
HAL Id: hal-02931934
https://amu.hal.science/hal-02931934

Submitted on 16 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Constraint Programming to Generate Benzenoid
Structures in Theoretical Chemistry

Yannick Carissan, Denis Hagebaum-Reignier, Nicolas Prcovic, Cyril Terrioux,
Adrien Varet

To cite this version:
Yannick Carissan, Denis Hagebaum-Reignier, Nicolas Prcovic, Cyril Terrioux, Adrien Varet. Using
Constraint Programming to Generate Benzenoid Structures in Theoretical Chemistry. 26th Interna-
tional Conference on Principles and Practice of Constraint Programming, Sep 2020, Louvain-la-Neuve,
Belgium. pp.690-706, �10.1007/978-3-030-58475-7_40�. �hal-02931934�

https://amu.hal.science/hal-02931934
https://hal.archives-ouvertes.fr


Using Constraint Programming to Generate
Benzenoid Structures in Theoretical

Chemistry?,??

Yannick Carissan1[0000−0002−9876−0272],
Denis Hagebaum-Reignier1[0000−0001−8761−1047], Nicolas Prcovic2,

Cyril Terrioux2[0000−0002−9779−9108], and Adrien Varet2

1 Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France
2 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

{firstname.name}@univ-amu.fr

Abstract. Benzenoids are a subfamily of hydrocarbons (molecules that
are only made of hydrogen and carbon atoms) whose carbon atoms form
hexagons. These molecules are widely studied in theoretical chemistry
and have a lot of concrete applications. Therefore, generating benzenoids
which have certain structural properties (e.g. having a given number of
hexagons or having a particular structure from a graph viewpoint) is an
interesting and important problem. It constitutes a preliminary step for
studying their chemical properties. In this paper, we show that modeling
this problem in Choco Solver and just letting its search engine generate
the solutions is a fast enough and very flexible approach. It can allow to
generate many different kinds of benzenoids with predefined structural
properties by posting new constraints, saving the efforts of developing
bespoke algorithmic methods for each kind of benzenoids.

Keywords: Constraint programming · modeling · Graph variables and
constraints · Chemistry

1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons whose carbons are
forming cycles of different sizes. Benzenoids are a subfamily of PAHs made of 6-
membered carbon rings (i.e. each cycle is a hexagon). To fill carbon valency, each
atom of carbon is bonded to either two other carbons and one hydrogen or three
carbons. For example, Figures 1(a) and (b) are representing two benzenoids:
benzene and anthracene.

PAHs are well-studied in various fields because of their energetic stability,
molecular structures or optical spectra. In natural environment, these molecules

? This work has been funded by the Agence Nationale de la Recherche project ANR-
16-C40-0028.

?? The final authenticated version is available online at https://doi.org/10.1007/

978-3-030-58475-7_40.

https://doi.org/10.1007/978-3-030-58475-7_40
https://doi.org/10.1007/978-3-030-58475-7_40


2 Y. Carissan et al.

C

H

C

H
C

H

C

H

C

H
C

H

C

H

C

H
C

H

C

C

C

H

H

H

C C

C C

C C

C C

H H

H H

C

H

C

H
C

H

C

C

C

H

H

H

C

H

C

H
C

H

C

C

C

H

H

H

C C

C C

C C

C C

H H

H H

(a) (b) (c) (d)

Fig. 1. Two small benzenoids: benzene (a) and anthracene (b) with their graphical
representations (c) and (d).

are created by the incomplete combustion of carbon contained in combustibles [18].
They are popular research subjects in material sciences, e.g. molecular nano-
electronics where they are used to store or transport energy [29,2] or in organic
synthesis [25,22], where the controlled design of specific shapes remains chal-
lenging. PAHs are also intensively studied in interstellar chemistry because of
their suspected presence in various interstellar and circumstellar environments
where they are believed to act as catalysts for chemical reactions taking place
in space [14].

PAHs exhibit a large variety of physicochemical properties depending on size
and, more specifically, on edge and bond topologies. In the astrophysical com-
munity, the so-called ”PAH hypothesis” formulated more than 30 years ago, of
whether the existence of PAHs in space could explain some unidentified mid-
infrared emission bands in astrophysical environments, has motivated numerous
observational, experimental and theoretical investigations. It is now accepted
that mixtures of free PAHs of different size, shapes and ionic states can account
for the overall appearance of the widespread interstellar infrared emission spec-
trum. But the question of relative abundance of PAHs with a given size and/or
shape remains open. Many studies are devoted to explore the effect of the size,
shapes in terms of compacity and symmetry of PAHs, on band positions and
intensities of the infrared spectra [1,3,23]. Very recently, a systematic investiga-
tion of a series of 328 PAHs containing up to 150 carbon atoms showed that
PAHs with armchair edges that maximize the Clar number (i.e. the maximum
number of non-adjacent rings containing 6 electrons called a sextet) are poten-
tial emitters of a certain class of astrophysical infrared sources [24]. For their
study, the authors needed to systematically generate all PAHs having armchair
edge topology and selecting a subclass of PAHs whose structure maximizes the
Clar number. They used the algorithm of Caporossi and Hansen [8]. Constraint-
programming is particularly well suited for the generation of such families of
PAHs.

Another important example where the generation of specific shapes is rel-
evant for chemists deals with so-called ”non-Kekulean” benzenoids [10]. These
benzenoids cannot be represented by Kekulé structures, i.e. structures that have
only simple and double bonds. From a graph-theoretical point of view, Kekulé
structures are covered by the maximal number of disjoint (double) edges so that
all vertices are incident to one of the disjoint edges. It was accepted among
chemists until recently that ”non-Kekulean” benzenoids should be very unstable



Using Constraint Programming to Generate Benzenoid Structures 3

due to their open-shell electronic structure (i.e. one or more electron(s) remain
unpaired, contrary to a closed-shell structure where all electrons are paired) and
thus their synthesis would be a real challenge. The experimental realization and
in-depth characterization of small ”non-Kekulean” benzenoids was very recently
achieved on gold surfaces [21,20]. These studies opened the way to the synthesis
of new classes of compounds which show unconventional magnetism induced by
their topology, with promising applications in various fields like molecular elec-
tronics, nonlinear optics, photovoltaics and spintronics. Moreover, it was shown
that some PAHs with specific topologies (e.g. rhombus shapes) may ”prefer”
having an open-shell structure when reaching a certain size, although they could
have a closed-shell structure and could thus be described by a set of Kekulé
structures [27]. From a quantum theoretical point of view, the proper descrip-
tion of the electronic structure of open-shell benzenoids is a difficult task. The
use of a constraint programming approach for the systematic search of larger
non-Kekulean or Kekulean benzenoids having an open-shell electronic structure
is undoubtedly advantageous.

In this context, many approaches have been proposed in order to generate
benzenoids having or not a particular shape or satisfying a particular property
(e.g. [5,6]). These are bespoke approaches which have the advantage of being
efficient, but are difficult to adapt to the needs of chemists. Moreover, design-
ing a new bespoke method for each new desired property often requires a huge
amount of efforts. So, in this paper, we prefer to use an approach based on con-
straint programming. With this aim in view, we present a general model which
can be refined depending on the desired properties by simply adding variables
and/or constraints. By so doing, our approach benefits from the flexibility of CP
and requires less efforts of implementation. In the meantime, CP offers efficient
solvers which can be quite competitive with respect to bespoke algorithms.

The paper is organized as follows. First, we recall some definitions about
benzenoids and constraint programming in Section 2. Section 3 introduces the
fastest existing algorithm for generating benzenoids. Then Section 4 presents a
new approach using constraint programming, explains its advantages and gives
some examples. Finally, we conclude and provide some perspectives in Section
5.

2 Preliminaries

2.1 Theoretical Chemistry

Benzene, represented in Figure 1(a) is a molecule made of 6 carbon atoms and
6 hydrogen atoms. Its carbon atoms form a hexagon (also called benzenic cycle
or benzenic ring) and each of them is linked to a hydrogen atom. Benzenoids
are a subfamily of PAHs containing all molecules which can be obtained by
aggregating benzenic rings. For example, Figure 1(b) shows anthracene, which
contains three benzenic rings.

By definition of the valence (i.e. the number of bonds that an atom can
establish) of carbon and hydrogen atom, we know that each carbon atom is



4 Y. Carissan et al.

1 2

3 4 5

6 7

1 2

3
4

5

6 7

(a) (b)

Fig. 2. Coronene (a) and its hexagon graph (b).

linked to either two other carbon atoms and one hydrogen atom or three other
carbon atoms. So benzenoids can be perfectly defined by describing only the
interactions between carbon atoms. Hydrogen atoms can then be deduced since
each hydrogen atom is linked to a carbon atom which is only bonded to two
other carbon atoms. As a consequence, any benzenoid can be represented as an
undirected graph B = (V,E), with V the set of vertices and E the set of edges.
Every vertex in V represents a carbon atom and every edge of E represents
a bond between the two corresponding carbons. Moreover, this kind of graph,
is connected, planar and bipartite. Figures 1(c) and (d) represent the graphs
related to the molecules of benzene and anthracene.

In the following, for any benzenoid B, we need to consider some of its faces.
A face of a planar graph is an area of the plan bounded by edges. Figure 2(a)
presents the graph corresponding to coronene (a well-known benzenoid). This
graph has eight faces namely the seven numbered faces and the external face.
Note that in the sequel, we do not take into account the external face. For this
example, the numbered faces correspond exactly to the hexagons of coronene.
However, we will see later that this property does not hold for all the benzenoids.

Then, given a benzenoid, we consider another graph, namely the hexagon
graph. The hexagon graph of a benzenoid B = (V,E) is the undirected graph
Bh = (Vh, Eh) such that there is a vertex vh from Vh per hexagonal face h of
B (the external face and ”holes” in the benzenoid are excluded) while there
is an edge {vh, vh′} in Eh if the corresponding hexagonal faces h and h′ of B
share an edge of E. Figure 2(b) presents the hexagon graph of coronene. The
hexagon graph allows us to express the interaction between the hexagons of the
considered benzenoid.

2.2 Constraint Programming

An instance I of the Constraint Satisfaction Problem (CSP) is a triplet (X,D,C).
X = {x1, . . . , xn} is a set of n variables. For each variable xi ∈ X, there exists
an associated domain Dxi

∈ D = {Dx1
, . . . , Dxn

} which represents the values
that xi can take. C = {c1, ..., ce} represents a set of e constraints. Constraints
represent the interactions between the variables and describe the allowed com-
binations of values.



Using Constraint Programming to Generate Benzenoid Structures 5

Solving a CSP instance I = (X,D,C) amounts to find an assignment of all
the variables of X with a value contained in their associated domain which sat-
isfies all the constraints of C. Such assignment is called a solution. This problem
is NP-hard.

Many libraries are available to represent and solve efficiently CSP instances.
In this paper, we exploit the open-source Java library Choco [15]. This choice
is highly guided by our need to be able to define graph variables and directly
apply graph-related constraints (e.g. connected or cyclic constraints). Graph
variables have as domain a set of graphs defined by a lower bound (a sub-graph
called GLB) and an upper bound (a super-graph called GUB). Moreover, Choco
implements the usual global constraints which make the modeling easier and its
solver is efficient and configurable.

3 Generating Benzenoids

We can define the benzenoid generation problem (denoted BGP in the future) as
follows: given a set of structural properties P, generate all the benzenoids which
satisfy each property of P. For instance, these structural properties may deal
with the number of carbons, the number of hexagons or a particular structure
for the hexagon graph. Of course, the more interesting instances of the BGP
problem combine several properties. For example, Figure 5 shows benzenoids
having a tree as hexagon graph. Such a property-based instances design allows
for the search of benzenoids with chemically relevant properties. Our interest
lies in the search of benzenoids with radical electronic structures (as in the work
of Malrieu and Trinquier [27]), which arise from their geometrical arrangement.

Now, we present an existing method proposed by Brinkmann et al. [5]. Given
an integer n, this method is able to generate all the benzenoids with n hexagons
by generating all the hexagon graphs with at most n vertices. This is done by
adding successively new vertices to the hexagon graph (which is equivalent to
generate all the wanted molecules by successively adding new hexagons).

This method is really efficient. For instance, it could generate the 669,584
benzenoids having 12 hexagons in 1.2 seconds and 1,000 billions of benzenoids
having 21 hexagons in two weeks when launched on an old computer (Intel
Pentium, 133 MHz, 2002). However it has some disadvantages. Indeed it is not
complete in the sense that it is unable to generate benzenoids with ”holes”. By
hole, we mean a face which does not correspond to a hexagon or the external face.
For example, Figure 3(a) depicts the smallest benzenoid (in terms of number
of hexagons) which admits a hole. Such a benzenoid cannot be produced by
this method. Indeed, when this method wants to add a new hexagon, it checks
whether the added hexagon allows to close a cycle of hexagons. If so, the hexagon
is not added and so benzenoids with holes cannot be generated. Benzenoids
with holes are quite seldom. There is a single one for 8 hexagons (among 1,436
benzenoids), 5 for 9 hexagons (among 6,510). Note that this proportion grows as
we increase the number of hexagons (see Table 1). Furthermore, this method is
unable to take into account other properties natively and cannot easily be tuned



6 Y. Carissan et al.

(a) (b) (c) (d)

Fig. 3. The smallest benzenoid with hole (a) and coronenoids of size 2 (b), 3 (c) and
4 (d).

to fit the needs of chemists. Indeed, it is based on an augmenting procedure that
decides how to add a vertex. So this procedure should be changed and proven
adequate to avoid generating non canonical graphs (i.e. redundant isomorphic
graphs) each time we want to change the structural property of the benzenoids
we wish to generate. It is therefore a relatively heavy task even for the addition
of a basic property.

In the next section, we present a new method using constraint programming
which is able to generate any benzenoid structure and benefits from the flexibility
of constraint programming.

4 Generating Benzenoid Structures Thanks to CP

In this section, we see how to model a BGP instance as a CSP instance. We first
present a general model which considers the generation of all the benzenoids
having a given number of hexagons. This property is the minimal property to
ensure. Then we provide some examples showing how the model can be easily
specialized to take into account some additional structural properties.

4.1 General Model

In this part, we want to generate all the benzenoids having a given number
n of hexagons. Before modeling this problem as a CSP instance, we highlight
some useful properties. A coronenoid of size k is a molecule of benzene (i.e.
a hexagon) to which we successively add k − 1 crowns of hexagons. Benzene
corresponds to the coronenoid of size 1 (see Figure 1(c)). Figures 3(b)-(d) present
the coronenoids of size 2, 3 and 4. Note that the diameter (i.e. the number of
hexagons of the central line) of a coronenoid of size k is 2× k − 1. Our interest
for coronenoids lies in the fact that they are useful to ”embed” benzenoids of a
given number of hexagons:

Property 1. Any benzenoid involving n hexagons can be embedded in a coro-
nenoid of size at most k(n) =

⌊
n+1
2 + 1

⌋
.



Using Constraint Programming to Generate Benzenoid Structures 7

So if we reason in terms of hexagon graph, obtaining all the benzenoids with n
hexagons is equivalent to find all the connected sub-graphs of the hexagon graph
of coronenoid of size k(n). The model we propose relies on this property.

So, given an integer n, we model the BGP problem where P is reduced to
”having n hexagons” as a CSP instance I = (X,D,C). First, we consider a graph
variable xG which represents the possible hexagon graph of the built benzenoid.
Its domain is the set of all the sub-graphs between the empty graph and the
hexagon graph of coronenoid of size k(n) (see Figure 4(a)). We also exploit a
set of nc Boolean variables {x1, . . . , xnc} where nc is the number of hexagons of
coronenoid of size k(n). The variable xi is set to 1 if the ith hexagon of coro-
nenoid of size k(n) is used in the hexagon graph depicted by xG, 0 otherwise.
For sake of simplicity, hexagons are numbered from top to bottom and from left
to right like in Figure 2. Likewise, we consider a set of mc Boolean variables
{y1, . . . , ymc} where mc is the number of edges of the hexagon graph of coro-
nenoid of size k(n). The variable yj is set to 1 if the jth edge of the hexagon
graph of coronenoid of size k(n) is used in the hexagon graph depicted by xG,
0 otherwise. We must emphasize that the set of xi and yi variables and the
channeling constraints maintaining the consistency between their values and the
value of xG are automatically generated by Choco Solver through the call of a
predefined method.

Finally, we model the following properties by constraints:

– Link between the graph variable xG and the variables xi As mentioned above,
the variable xi specifies if the ith hexagon of coronenoid of size k(n) is used in
the graph represented by xG. So we must ensure that their respective values
are consistent each others. For this aim in view, we consider a channeling
constraint per variable xi which involves xi and xG and imposes that xi =
1 ⇐⇒ xG contains the vertex i.

– Link between the graph variable xG and the variables yj Like previously, we
consider a channeling constraint per variable yj which involves yj and xG

and imposes that yj = 1 ⇐⇒ xG contains the edge j.
– xG is an induced sub-graph of the coronenoid hexagon graph. Any value of

xG is not necessarily a valid hexagon graph. For example, in Figure 2(b),
removing only edge {1, 2} does not produce a valid hexagon graph. To ensure
that the hexagon graph is valid, we must add a constraint for every triplet
(hj1 , hj2 , hj3) of hexagons which are pairwise adjacent in the coronenoid
hexagon graph. This constraint imposes that if two of these edges exists,
then the third one exists too. This can be achieved by posting a set of ternary
clauses of the form {¬yj1 ∨ ¬yj2 ∨ yj3 , yj1 ∨ ¬yj2 ∨ ¬yj3 ,¬yj1 ∨ yj2 ∨ ¬yj3}
for each possible triple of pairwise adjacent hexagons.

– Benzenoids have n hexagons It can be easily done by using a sum global
constraint involving all the variables xi:

∑
i∈{1,...,nc}

xi = n.

– Benzenoids correspond to connected graphs Variable graphs come with par-
ticular constraints. Among them, we consider the connected constraint
which applies on the variable xG ensures that only connected graphs are
allowed values for xG.



8 Y. Carissan et al.

– Six hexagons forming a cycle generate a hexagon When six hexagons form
a cycle, the face contained in the interior of the cycle is not a hole but a
hexagon. For instance, if we consider the cycle forms by the hexagons 1, 2,
5, 7, 6 and 3 of coronene (see Figure 2), we have necessarily a hexagon in
the middle of the crown, namely the hexagon 4. To ensure this property, we
add a set of constraints which specify that G cannot have a hole whose size
is exactly one hexagon. For each hexagon u, we consider the set N(u) of
the neighbors of u in the hexagon graph. Then, for each vertex u having 6
neighbors, we add a constraint between xu and the variables corresponding
to its neighbors which imposes:

∑
v∈N(u)

xv = 6⇒ xu = 1.

This model allows us to enumerate all the benzenoids having n hexagons,
possibly with holes. However, some benzenoids may be generated multiple times
due to the existence of symmetries. So we add several additional constraints in
order to break as many symmetries as possible:

– Two constraints which specify that G must have at least one vertex respec-
tively on the top-border and the left-border in order to avoid the symmetries
by translation. So, we have to create a constraint which specifies that the
sum of the binary variables associated to the top border (resp. left border)
is strictly positive.

– A set of constraints which specify that G must be the only representative of
its class of symmetry by axis and rotation. There are up to twelve symmet-
ric solutions : six 60 degrees rotation symmetries combined with a possible
axis symmetry. Symmetries are broken thanks to the compact lex-lead con-
straint described in [11]. For each of the twelve symmetries, it requires nc new
Boolean variables (each associated with a xi Boolean variable representing
a hexagon) and a total of 3nc ternary clauses.

This model can be easily implemented with the open-source Java library
Choco [15]. Indeed, Choco natively proposes graph variables and the more usual
graph-related constraints (notably connected constraint).

4.2 How to Specialize the Model

The first advantages of our approach is that it is able to generate all the ben-
zenoids, including those with holes unlike the method described in the previous
section. Moreover, using constraint programming makes it easier the addition
of most of structural properties wished by the chemists. Indeed, starting from
the general model, for each new desired property, we simply have to model it by
posting new constraints and eventually by adding new variables.

For example, let us consider that chemists are interested by benzenoids whose
structure is a path of hexagons. Such benzenoid structures can easily generated
by exploiting the general model I and adding the graph constraint path on
xG. Now, if chemists are more interested by catacondensed benzenoids, that is
benzenoids whose structure is a tree, we can just add the graph constraint tree



Using Constraint Programming to Generate Benzenoid Structures 9

2× k(n)− 1

2× k(n)− 1
5

1 2

3 4

6 7

1 2

3
4

5

6 7

(a) (b)

Fig. 4. Upper bound of the domain of the graph variable (a), rectangle benzenoid (in
solid line) of dimension 3 × 2 embedded in coronenoid of size 2 (b) and its related
hexagon graph (c).

on xG to the general model I. Figure 5 shows nine (among twelve possible)
examples of 5-hexagon benzenoids obtained by just adding the tree constraint
of Choco on xG.

Of course, depending on the desired property the model may be more com-
plex. Especially, it may require to add new variables or the property cannot be
directly expressed by a single existing constraint. In next subsections, we give
such examples.

4.3 Generating Rectangle Benzenoids

In this part, we present how we can model the property ”all the built benzenoids
have a rectangle shape”, in addition to the property ”having n hexagons”, and
add it to the model we describe previously. For instance, Figure 6(i) shows a
rectangle benzenoid with the dimensions 3× 3.

First, remember that the general model described in the previous part takes
in input the number n of hexagons, and embeds any generated benzenoid in a
coronenoid of size k(n). We can easily see that the largest rectangle benzenoid
which can be embedded in a coronenoid of size k(n) has a width wmax equal to
k(n) and a height hmax equal to 2× k(n)− 1 (i.e. the diameter of coronenoid of
size k(n)). Figure 4 shows the rectangle benzenoid of dimensions 2×3 embedded
in coronenoid of size 2 (b) and its hexagon graph (c).

Then, starting from model I, we must add new variables to model the de-
sired property. Namely, we add two integer variables xw and xh whose domain
is respectively {1, ..., wmax} and {1, ..., hmax}. These variables represent respec-
tively the number of columns and lines of the built benzenoid. In addition, we
denote Li (resp. Ci) the set of variables xi which appear in the ith line (resp. ith
column) in the coronenoid of order k(n). We assume that lines (resp. columns)
are numbered from top to bottom (resp. from left to right). For example, if
we consider the hexagon graph of the rectangle benzenoid of dimensions 3 × 2



10 Y. Carissan et al.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Catacondensed benzenoids with 5 hexagons.

described in Figure 4(b), we have the following sets:
L1 = {x1, x2}
L2 = {x3, x4, x5}
L3 = {x6, x7}
C1 = {x1, x3, x6}
C2 = {x2, x4, x7}

Now we add several constraints to the general model in order to model the
following properties:

– The hexagons of each line are positioned contiguously We want to avoid to
have a Boolean variable equal to 0 between two Boolean variables equal to
1. For the ith line, this can be modeled by imposing an arithmetic constraint
xi1 ≥ xi2 . . . ≥ xiwmax

if Li = {xi1 , xi2 , . . . , xiwmax
}. We can also use instead

a global constraint ordered applied on the variables of Li with operator ≥.
– The hexagons of each column are positioned contiguously We proceed as for

the lines by considering Ci instead of Li.
– Lines have a consistent size Each line must be empty or have a size equal

to the current width of the rectangle. The size of a line can be defined as
the number of hexagons it contains since we know that all the hexagons
are contiguous. For the ith line, we add a constraint linking xw to all the
variables in Li and imposing

∑
xij
∈Li

xij = 0 ∨ ∑
xij
∈Li

xij = xw. As such a



Using Constraint Programming to Generate Benzenoid Structures 11

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 6. Rectangle benzenoids generated with w = h = 3.

constraint is added for each line, we are sure that all the lines have the same
width.

– Columns have a consistent size We proceed as for the lines by considering
Ci instead of Li and xh instead of xw.

Figure 6 shows the 9 rectangle benzenoids generated with the parameters
w = h = 3.

In this extended model, we can note that some variables are now useless.
Indeed, only the leftmost hexagons of coronenoid of order k(n) covered by the
rectangle of dimensions wmax×hmax are required. The other hexagons will only
lead to produce symmetrical structures. So, we can refine our model by removing
useless variables. Likewise, we can filter the domain of xG in order that GUB is
the hexagon graph of the rectangle wmax×hmax by posting the adequate unary
constraint.

This extension of our general model is given as a simple illustration of our
approach. Of course, we can easily generate benzenoids having a rectangle shape
with a bespoke algorithm. What is interesting in our approach is its flexibility.
For instance, if some chemists are interested by identifying the rectangular ben-
zenoids which has a given Clar number, we have only to model the property
”having a given Clar number” by adding some variables and/or constraints to
be able to find the wished benzenoids. The Clar number of a benzenoid is the
maximum number of non-adjacent hexagons (i.e. hexagons which have no bond
in common) which admit three double bonds [9]. Unfortunately, due to page
limit, we cannot detail the corresponding extended model.

4.4 Generating Coronoids

Chemists refer to benzenoids with at least one hole as coronoids (not to be
confused with coronenoids). These molecules are promising model structures of
graphene with well-defined holes [12,4,13]. Their enumeration and generation
gave rise to several studies (e.g., [6] which enumerates 2-hole coronoids and



12 Y. Carissan et al.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 7. All the ways of digging holes in the coronenoid of size 3. The last one (r) is
not a valid coronoid: the hole in the coronenoid is cyclic and has disconnected the
”coronoid” into two benzenoids. Hence, the constraint that xC must be connected.

generates the smallest 18 and 19-hexagon 3-hole coronoids). The methods for
generating them are quite inefficient or too specific. The first kind of approach
tries to build specific kinds of coronoids by considering cycles of hexagons and try
all possible ways to add hexagons around. The second kind of approach consists
of generating all the benzenoids with n hexagons and then detects the ones with
holes. Another possible approach consists in generating benzenoids without holes
(e.g. with the method of Brinkmann et al. [5]) and then digging holes in the
obtained benzenoids. However we can note that the two latter approaches can
quickly become too time-consuming with respect to an approach which would
directly generate coronoids. Indeed, if the number of hexagons is increased by
one, the number of benzenoids is multiplied by approximately 5 (as well as the
time to generate them [5]), whereas the time to generate the coronoids with the
direct approach we describe below appears to be only twice longer (see Table
1). So, in this part, we present how we can model the property ”all the built
benzenoids have a hole and are contained in a benzenoid with n hexagons”. This
allows to generate easily all kinds of coronoids with any number of holes.

Any coronoid can be seen as a benzenoid that has lost several contiguous
hexagons (which created holes). So, the vertices of the benzenoid can be split
into the vertices belonging to a coronoid and the vertices forming holes. To
model this problem, we consider our general model. First, we define two new
graph variables xC , which represents an underlying coronoid of xG, and xH the
holes to dig in xG to form xC . xC and xH have the same domain as xG. So, we
can have all the possible coronoid xC by generating all the pairs (xG, xH). There



Using Constraint Programming to Generate Benzenoid Structures 13

Table 1. Number of coronoids obtained by digging holes from all the benzenoids with
n hexagons.

n #coronoids time (s) #benzenoids without holes

10 1 43 30,086

11 4 114 141,229

12 38 262 669,584

13 239 533 3,198,256

14 1,510 1,076 15,367,577

can be several values of xH for a value of xG, as illustrated in Figure 7. Then
we consider two sets of nc Boolean variables {xC

1 , . . . , x
C
nc
} and {xH

1 , . . . , xH
nc
}

(with nc the number of hexagons of coronenoid of size k(n)). Like xi for xG, the
variable xC

i (resp. xH
i ) is set to 1 if the ith hexagon of coronenoid of size k(n)

is used in the graph depicted by xC (resp. xH), 0 otherwise. Likewise, we define
the set of mc Boolean variables {yH1 , . . . , yHmc

} (with mc the number of edges
in the hexagon graph of coronenoid of size k(n)). The variable yHj is set to 1 if
the jth edge of coronenoid of size k(n) is used in the graph depicted by xH , 0
otherwise.

Finally, we add the following constraints ensuring that variables xH and xC

have the right properties:

– xH is a sub-graph of xG This is enforced thanks to the subgraph constraint
of Choco applied on variables xH and xG.

– Only fully surrounded vertices of xG can be vertices of xH For all vertices of
xH if the degree of a vertex in xH is strictly positive then the degree of the
same vertex in xG is 6. Indeed, only the vertices/hexagons in xG surrounded
by six hexagons can belong to a hole. This constraint is enforced thanks to
clauses on the yi and yHi Boolean variables.

– A single hexagon does not form a hole Each vertex/hexagon of xH must have
a degree strictly greater than 0. This constraint eliminates holes that would
be a sole hexagon and allows multiple holes. We simply use the minDegrees

graph constraint of Choco applied on xH .

– xH involves at least two hexagons. We post the constraint
∑

i∈{1,...,nc}
xH
i > 1.

– xC and xH form a partition of xG w.r.t. hexagons For all vertices of xG, a
vertex is in xC iff this vertex is in xG and not in xH . This ensures that any
vertex of xG is either in xC or in xH . With this aim in view, we add a clause

xC
i ↔ (xi ∧ xH

i ) on xi, x
C
i and xH

i for any i ∈ {1, . . . , nc}.
– xC is connected If xC is not connected, we may obtain two benzenoids instead

of one (see Figure 7(r) for instance). Again, this can be achieved by exploiting
the graph constraint connected applied on xC .

For example, Figure 8(a) shows how the coronoid of Figure 9(a) can be
embedded in the coronenoid of size 3. Then, we depict in dashed line the value
of xG, xC and xH respectively in Figures 8(b)-(d).



14 Y. Carissan et al.

1 2 3

4 5 6 7

8 9 10 11 12

13 14 15 16

17 18 19

1 2 3

4
5 6

7

8
9 10 11

12

13
14 15

16

17 18 19

(a) (b)

1 2 3

4
5 6

7

8
9 10 11

12

13
14 15

16

17 18 19

1 2 3

4
5 6

7

8
9 10 11

12

13
14 15

16

17 18 19

(c) (d)

Fig. 8. The coronoid of Figure 9(a) embedded in the coronenoid of size 3 (a),the
corresponding value of xG (b), xC (c) and xH (d).

Table 1 shows the results of the experiments we ran on a 3.4 GHz Intel Core
i7 iMac with a 12 Gb RAM. We implemented our CSP model in Java 8 with
Choco Solver 4.0.4 using the choco-graph 4.2.3 module. We did not specify any
search strategy or heuristic, so the default ones were used by the search engine.
We generated the coronoids by digging holes in different sizes of benzenoids.
Among all the benzenoids with n hexagons, we show the number of coronoids
we can produce by removing hexagons. For example, the only coronoid produced
from the 10-hexagon benzenoids is the 8-hexagon coronoid of Figure 3(a). Figure
9 lists the four coronoids for n = 11. To show how rare coronoids are, Table 1
also provides the number of benzenoids without holes [5]. Of course, thanks
to the model we propose for coronoid generation, we do not consider all these
benzenoids. Indeed, they are not generated by Choco Solver because it filters
out benzenoids that cannot have holes through constraint propagation.

4.5 Generating Symmetric Benzenoids

Benzenoids are also classified by chemists by their classes of internal symmetries
(symmetries that let a benzenoid invariant by rotation and/or mirroring). We
can generate such classes of benzenoids by adding the constraints for enforcing
internal symmetries. When searching for all the possible benzenoids embeddable
in a coronenoid of size 3, we obtain the 11,578 benzenoids (with at most 19



Using Constraint Programming to Generate Benzenoid Structures 15

(a) (b) (c) (d)

Fig. 9. Coronoids for n = 11.

hexagons) in 36 minutes. Enforcing invariance by 60 degree rotation (to obtain
the 4 corresponding benzenoids), by 120 degree rotation (16 benzenoids) and
180 degree rotation (70 benzenoids) takes less than one second for each task.
This strengthens the idea that constraint propagation in nowadays solvers is
efficient enough to allow these theoretical chemistry problems to be modeled and
solved with CP without having to define and use bespoke methods. Moreover,
interestingly, note that this extension of our general model may be combined
with any extension described above.

5 Conclusions and Perspectives

In this paper, we addressed the problem of generating benzenoid structures,
which is an interesting and important problem in theoretical chemistry. In this
context, we presented an approach using constraint programming able to gener-
ate benzenoids which satisfy a certain amount of properties. Its main advantage
w.r.t. existing methods in the literature lies in its flexibility. Indeed, from a
general model, we can express additional properties by simply adding variables
and/or constraints while existing bespoke methods rely on more rigid and com-
plex notions and cannot be adapted without requiring heavy tasks. Moreover,
our approach turns to be more general, making it possible to generate benzenoids
with holes for instance.

Chemists are interested in generating benzenoids with particular shapes (e.g.
rectangle or rhombus shapes [27]). We have already dealt with the rectangle
shapes in this paper. So a natural extension of this work relies in taking into
account other specific properties related to the needs of chemists. Another step
consists in studying the limit of our approach both in terms of properties we can
express and our ability to generate benzenoids of large size. Furthermore, this
paper shows how, once again, constraint programming can be useful to tackle
and solve problems related to theoretical chemistry [19,28,26,16,17]. In particu-
lar, many questions about benzenoids can be modeled as decision or optimization
problems under constraints (e.g. computing their aromaticity or finding the clos-
est structure to a Kekulé structure) and can correspond to difficult tasks (e.g.
computing the Clar number is NP-hard [7]). It could be of interest for both
communities to study them.



16 Y. Carissan et al.

References

1. Allamandola, L.J., Hudgins, D.M., Sandford, S.A.: Modeling the Unidentified In-
frared Emission with Combinations of Polycyclic Aromatic Hydrocarbons. The
Astrophysical Journal 511(2), L115–L119 (1999). https://doi.org/10.1086/311843

2. Aumaitre, C., Morin, J.F.: Polycyclic Aromatic Hydrocarbons as Potential Build-
ing Blocks for Organic Solar Cells. The Chemical Record 19(6), 1142–1154 (2019).
https://doi.org/10.1002/tcr.201900016, https://onlinelibrary.wiley.com/doi/
abs/10.1002/tcr.201900016

3. Bauschlicher, Jr., C.W., Peeters, E., Allamandola, L.J.: The Infrared Spec-
tra of Very Large, Compact, Highly Symmetric, Polycyclic Aromatic Hy-
drocarbons (PAHs). The Astrophysical Journal 678(1), 316–327 (2008).
https://doi.org/10.1086/533424

4. Beser, U., Kastler, M., Maghsoumi, A., Wagner, M., Castiglioni, C., Tommasini,
M., Narita, A., Feng, X., Müllen, K.: A C216-Nanographene Molecule with Defined
Cavity as Extended Coronoid. Journal of the American Chemical Society 138(13),
4322–4325 (2016). https://doi.org/10.1021/jacs.6b01181

5. Brinkmann, G., Caporossi, G., Hansen, P.: A Constructive Enumeration of Fusenes
and Benzenoids. Journal of Algorithms 45(2) (2002)

6. Brunvoll, J., Cyvin, R.N., Cyvin, S.J.: Enumeration and Classification of Double
Coronoid Hydrocarbons – Appendix: Triple Coronoids. Croatica Chemica Acta
63(4), 585–601 (1990)

7. Bérczi-Kovács, E., Bernáth, A.: The complexity of the Clar number
problem and an exact algorithm. J Math Chem 56, 597–605 (2018).
https://doi.org/10.1007/s10910-017-0799-8

8. Caporossi, G., Hansen, P.: Enumeration of polyhex hydrocarbons to h = 21.
Journal of Chemical Information and Computer Sciences 38(4), 610–619 (1998).
https://doi.org/10.1021/ci970116n, https://doi.org/10.1021/ci970116n

9. Clar, E.: The Aromatic Sextet. Wiley (1972)
10. Cyvin, J., Brunvoll, J., Cyvin, B.N.: Search for Concealed Non-Kekuliian Ben-

zenoids and Coronoids. J. Chem. Inf. Comput. Sci. 29(4), 237 (1989)
11. Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static sym-

metry breaking for sat. In: Creignou, N., Le Berre, D. (eds.) Theory and Applica-
tions of Satisfiability Testing – SAT 2016. pp. 104–122 (2016)

12. Di Giovannantonio, M., Yao, X., Eimre, K., Urgel, J.I., Ruffieux, P., Pignedoli,
C.A., Müllen, K., Fasel, R., Narita, A.: Large-Cavity Coronoids with Different Inner
and Outer Edge Structures. Journal of the American Chemical Society 142(28),
12046–12050 (2020). https://doi.org/10.1021/jacs.0c05268

13. Dias, J.R.: Structure and Electronic Characteristics of Coronoid Polycyclic Aro-
matic Hydrocarbons as Potential Models of Graphite Layers with Hole De-
fects. The Journal of Physical Chemistry A 112(47), 12281–12292 (2008).
https://doi.org/10.1021/jp806987f

14. Draine, B.T.: Astronomical Models of PAHs and Dust. EAS Publications Series
46, 29–42 (2011). https://doi.org/10.1051/eas/1146003

15. Fages, J.G., Lorca, X., Prud’homme, C.: Choco solver user guide documentation.
https://choco-solver.readthedocs.io/en/latest/

16. Ismail, I., Stuttaford-Fowler, H.B.V.A., Ochan Ashok, C., Robertson, C., Haber-
shon, S.: Automatic Proposal of Multistep Reaction Mechanisms using a Graph-
Driven Search. The Journal of Physical Chemistry A 123(15), 3407–3417 (2019).
https://doi.org/10.1021/acs.jpca.9b01014

https://doi.org/10.1086/311843
https://doi.org/10.1002/tcr.201900016
https://onlinelibrary.wiley.com/doi/abs/10.1002/tcr.201900016
https://onlinelibrary.wiley.com/doi/abs/10.1002/tcr.201900016
https://doi.org/10.1086/533424
https://doi.org/10.1021/jacs.6b01181
https://doi.org/10.1007/s10910-017-0799-8
https://doi.org/10.1021/ci970116n
https://doi.org/10.1021/ci970116n
https://doi.org/10.1021/jacs.0c05268
https://doi.org/10.1021/jp806987f
https://doi.org/10.1051/eas/1146003
https://choco-solver.readthedocs.io/en/latest/
https://doi.org/10.1021/acs.jpca.9b01014


Using Constraint Programming to Generate Benzenoid Structures 17

17. Kim, Y., Kim, J.W., Kim, Z., Kim, W.Y.: Efficient prediction of reaction paths
through molecular graph and reaction network analysis. Chemical Science 9(4),
825–835 (2018). https://doi.org/10.1039/C7SC03628K

18. Luch, A.: The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons.
Imperial College Press, London (2005), https://www.worldscientific.com/

worldscibooks/10.1142/p306

19. Mann, M., Nahar, F., Schnorr, N., Backofen, R., Stadler, P.F., Flamm, C.: Atom
mapping with constraint programming. Algorithms for Molecular Biology 9(1), 23
(2014). https://doi.org/10.1186/s13015-014-0023-3

20. Mishra, S., Beyer, D., Eimre, K., Kezilebieke, S., Berger, R., Gröning, O., Pignedoli,
C.A., Müllen, K., Liljeroth, P., Ruffieux, P., Feng, X., Fasel, R.: Topological frustra-
tion induces unconventional magnetism in a nanographene. Nature Nanotechnology
15(1), 22–28 (2020). https://doi.org/10.1038/s41565-019-0577-9

21. Mishra, S., Beyer, D., Eimre, K., Liu, J., Berger, R., Gröning, O., Pignedoli, C.A.,
Müllen, K., Fasel, R., Feng, X., Ruffieux, P.: Synthesis and Characterization of π-
Extended Triangulene. Journal of the American Chemical Society 141(27), 10621–
10625 (2019). https://doi.org/10.1021/jacs.9b05319

22. Narita, A., Wang, X.Y., Feng, X., Müllen, K.: New advances in
nanographene chemistry. Chemical Society Reviews 44(18), 6616–6643 (2015).
https://doi.org/10.1039/C5CS00183H

23. Ricca, A., Bauschlicher, C.W., Boersma, C., Tielens, A.G.G.M., Allamandola,
L.J.: The Infrared spectroscopy of compact polycyclic aromatic hydrocarbons
containing up to 384 carbons. The Astrophysical Journal 754(1), 75 (2012).
https://doi.org/10.1088/0004-637X/754/1/75

24. Ricca, A., Roser, J.E., Peeters, E., Boersma, C.: Polycyclic Aromatic Hydrocarbons
with Armchair Edges: Potential Emitters in Class B Sources. The Astrophysical
Journal 882(1), 56 (2019). https://doi.org/10.3847/1538-4357/ab3124

25. Rieger, R., Müllen, K.: Forever young: Polycyclic aromatic hydrocarbons as model
cases for structural and optical studies. Journal of Physical Organic Chemistry
23(4), 315–325 (2010). https://doi.org/10.1002/poc.1644

26. Simoncini, D., Allouche, D., de Givry, S., Delmas, C., Barbe, S., Schiex,
T.: Guaranteed Discrete Energy Optimization on Large Protein Design Prob-
lems. Journal of Chemical Theory and Computation 11(12), 5980–5989 (2015).
https://doi.org/10.1021/acs.jctc.5b00594

27. Trinquier, G., Malrieu, J.P.: Predicting the Open-Shell Character of Polycyclic
Hydrocarbons in Terms of Clar Sextets. The Journal of Physical Chemistry A
122(4), 1088–1103 (2018). https://doi.org/10.1021/acs.jpca.7b11095

28. Wu, C.W.: Modelling Chemical Reactions Using Constraint Programming and
Molecular Graphs. In: Principles and Practice of Constraint Programming. pp.
808–808 (2004)

29. Wu, J., Pisula, W., Müllen, K.: Graphenes as Potential Material for Electronics.
Chemical Reviews 107(3), 718–747 (2007). https://doi.org/10.1021/cr068010r

https://doi.org/10.1039/C7SC03628K
https://www.worldscientific.com/worldscibooks/10.1142/p306
https://www.worldscientific.com/worldscibooks/10.1142/p306
https://doi.org/10.1186/s13015-014-0023-3
https://doi.org/10.1038/s41565-019-0577-9
https://doi.org/10.1021/jacs.9b05319
https://doi.org/10.1039/C5CS00183H
https://doi.org/10.1088/0004-637X/754/1/75
https://doi.org/10.3847/1538-4357/ab3124
https://doi.org/10.1002/poc.1644
https://doi.org/10.1021/acs.jctc.5b00594
https://doi.org/10.1021/acs.jpca.7b11095
https://doi.org/10.1021/cr068010r

	Using Constraint Programming to Generate Benzenoid Structures in Theoretical Chemistry,

