample to the conclusion of Theorem 2.2 in higher degrees and
pose some questions.



3. Proof of the main result

3.1. Preliminaries. As the theorem is stated in terms of fixed points,
we let φ(z) = g(z) + z so g(z) = 0 is the fixed point equation. We will split
the proof into two parts, according to whether φ admits a fixed point in K
or not, in which case the polynomial g is irreducible over K. Before dealing
with the proof proper, we make two remarks:

(1) it is not hard to see, from the definition of a weak Néron model, that
if (P1/K, φ) admits a weak Néron model, then so does (P1/L, φ),
where L is any unramified algebraic extension of K;

(2) the property of having a weak Néron model over K or not is invariant
under conjugacy by a Möbius map with coefficients in K: (P1/K, φ)
admits a weak Néron model if and only if (P1/K, f ◦ φ ◦ f−1) does,
for one and hence all f ∈ PGL(2,K).

We can thus assume that K is strictly Henselian and in particular that the
residue field k is algebraically closed.

We will use the method setup in [10] to construct a weak Néron model
for cubic polynomials. For the convenience of the reader, we sketch it briefly.
Let φ : P1 → P1 be a given morphism over K and take X0 := P1

S . Then X0 is
a proper (and smooth) model of P1 over S and X0 has the extension property
for étale points by the valuative criterion for properness (see [9, pp. 95–105]).
We know that φ extends at least to an S-rational map Φ0 : P1

S 99K P1
S .

Now, we proceed inductively. Suppose that we have a separated and smooth
S-model Xi of P1 having the extension property for étale points and an
S-rational map Φi : Xi 99K Xi extending φ for integer i ≥ 0. If Φi is an S-
morphism, then (Xi, Φi) is a weak Néron model for (P1/K, φ).Otherwise, the
set of points where Φi is not defined is of codimension 2 in Xi. Hence, there
are only finitely many closed points on the special fiber of Xi where Φi is not
defined. We eliminate the indeterminacies by blowing up the closed points
where Φi is not defined and let Yi+1 be the resulting scheme. Then Yi+1 is a
separated S-model of P1 and still has the extension property for étale points.
Removing the singular points of Yi+1 yields a new scheme denoted by Xi+1

which is a smooth, separated S-model of P1 having the extension property
for étale points. We consider again the extension map Φi+1 : Xi+1 99K Xi+1

and test if any new indeterminacies occur. In the case of polynomial maps,
either the process continues indefinitely, in which case the K-rational Julia
set is not empty, or there is an integer n ≥ 0 such that the extension Φn is
an S-morphism and (Xn, Φn) is a weak Néron model for (P1/K, φ).

It is a standard fact that one can eliminate the points of indeterminacy of
a rational map by blowing up a coherent sheaf of ideals (see for instance [9,
Example 7.17.3]). In the proof of Theorem 2.1, we shall perform explicit



blowups. For that purpose, we now describe more precisely how one performs
blowups to eliminate indeterminacies of a rational map φ on P1. Specifically,
let X be a smooth S-model of P1 having the extension property for étale
points and let the S-rational map Φ : X 99K X be the extension of φ. Note
that as X is a smooth model of P1, the irreducible components of its special
fiber X̃ are isomorphic to the projective line P1

k over k with at most finitely

many closed points removed. Each point of X̃(k) can be lifted to a point

P ∈ P1(K). Hence, we will write a closed point of X̃ as P̃ with P ∈ P1(K).

Suppose that there is a closed point P̃ on some irreducible component Z of
X̃ where Φ is not defined. The closed point P̃ as a reduced closed subscheme
of X is locally defined by the ideal I ⊂ OK[z] generated by π and z. This

means that P̃ in X̃ has local coordinate z̃ = 0. Let X ′ → X be the blowup
of P̃ in X. The exceptional divisor in X ′ is thus isomorphic to a projective
line P1 over k. Let X ′π denote the subset of X ′ defined by the equation
z = πz′ where z′ is a local coordinate in X ′. Following [5, §3.2], we call X ′π
the dilatation of P̃ in X (not to be confused with the term dilation which
we shall use below to denote homotheties z 7→ λz).

Note that Φ is defined at the generic point ηZ of Z. It follows that its
image Φ(ηZ) is either a generic point or a closed point of some irreducible

component W of X̃. Let w be a local coordinate in a neighborhood of Φ(ηZ).
Then we may represent the rational map Φ : X 99K X locally in terms of
the coordinates z and w so that

φw(z) := w ◦ φ(z) =
f(z)

g(z)
with f(z), g(z) ∈ OK[z].

Note that φ̃w(z̃) = f̃(z̃)/g̃(z̃) represents the rational map from Z to W

over k. By assumption φ̃w is not defined at P̃ . It follows that either f̃ and

g̃ have the common zero z̃ = 0 or φ̃w(0) is equal to a point α ∈ W where

W meets another component of X̃. Notice that the dilatation X ′π of P̃ has
integral points X ′π(OK) corresponding bijectively to points of P1(K) with
coordinate |z| ≤ |π|. The extension of Φ to X ′π amounts to replacing z by
πz′ on X ′π. Then we examine whether or not the extension Φ : X ′ 99K X ′ is
well defined on the dilatation X ′π until we attain a model X such that the
extension Φ : X 99K X, which we denote by Φ again, is an S-morphism.

After these preliminaries, we are ready to give a proof of Theorem 2.1.
We split our arguments into two parts according to whether or not g is
irreducible over K. We fix an affine coordinate z on P1 so that φ(z) is a
polynomial of degree 3. We first deal with the irreducible case in §3.2 below,
then in §3.3 we treat the remaining case and finish the proof.

3.2. The irreducible case. Let us begin with the case where g is
irreducible over K, that is, when φ admits no K-rational fixed point. In this



case, we need to show that (P1/K, φ) has a weak Néron model. Conjugating
φ by the dilation z 7→ z/πs and by taking s large enough we may assume
that φ is of the following form (without changing notation for the conjugated
map):

φ(z) =
1

πn
f(z),

with f(z) = uz3 + a1z
2 + a2z + a3 ∈ OK[z], |u| = 1. If n = 0 then the

polynomial has good reduction and thus it has a weak Néron model. Let us
assume n ≥ 1 from now on.

The reduction f̃ of f must split over k since k is algebraically closed.
Recall that g(z) = φ(z) − z. From this we see that g(z) = π−nf∗(z) where
f∗(z) = f(z) − πnz satisfying f̃∗ = f̃ . If f̃ has a simple root in k then so
does f̃∗, which, by Hensel’s lemma, implies that f has a fixed point in K,
contrary to hypothesis. We thus have f̃(z) = ũ(z − α̃)3. Let α ∈ OK be any
lift of α̃: f(α) ≡ 0 (mod π). Conjugating φ by the translation z 7→ z − α,
we may assume that f̃(z) = ũz3 and hence v(ai) > 0 for i = 1, 2, 3. Let
f∗(z) = uz3 + a∗1z

2 + a∗2z + a∗3 and ni = v(a∗i ) > 0 for i = 1, 2, 3.
As a consequence of our normalizations, the following are true:

(i) ni = v(ai) for i 6= 2 and n2 = v(a2 − πn);
(ii) n3 = 3l + r with r = 1 or 2; n2 ≥ 2l + 2r/3 and n1 ≥ l + r/3.

As (i) is clear, we explain (ii). Notice that as g is irreducible over K, so is f∗.
It follows that every root of f∗ has the same valuation. Let αi, i = 1, 2, 3,
be the roots of f∗. Then

n3 =

3∑
i=1

v(αi) = 3v(α) with α = α1.

By assumption K is strictly Henselian. It follows that v(α) 6∈ Z. Hence, ni is
of the form as claimed in (ii) and v(αi) = l+r/3 for i = 1, 2, 3. Now, observe
that

a∗1 = −u
3∑
i=1

αi, a∗2 = u
∑

1≤i<j≤3
αiαj .

Then the inequalities satisfied by n1 and n2 follow by applying the valuation
v on both sides and the strong triangle inequality for v.

Before we proceed further, we observe that if n ≥ 2l + 2r/3 > 2l then
we may conjugate φ by the dilation z 7→ πlz and get (without changing
notation for φ conjugated)

φ(z) =
1

πn−2l
(uz3 + π−la1z

2 + π−2la2z + π−3la3).

Notice that the polynomial πn−2lφ(z) has all the coefficients in OK and
v(π−3la3) = r. So, after conjugation we may assume that l = 0 and n3 =



r = 1 or 2. Since n2 ≥ 2r/3 (l = 0), we easily check that n2 ≥ n3 in this
case.

If n < 2l + 2r/3, then conjugating φ by z 7→ πkz with k = [n/2] gives

φ(z) =
1

πn−2k
(uz3 + π−ka1z

2 + π−2ka2z + π−3ka3).

Similarly, πn−2kφ(z) is a polynomial with coefficients in OK. If n = 2k is

even, then deg φ̃ = deg φ. Thus φ has good reduction in this case and it
admits a weak Néron model. On the other hand, if n is odd then n−2k = 1.
Hence, after conjugation, we may assume n = 1 in this case. In our discussion
for the remaining case below, we further assume that either (1) l = 0 and
n ≥ 2r/3, or (2) n = 1 < 2l + 2r/3.

Notice that z̃ = 0 is the only place where the extension of φ on P1
S has

indeterminacy. As explained in §3.1, we perform a blowup of the special
fiber at z̃ = 0 in P1

S . Let X1 → P1
S be the blowup and let X be the smooth

locus of X1.

Proposition 3.1. Let φ(z) be a cubic polynomial as above. Then φ ex-
tends to a morphism Φ : X→ X over S so that (X, Φ) is a weak Néron model
for (P1/K, φ).

Proof. Let X1,π be the dilatation of z̃ = 0. Then on X1,π we may use an
affine coordinate z1 so that z = πz1 and on X1,π the polynomial map φ can
be represented by

ψ(z1) = φ(πz1) =
1

πn
(uπ3z31 + a1π

2z21 + a2πz1 + πn3u′),

where u′ is a unit such that a3 = πn3u′.
By our assumption above, we have either (1) l = 0 and n ≥ 2r/3, or (2)

n = 1 < 2l + 2r/3. For case (1), we have n3 = 1 or 2; n ≥ n2 ≥ n3; and
v(a2) ≥ n2 ≥ n3. Then

ψ(z1) =
1

πn−n3
(π3−n3uz31 + π2−n3a1z

2
1 + π1−n3a2z1 + u′) =

1

πn−n3
ψ1(z1).

Note that ψ1(z1) ≡ ũ′ (mod π). Thus ψ sends the component X̃1,π on which

it is defined to ∞̃ if n > n3 or to ũ′ 6= 0̃ in the special fiber of P1
S if n = n3.

From this, we conclude that the extension Φ : X → X is an S-morphism.
Thus, (X, Φ) is a Néron model for (P1/K, φ) and this completes the proof of
the first case.

Now consider case (2). As 2r/3 > 1 in this case, we have n3 = 3l + r ≥ 2.
Therefore,

ψ(z1) = uπ2z31 + a1πz
2
2 + a1z2 + u′πn3−1 = πψ1(z1)

where ψ1(z1) ∈ OK[z1]. We see that φ extends to an S-morphism that maps

the component X̃1,π to itself. In this case, we may also conclude that φ



extends to an S-morphism Φ : X→ X and (X, Φ) is a weak Néron model of
(P1/K, φ).

This concludes the case when the fixed point equation is irreducible
over K.

3.3. The reducible case. We assume in this section that φ admits a
K-rational fixed point, which, after conjugating by a translation, is equal
to 0. So φ has the form

φ(z) = λz + a2z
2 + a3z

3, λ, a2, a3 ∈ K.

As λ is the multiplier of the fixed point 0, if v(λ) < 0 then 0 is a repelling
fixed point and φ does not admit a weak Néron model. We thus assume now
that v(λ) ≥ 0. We let ν = v(a3)/2 − v(a2) and notice that this quantity is
invariant under conjugacy of φ by a dilation centered at 0. Moreover, by a
suitable choice of dilation z 7→ πlz, we may also assume that a2, a3 ∈ OK.
As before, we let ni = v(ai) and distinguish two cases according to the sign
of ν.

Let us assume first that ν ≤ 0, i.e. n2 ≥ n3/2. By conjugating by the
dilation z 7→ πkz with k = [n3/2], we may assume that n3 = 0 or 1. If n3 = 0
then φ has good reduction and we are done. So, let us assume that n3 = 1
and take X0 = P1

S . In this case, we have n2 ≥ 1. Thus in homogeneous

coordinates φ̃([z : t]) ≡ [λ̃zt2 : t3] (mod π) and it has indeterminacy at the
point [1 : 0] = ∞̃. Let X1 → X0 be the blowup of the point ∞̃ and X be the
smooth locus of X1. Let X1,π be the dilation of ∞̃. We may use the affine
coordinate z1 = πz on X1,π and represent φ by

ψ(z1) = φ(z1/π) =
πλz1 + a2z

2
1 + uz31

π2

where a3 = uπ for some unit u ∈ O∗. We see that on X1,π, ψ has indeter-

minacy at z̃1 = 0, which is the point where the special fiber X̃1,π of X1,π

meets the special fiber of X0. Therefore, we conclude that φ extends to an
S-morphism Φ on X and (X, Φ) is a weak Néron model for (P1/K, φ), which
proves the case for ν ≤ 0.

If on the contrary we have ν > 0 then, by conjugating φ by z 7→ π−n2z,
we can assume that n2 = 0 and n3 = 2ν > 0, so φ can be written as

φ(z) = λz + u2z
2 + u3π

2νz3

with ui ∈ O∗K and v(λ) ≥ 0. The equation for the non-zero fixed points is

u3π
2νz2 + u2z + (λ− 1) = 0,

which is equivalent, upon letting x = π2νz, to the equation

h(x) = u3x
2 + u2x+ (λ− 1)π2ν = 0.



Observe that h(x) has two simple roots modulo MK so by Hensel’s lemma
h splits over K. We conclude that all fixed points of φ are K-rational. One
of the two roots of h(x) is a unit ε ∈ O∗K such that ε ≡ −u2/u3 (mod π). Let
ζ = επ−2ν be the fixed point with largest absolute value. The multiplier of
this fixed point is given by

φ′(ζ) =
1

π2ν
(u3ε

2 + 2ε(u3ε+ u2) + λπ2ν) =
g(ε)

π2ν

and

g̃(ε̃) = g̃

(
− ũ2
ũ3

)
=
ũ2

2

ũ3
6= 0.

Thus v(φ′(ζ)) = −2ν < 0 and ζ is a repelling fixed point. So (P1/K, φ) does
not admit a weak Néron model in this case, and this concludes the proof of
Theorem 2.1.

Remark 3.

(1) Let L be the quadratic ramified extension K[
√
π] of K and denote

by vL the extension of the valuation v on L such that vL = 2v on K
and vL(

√
π) = 1. Equivalently, vL(L∗) = Z. In the case where ν ≤ 0,

we note that vL(a3) = 2v(a3), which is an even integer. Then the
same argument for the case where n3 is even in the proof applies to
this situation. In conclusion, (P1/K, φ) has potential good reduction
if ν ≤ 0.

(2) Let φ(z) ∈ K[z] be a cubic polynomial as above. It follows from
the proof of Theorem 2.1 that if (P1/K, φ) has a weak Néron model

(X, Φ), then the special fiber X̃ of X is either P1
k, in which case φ has

good reduction, or two components isomorphic to P1
k that intersect

at one closed point transversally. In fact, the proof actually gives an
algorithm to compute the reduction type of φ.

Proof of Corollary 2.2. As periodic points of φ are algebraic over K, we
may assume K contains the fixed points of φ. We are thus in the situation
where the fixed point equation is reducible. As the fixed points are non-
repelling, with the notation above we are necessarily in the case where ν ≤ 0,
for which we showed that φ has potential good reduction (by Remark 3) and
thus empty Julia set.

4. Counterexamples in degree 4 and higher. The purpose of this
section is to show that Theorem 2.2 proved above is not true any more in
degrees higher than three. Let d = deg φ ≥ 4 and let p be the character-
istic of the residue class field k. Then, except for the four cases (p, d) =
(2, 4), (2, 5), (2, 7), (3, 5), we can write d = e0 + e1 or d = e0 + e1 + e2
such that ei ≥ 2 and p - ei for i = 0, 1, 2. Let n = lcm(e0, e1, e2) and



n = e0e
′
0 = e1e

′
1 = e2e

′
2 where by abuse of notation we assume that e2 = 0

if d = e0 + e1. With the same notation as in the previous sections we
let

φ(z) =
1

πn
ze0(z − 1)e1(z − α)e2 + z, α 6≡ 0, 1 (mod π),

be a degree d polynomial with 0, 1 and possibly α if e2 6= 0 as fixed points,
which are not repelling. In the following, for simplicity we only consider the
case where e2 = 0, i.e. d = e0 + e1 with ei ≥ 2 and p - ei for i = 0, 1. For
the other case (d = e0 + e1 + e2 with e2 6= 0), the arguments are similar. We
leave it to the interested readers.

So, the polynomial map in question is of the form as above with e2 = 0.
The (finite) fixed points are 0 and 1, which are non-repelling. For ease of
notation, we let (x)n = {y ∈ K - v(x − y) ≥ n} be the ball centered at x
with radius |π|n. Let ri = de′i/(ei − 1)e, i = 0, 1, where dxe is the ceiling of
the real number x (i.e. the smallest integer not less than x). Put si = e′i+ri,
i = 0, 1. Then the two balls (0)s0 and (1)s1 are both forward invariant (under
the action of φ) and are thus in the Fatou set of φ. A simple computation
shows that if z is not in (0)e′0 ∪ (1)e′1 then its orbit escapes to infinity. The
Julia set is thus included in the union of the two annuli (0)e′0 \ (0)s0 and
(1)e′1 \ (1)s1 . Notice that φ takes the balls (0)e′0 and (1)e′1 onto the unit
ball (0)0. By symmetry, we may just consider φ : (0)e′0 → (0)0 only. Let

z = πe
′
0w so that w is a local coordinate on (0)e′0 . Recall that n = e0e

′
0; we

get

φ(πe
′
0w) = we0(πe

′
0w − 1)e1 + πe

′
0w ≡ (−1)e1we0 (mod π).

Since p - e0, there are ζi ∈ k, i = 1, . . . , e0, such that

(−1)e1ζe0i ≡ 1 (mod π).

As a simple consequence of Hensel’s lemma, we find that there are points
ai ∈ (0)e′0 such that w(ai) ≡ ζi (mod π) and that φ : (ai)e′0+1 → (1)1 are

bijectively expanding the distances by a factor of |π|−e′0 for all i = 1, . . . , e0.
For the same reason, there are points bj ∈ (1)e′1 such that φ : (bj)e′1+1 → (0)1

are bijectively expanding by a factor of |π|−e′1 for j = 1, . . . , e1. We see that
φ induces a subdynamics on

Jφ ∩
( e0⋃
i=1

(ai)e′0+1 ∪
e1⋃
j=1

(bj)e′1+1

)
which can be conjugated to the subshift of finite type on e0+e1 = d symbols
whose incidence graph is given by the complete bipartite graph with e0 + e1
vertices. In particular φ admits no repelling fixed point while on the other



hand it admits period two repelling points: φ does not have a weak Néron
model over OK.

Questions.

(1) Is Theorem 2.2 true for the four exceptional cases (p, d) = (2, 4),
(2, 5), (2, 7) and (3, 5).

(2) For a polynomial map of degree d, is there a positive integer r de-
pending on d and the characteristic p of the residue field k so that
if all K-rational periodic points with period less than r are non-
repelling then there is no K-rational Julia set of the polynomial map
in question?
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