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ABSTRACT
We propose a method for detecting a Guttman effect in a complete disjunctive
table U with Q questions. Since such an investigation is a nonsense when the Q
variables are independent, we reuse a previous unpublished work about the chi-
squared independence test for Burt’s tables.

Then, we introduce a two-steps method consisting in plugging the first singular
vector from a preliminary Correspondence Analysis (CA) of U as a score x into
a subsequent singly-ordered Ordinal Correspondence Analysis (OCA) of U. OCA
mainly consists in completing x by a sequence of orthogonal polynomials supersed-
ing the classical factors of CA. As a consequence, in presence of a pure Guttman
effect, we should in principle have that the second singular vector coincide with the
polynomial of degree 2, etc. The hybrid decomposition of the Pearson chi-squared
statistics (resulting from OCA) used in association with permutation tests makes
possible to reveal such relationships, i.e. the presence of a Guttman effect in the
structure of U, and to determine its degree - with an accuracy depending on the
signal to noise ratio.

The proposed method is successively tested on artificial data (more or less noisy),
a well-known benchmark, and synchrotron X-ray diffraction data of soil samples.

KEYWORDS
Ordinal Correspondence Analysis; Detrended Correspondence Analysis;
Randomization; Eigenvalues; Orthogonal polynomials; Synchrotron X-rays
diffraction

1. Introduction

The Guttman effect (also named arch or horseshoe effect) is frequently met in displays
resulting from Correspondence Analysis (CA) [14, 34], or other multivariate methods.
The characteristic of this phenomenon is that the second and sometimes higher factors
have a strong nonlinear relationship with the first factor. Theoretical models [14, 18]
show that in this case the kth factor is an orthogonal polynomial of degree k in the
first factor.
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This phenomenon is an avatar of the scalogram analysis introduced in Psychom-
etry by L. Guttman (see Section 2), as Benzécri [14, 17] noticed. Such a structure
is of paramount importance in Psychometry, because it corresponds to a latent (and
desired) general factor (of intelligence, etc.), but it is considered as a nuisance in Ecol-
ogy, where it often corresponds to some well-known structure (depth or temperature
gradient, etc.). Thus, while psychometricians considered scalogram analysis as an im-
portant tool, Hill and Gauch [40] surprisingly claimed that “the arch effect is simply
a mathematical artifact, corresponding to no real structure in the data” and tried to
remove it.

Hill and Gauch [40] therefore proposed an heuristic “detrending-by-segment” al-
gorithm, giving rise to the so-called “Detrended Correspondence Analysis” (DCA).
However DCA is a controversial method [41], because of the frequent instability re-
sulting from its ad hoc detrending procedure. More recently, Ter Braak [55] proposed
an alternative “detrending-by-polynomials” method, which does not seem to work
much better than the original DCA [42]. However, postulating the existence of such
nonlinear relationships between principal axes before erasing them is far from being
innocent: if such a structure is absent from the data, this can lead to artifacts (think
to the Slutsky-Yule effect in time series analysis), or loss of information [18].

So, it seems that preliminary questions to answer to are: ”Is there really a Guttman
effect in the data? What is the order of this phenomenon (degree of the polynomial)?”
In this paper, we tackle these questions by combining CA with Ordinal Correspondence
Analysis (OCA) to produce tests and graphical tools designed for this purpose. The
proposed method is successively tested on artificial data, a well-known benchmark
(Chinese vases data from [24]), and a dataset synchrotron X-ray diffraction pattern
obtained on soil features.

2. Scalogram Analysis

This term was coined in 1944 by Louis Guttman [35], as “a procedure for testing
the hypothesis that a universe of qualitative data is a scale for a given population of
people”.

Definition 2.1. [35]. The universe of content is said to be scalable for the population
if it is possible to rank the people from high to low in such a fashion that from a
person’s rank alone we can reproduce his response to each of the items in a simple
fashion.

Guttman’s method for elaborating such a scale consisted in ranking people thanks
to weights assigned to the categories associated with each question. Adding up these
weights, one obtains a score for each person, depending on her opinion (typically: fa-
vorable/unfavorable). In a (possible) second step, categories could be combined, and
people be ranked again, giving rise to the scale and the sorted table of observations.
In addition to the scale, which typically ranks people from unfavorable to favorable,
Guttman defined the intensity, which codes the strength of opinions, and noticed
that, plotting the intensity against the scale, one generally obtains a more or less
parabolic curve [35, 36], which could be reasonably fitted by a polynomial of degree
2. Furthermore, analyzing the sorted table through Principal Components Analysis
(PCA), Guttman observed that when the universe of content is scalable, the nth com-
ponent looks like a polynomial of degree n.
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A bit later, Benzécri [14, 17] showed that scalograms can be easily built from a
contingency table T by ranking its I rows and J columns along the first factor of the
Correspondence Analysis of T (if the universe of content is scalable, of course). More
precisely, he demonstrated [14, pp. 192-196.] that the factors

{
ϕJk : k ≥ 1

}
associated

with the questions, issued from CA of a perfect scalogram, converge towards the family
of Legendre polynomial when the number of questions becomes infinite. In addition,
Benzécri demonstrated that in the case of normal correspondences, the factors converge
towards Hermite polynomials. For an illustration, see Benzécri and coll. [14, pp. 481-
486]; see also [18].

3. Variants of Correspondence Analysis (CA)

3.1. Simple CA

Consider some frequency table T of size I × J and of grand total N , where I (resp.
J) denotes the modalities of a single nominal variable (a question). Let’s denote P :=

T/N the associated probability table, Pi :=
∑
j≤J

Pi,j (resp. Pj :=
∑
i≤I

Pi,j ), and

PI := (P1, · · · , Pi, · · · , PI) (resp. PJ := (P1, · · · , Pj , · · · , PJ)) the marginal column
(resp row) profiles. The aim of simple CA is to highlight the ways P differs from the
I × J matrix PI ⊗PJ of general entry Pi Pj (independence of the rows and columns).
Practically, it consists in performing the Generalized Singular Value Decomposition
[34] of the matrix Θ of general entry θi,i := Pi,j

Pi Pj
, giving rise to a system of singular

values and singular vectors
(
λm;ϕIm, ϕ

J
m

)
: 0 ≤ m ≤ M∗ := min (I − 1, J − 1) − 1,

with the trivial factor
(
λo;ϕ

I
0, ϕ

J
0

)
=
(
0,1I ,1J

)
. The singular vectors are centered and

normed:

∀ (m, p) ∈M∗ ×M∗,
∑
i≤I

Pi ϕ
I
m,i ϕ

I
p,i =

∑
j≤J

Pj ϕ
J
m,j ϕ

J
p,j = δpm (1)

were δpm :=

{
1 if m = p

0 if m 6= p
is the usual Dirac symbol.

In addition, they fulfill

∀ (m, p) ∈M∗ ×M∗,
∑

(i,j)∈I×J

Pi,j ϕ
I
m,i ϕ

J
p,j = λmδ

p
m. (2)

One obtains this way a first decomposition of the Pearson chi-squared statistics X2

along the singular vectors:

X2

n
=

M∗∑
m=1

λ2
m. (3)

Remark 1. Other kinds of tables (similarity measures, ratings, etc) can be submitted
to CA [14]; they are not considered in this study, which focuses exclusively on true
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contingency and indicator tables.

3.2. A natural extension: Multiple Correspondence Analysis (MCA)

The above contingency table T can be constructed from the complete disjunctive
table U = (U1 | U2) ∈ N × (I + J) with N rows and (I + J) columns, assigning to
the rth individual the row r of U obtained by concatenation of the pair of logical
vectors describing this individual. It is well-known [15, 16, 43] that the CA of U is
equivalent (with slightly different eigenvalues and eigenvectors [5, Section 6.2]) to the
CA of the Burt table BU := UtU or to the CA of T, which is the sub-table Ut

1U2 of
BU. Consequently, classical CA can be straightforwardly generalized to the analysis
of Q > 2 questions (MCA). MCA consists in analyzing the complete disjunctive table

U = (U1 | U2 | · · · | UQ) ∈ N ×
∣∣∣W(Q)

∣∣∣ of width
∣∣∣W(Q)

∣∣∣ :=

Q∑
q=1

wq, where wq denote

the number of modalities (width) of the qith question. We will denote W(Q) = W1 ⊕
W2 ⊕ · · ·WQ (where ⊕ is the concatenation operation) the direct sum of all the
possible answers to the Q questions.

Any Burt’s table issued from an experience can be considered as a realization
of a multinomial distribution, whose parameters consist in some probability ma-
trix PW(Q),W(Q) equipped with a special blocks structure exclusively depending on
(w1, · · · , wQ).

Due to the special structure of U , issues from the associated MCA have several
characteristics [43]:

• the rank of the analysis is less than MU :=
∣∣∣W(Q)

∣∣∣−Q ≤M∗
• the total variance is

|W(Q)|
Q − 1

• the part of variance associated with the qth question is wq−1
Q .

Remark 2. Lebart and Saporta [44] reported that the foundations of MCA were also
laid by Guttman, in 1941!

4. Significance of eigenvalues in PCA, CA and MCA

4.1. Inference about eigenvalues in PCA, in connection with the
bootstrap approach

Theoretically, the distribution of the sample covariance matrix of a random vector
of size J obeying N (0,Σ) is known: it is a Wishart distribution, whose eigenvalues
are also known [4]. When Σ = IJ , the expression of these eigenvalues is less compli-
cated [43] but it is still very complex and, above all, this case is quite unrealistic,
with very little practical utility. Consequently, researchers used instead simulations,
or resampling methods such as the bootstrap.

Practically, in the large sample case (N � J), the sample covariance Σ̂ can be

considered as a good estimate of Σ and one can accept that λk (Σ) ≈ λk

(
Σ̂
)

, but

things change in the case of high dimension, when J
N 7−→

N→∞
γ > 0. Then, if γ is not

close to zero, the standard estimate λ1

(
Σ̂
)

of the first eigenvalue λ1 (Σ) overestimates

4



it, and the bootstrap estimate of the bias λ1 (Σ)− λ1

(
Σ̂
)

is itself highly biased [31]!

Indeed, according to El Karoui and Purdom [31], the bootstrap completely changes the
geometry of the dataset by re-weighting the observations, giving rise to an important
bias. In the same high-dimensional setting, Hendrikse et al. [38] considered an iterative

bootstrap approach to diminish the bias
∥∥∥λ (Σ)− λ

(
Σ̂
)∥∥∥, but obtained better results

with another method, also based on the Marcenko-Pastur theorem [39]. Consequently,
bootstrap methods do not work well for obtaining good estimates of the eigenvalues
in PCA, except when N � J . Since CA can be considered as a special case of PCA,
the situation is similar for the eigenvalues of CA. For instance, studying two different
textual datasets, Alvarez et al. [1, 2] found that bootstrap eigenvalues estimates were
highly positively biased.

To sum up, the bootstrap is much better-suited for studying the stability of princi-
pal axes [1–3, 43] than for estimating eigenvalues or testing their significance. Conse-
quently, we will give in Section 6 preference to randomization methods for testing the
significance of eigenvalues.

4.2. Inference about eigenvalues in CA and MCA

4.2.1. The independence trace test

Let’s remind first the relationships between the eigenvalues
{
λi : 1 ≤ i ≤MU

}
issued

from the CA of the binary table U = (U1 | U2), those issued from the CA of T =

Ut
1 U2:

{
(2λi − 1)2 : 1 ≤ i ≤M∗

}
and those issued from the Burt table BU := UtU

[15, 16, 34, 43]:
{
λ2
i : 1 ≤ i ≤MU

}
. Thus, the eigenvalues issued from the analysis of

U or BU can be obtained from those of T and all the eigenvectors too, up to simple
symmetries [34, pp. 130-133]. In classical (binary) CA, the unique rigorous test (trace
test) is based on the Pearson chi-squared statistics X2 defined by (3) which is the
trace of the operator associated with BU. Under the hypothesis of independence of
the columns and rows of T, X2 asymptotically obeys χ2 ((I − 1) (J − 1)) [14]. It is
possible to build a similar trace test in the general case of Q questions, based on the
set Λ := 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λMU ≥ 0 of non-trivial eigenvalues issued from the CA
of U = (U1 | U2 | · · · | UQ). This has been done by the first author, in an unpublished
document [48].

Notice first that any Burt’s table BU issued from an experience with N individuals
can be considered as a realization of a multinomial distribution, whose parameters de-
pend on some unknown probability matrix PW(Q),W(Q) , whose estimation P̂W(Q),W(Q)

by empirical proportions is the maximum likelihood one. Consequently, under the
classical hypothesis of independent sampling, the Pearson statistics

|W (Q)|∑
i=1

|W (Q)|∑
j=1

(
BUi,j

−N Pi,j
)2

N Pi,j

tightly associate with the trace of the CA of BU should (naively) obey χ2
DF (Q,W (Q))

(asymptotically), where DF
(
Q,W (Q)

)
denotes the number of free parameters of the

considered space of Burt’s tables. But, due to the special blocks structure of such
tables, this is a bit more complicated.
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Proposition 4.1. [48] Under (H), the distribution of N
(∑M

m=1 λ
2
m −

W−Q
Q2

)
obeys

χ2
(
ΓQ − (Q− 1)W + Q(Q−1)

2

)
, where ΓQ :=

∑
1≤q1<q2≤Q

wq1 wq2 .

Remark 3. The term W−Q
Q2 stems from the contribution of all the diagonal block

matrices of P̂ to the trace of CA: it’s a natural correction of the total inertia. Con-
sider now the probability P̂ associated with BU , and two questions i and j. The test
proposed in [48] was based on the following modified probability:

P̃qi qj :=

{
P̂qi qj if i 6= j

P̂qi P̂qj if i = j
.

But Manté [48] didn’t analyze P̃ , while Greenacre went further with Joint Correspon-

dence Analysis [19, 23], analyzing only the off-diagonal part of P̂ (or P̃ as well).

Remark 4. One can find in the literature [10, 45] an apparently dif-
ferent formulation for the number of d.f. in the independence test:((
−Q+

∑
q≤Qw

q
)2
−
∑

q≤Q (wq − 1)2

)
/2; this value comes from a paper of

Bekker and de Leeuw [11], and indeed matches with ours.

4.2.2. Confidence intervals

Benzécri [16] highlighted the typical value λ̄ := 1/Q, as the “average eigenvalue”
issued from the MCA of U. Consequently, he proposed to discard all the eigenvalues
smaller than λ̄ and to supersede the classical part of variance λ2 apportioned to each
eigenspace by

ρ (λ) :=

(
Q

(Q− 1)

(
λ− λ̄

))2

. (4)

More recently, Ben Hammou and Saporta [12], [13] reported that under (H), λ̄
is the unique non-trivial eigenvalue issued from the theoretical MCA of U, with
multiplicity Q. They also showed that, under the same hypothesis, the dispersion of
non-trivial eigenvalues around λ̄ is given by

S2 :=
1

Q2N MU

∑
i 6=j

(wi − 1) (wj − 1) .

In addition, they showed that

√
N

(
1

Q
− λk

(
Σ̂
))
−→
N→∞

N (0,S)

and reported that this convergence in distribution is very slow for largest and smallest
eigenvalues. Thus the confidence interval

[
λ̄− 2S, λ̄+ 2S

]
should contain about 95%

of the eigenvalues in the case of pairwise independence of the questions (see Figures 2,
4, 6, 8 and 10).
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5. Ordinal Correspondence Analysis (OCA)

Suppose now the categories I and/or J are ordered: this is not taken into account by
CA. That is why Beh [6] developed Ordinal Correspondence Analysis (OCA), resulting
in a decomposition of the Pearson chi-squared statistics X2 different from (3). In [6],
this author proposed two variants of OCA, corresponding to the cases of singly-ordered
or doubly-ordered contingency tables. We will focus on the first one, which gives rise
to the hybrid decomposition [8, 9] of X2. Since both Beh’s methods require to
compute orthogonal polynomials, we will focus in the next section on this important
topic.

5.1. Computation of orthogonal polynomials

Classically [25, 27], one consider the real line equipped with a nonnegative (absolutely
continuous, discrete, or a mixture of these categories) measure λ, such that all its mo-
ments µk defined by

µk :=

∫
R
tk dλ (t)

exist. Then, there exist an Hilbertian basis {b0 (t) , b1 (t) , · · · , bk (t) , · · · } of L2
λ consist-

ing of orthogonal polynomials. That is how classical orthogonal polynomials (Legendre,
Chebyshev, Laguerre, Hermite, Krawtchouk, etc) are defined, with respect to various
measures.
Despite of its apparent simplicity, the construction of such bases is delicate. One could
try to use the Gram-Schmidt method, but it is lengthy and the orthogonality between
the bk (t) rapidly deteriorates [32]. Consequently, for computing discrete orthogonal poly-
nomials, Emerson [32] used the Christoffel-Darboux method (named Stieltjes procedure
by Gautschi [25]). Contrary to the Gram-Schmidt one, it only applies to polynomials; it
is based on the following three-term recurrence relation (in the notations of Beh [7]):

bk (j) = Sk ((s (j)− Tk) bk−1 (j)− Vk bk−2 (j)) (5)

where s (j) is the value of the score associated with the jth modality of the ordinal
variable. Notice that, in the Emerson’s terminology, s (j) is the jth sampled abscissa xj .
The coefficients in (5) are given by

Tk :=

J∑
j=1

λj s (j) b2k−1 (j)

Vk :=

J∑
j=1

λj s (j) bk−1 (j) bk−2 (j)

Sk: :=

√√√√−T 2
k − V 2

k +

J∑
j=1

λj s2 (j) b2k−1 (j)

(6)

where λj = Pj is the weight assigned to the position xj := s (j) in the interval
[s (1) , s (J)]. Clearly, one can infer from formulas (5,6) that Emerson’s polynomials are
totally data dependent. Since any linear transformation of the score does not change
the values of the orthogonal polynomials [7], we can indeed suppose that the common
support of all scores is [s (1) , s (J)] (fixed). Then, changing of score merely changes
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the position of the abscissas “sampled” in this interval. Notice now that formulas
(6) are discrete approximations of integrals corresponding to true moments, and that
these formulas can be seen (roughly speaking) as quadrature rules [27] for computing the
coefficients involved in (5). This fact explains that “when comparing different types of
scores, most of them will give similar results” [7]. Furthermore, if the discretization as-
sociated with the pairs {(λ1, s (1)) , · · · , (λj , s (j)) , · · · , (λJ , s (J))} has been ill-designed,
the construction of {b0 (t) , b1 (t) , · · · , bk (t) , · · · } will more or less severely fail.
From another side, the recurrence formula (5) itself can exhibit some kind of “pseudosta-
bility”, even in well-known theoretical condition [26, 27], particularly if the sampled
points are equally, or nearly equally, spaced. This is the case of the ”natural score” pro-
posed by Beh [7]. In such cases, the accuracy of the bk (•) computed from (5) may
severely deteriorate as k approaches J . Fortunately, this is not very handicapping for us,
since high degree bk (•) are of no practical importance because of their very high variance
estimation (Rayner and Best [51] recommended to rule out polynomials of degree > 4).
For more insights on orthogonal polynomials, see the nice paper of Gautschi [27].

5.2. The OCA procedure

From now, we will suppose that the ordered set of categories is J , while the row
set I is merely nominal. We will denote {Pp, 1 ≤ p ≤ J − 1} the system of column
orthonormal polynomials (in the terminology of Beh [9]), sampled on {1, . . . , J}, which
play in OCA the role that principal axes play in CA; for an example, see Figure 3. They
only depend on the marginal distribution PJ and on some user-assigned score s (i.e.
a positive monotone function on J , which codes the ordinal structure of modalities [7]).
Like in CA, the rank of the analysis is M∗ = min (I − 1, J − 1)−1. These polynomials
are characterized by the relationship:

∀ (m, p) ∈M∗ ×M∗,
∑
j≤J

Pj Pm,j Pp,j = δpm (7)

which is quite similar to (1), but note that they are not orthogonal to the factors issued
from CA (in other words, there is no relationship like (2)). Denoting Φ the I ×M∗
matrix of non-trivial singular vectors issued from CA, and P∗ the matrix of column
orthonormal polynomial with the first (trivial, constant) column vector omitted, Beh
[8, 9] considered the matrix of interactions

Z := Φt PP∗ ∈M∗ × (J − 1)

associated to the following decomposition of X2:

X2

n
=

M∗∑
f=1

J−1∑
p=1

Z2
f, p (8)

where Z2
f, p (square of the entry of Z of row f and columm p ) measures the intensity

of the relationship between the polynomial of degree p , Pp, and the f th factor ϕJf
(hybrid moment; for further details, see [8]).
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The information bore by ϕJf can be partitioned [9] in function of the polynomials:

λ2
f =

1

n

J−1∑
p=1

Z2
f, p. (9)

We can measure the overall information bore by Pp by the positive number µp:

µp :=
1

n

M∗∑
f=1

Z2
f, p (10)

obtaining this way a supplementary partition of X2:

X2

n
=

J−1∑
p=1

µp. (11)

Notice that Formula (9) shows that Z2
f, p/nλ

2
f is the relative contribution of Pp to

the variance of ϕJf .

Definition 5.1. Let us fix some 0 < ρ ≤ 1; we will write out that ϕJf
ρ
≈ Pk if(

Z2
f, k/nλ

2
f

)
≥ ρ.

5.3. Choosing the score

As we saw in Section 5.1, the choice on the score in OCA can have an influence on the
polynomial basis used in the analysis and consequently on its results.
This topic has been investigated from other points of view by Beh [7], Sarnacchiaro
et al. [53], either for classical a priori scores, or a posteriori scores issued from a
preliminary multivariate analysis (CA in the case of Beh [7], NSCA in the case of
Sarnacchiaro et al. [53]). More precisely, Beh [7] noticed that, in the case of a doubly-
ordered table (DOCA in the terminology of Lombardo and Beh [45]) “the correlation
between two scoring schemes is equivalent to the correlation of their associated first
non-trivial orthogonal polynomials”; consequently, the similarity between the results
associated with various a priori scoring schemes can be roughly predicted. In addition,
Beh [7, pp. 419-421] suggested to use singular vectors resulting from a preliminary
classical CA as scores for DOCA; we will indeed adopt this strategy.

5.4. Significance tests in OCA

In the singly-ordered case, OCA gives rise to several significance tests since, asymptot-
ically, each column component nµp ∼ χ2 (M∗) because the user-assigned score s
is not estimated [52]. For the same reason, in the doubly-ordered case, a three-level
battery of tests is available [6, 51] : at each (m, p) cell level, at each column component
level, at each row component level, and of course at the global level (see [49] for an
application in marine ecology).
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But here, the situation will be different, because the chosen score will highly depend
on the data! Consequently, we will have to perform permutation tests.

Remark 5. A similar approach for processing ordinal data with the help of discrete
orthogonal polynomials was adopted by Haberman [37] in the setting of Log-linear
models (see also Ben Hamou and Saporta [13]).

5.5. Extension to MCA

Beh and Lombardo [10], Lombardo and Beh [45], Lombardo and Meulman [46]
proposed an extension of MCA to ordinal variables (OMCA). It generalizes the
singly-ordered CA proposed by Beh [8], where the columns (say) of the studied table
are ordered while the columns are not, to the case where the columns consist of Q ≥ 2
blocks associated to ordinal variables (in other words, the complete disjunctive table
U equipped with an order for each block). In OMCA, to the qth block is associated

a family Pq :=
{
Pq

0, · · · ,P
q
wq−1

}
of orthogonal polynomials associated with some a

priori score, and each individual (row) belongs to the direct sum space generated by

the orthogonal basis ⊕Qq=1Pq. These authors stress that the position of the column
categories in OMCA and classical MCA are the same, while the position of the
individuals in OMCA greatly differ from those issued from MCA.

6. The proposed method

Since simple CA is a special case of MCA (see Section 4.2.1), we directly considered

some complete disjunctive table U = (U1 | U2 | · · · | UQ) ∈ N ×
∣∣∣W(Q)

∣∣∣ . The first

factor issued from MCA of U is ϕ1 =
(
ϕ1,1, . . . , ϕ1,|W(Q)|

)
; let us denote π the permu-

tation of W such that ϕ1,π(1) ≤ ϕ1,π(2) ≤ · · · ≤ ϕ1,π(|W(Q)|), and consider the sorted

first factor(
x1, . . . , x|W(Q)|

)
=
(
ϕ1,π(1), ϕ1,π(2), . . . , ϕ1,π(|W(Q)|)

)
:= π � ϕ1. (12)

Suppose now the Guttman effect is present; we should have: ϕ2,π(w) = π � ϕ2(w) =

P2 (xw), where P2 is some polynomial of degree 2 such that
∑

w≤|W(Q)|
xw Pw ϕ2,π(w) = 0

while
∑

w≤|W (Q)|

xw Pw xw = 1 and
∑

w≤|W(Q)|
ϕ2,π(w) Pw ϕ2,π(w) = 1, because of (1). After-

wards, if the scalogram associated with U is perfect, we will have π � ϕ3 = P3 for
some degree 3 polynomial, etc. This is exactly the construction of Emerson [32], which
is the basis of Beh’s method [6]! Thus, the hybrid decomposition of X2 will enable us
to infer the order of the Guttman effect. Indeed, since in both cases (CA and OCA)
the orthogonalization process starts with P0 = C0 and P1(x) = C1,0 + C1,1x (with
suitable constants), if the next factors are polynomials too, they should match with
Emerson’s polynomials. Thus, the proposed method consists in

(1) performing MCA of U, obtaining ϕ1 and sorting its coordinates, changing the

10



same way the order of the variables in the table (individuals can be processed
the same way): U→ π �U

(2) perform OCA of the singly-ordered table π �U, using the variable x defined in
(12) as the score

(3) investigate the similarity between π � ϕk and Pk, for each k ≥ 2.

Remark 6. It is well-known that (M)CA can be considered as an optimal scaling
method [54] (see also Section 2 and [33]): this is even the ”Dutch approach” of multi-
variate analysis [47, 50]! We will follow this approach, using the optimal scaling of the
columns resulting from MCA of U as a score for OCA of this singly-ordered multiple
indicator table; thus, we consider a unique family

{
P0, · · · ,P|W (Q)|

}
of polynomials.

One should obtain quite different results with OMCA (see Section 5.5), but our goal
is different too...

In reference to Equation 9, we now use Definition 5.1 to lay a first definition of the
order of the Guttman effect.

Definition 6.1. The Guttman effect is of order K ≥ 1 for some fixed 0 < ρ ≤ 1 if

K = arg max
k≤MU

(
π � ϕk

ρ
≈ Pk

)
.

In reference to Equations (3, 8, 11), we laid supplementary definition requiring some
inference.

Definition 6.2. The interaction Zf, k is strongly significant if

Zf, k
α
6= 0 ∧

(
λf

α
6= 0 ∧ µk

α
6= 0

)

where the expression Zf, k
α
6= 0 (resp. λf

α
6= 0 or µk

α
6= 0) means that the interac-

tion between π � ϕf and Pk (resp. the role of this eigenvalue or this polynomial) is
statistically significant at some fixed level 1− α.

Definition 6.3. The Guttman effect is strongly of order K if

K = arg max
k≤MU

(
Zk, k

α
6= 0 ∧

(
λk

α
6= 0 ∧ µk

α
6= 0

))
.

Remark 7. Since the chosen score is highly dependent on the data, the tests proposed
in [6, 8] are inapplicable in our case: we will have instead to perform the permutation
tests detailed hereunder.

6.1. Randomization

Permutation tests (or sometimes cross-validation [21, 29]) are frequently used in Mul-
tivariate Analysis [22, 28, 30], because of the complexity of the distributions involved
(see Section 4). Here, we build from the original table U a convenient number K of

random tables Uτ :=
(
Uτ1

1 | U
τ2
2 | · · · | U

τQ
Q

)
∈ N ×

∣∣∣W(Q)
∣∣∣ , such that the block

11



U
τq
q is obtained from Uq by permuting all the wq columns of each row r with some

random permutation τq (r). The random matrix Uτ is similar to U: it has the same
dimensions, the same grand total and the same marginal probability 1

N Q1N , and it is
a complete disjunctive table. But relationships between the Q variables are completely
destroyed.

The hybrid decomposition of π � U simultaneously give rise to the spectra Λ :=

(λ1, · · · , λMU), the vector of moments Ξ :=
(
µ1, · · · , µ∣∣W(Q)

∣∣-1
)

and the table of in-

teractions Θ :=
(
Zf, p, 1 ≤ f ≤MU, 1 ≤ p ≤

∣∣∣W(Q)
∣∣∣− 1

)
associated with the sorted

data. Consider now the K randomized tables {π1 �Uτ
1 , · · · , πK �Uτ

K}, associated
with the hypothesis (H) of pairwise independence of the variables. Since the analysis
of each one of these tables (πr �Uτ

r , say) give rise to some (Λr, Ξr, Θr), the inference
on eigenvalues (resp. moments, interactions) will consist in comparing each λf (resp.
µp, Zf, p) with the distribution of the randomized analogues, recorded in the series
{(Λr, Ξr, Θr) : r ≤ K}. Then, we will be able to draw box-plots of these quantities
and/or decide with respect to some fixed threshold α, whether or not each interac-
tion Zf, p is significant, and whether or not the eigenvalue λf (resp. moment µp) is
significant.

After a few trials, we systematically fixed the number of permutations
to K = 100, and α to 0.1.

7. Application to artificial data

First, we tested the method on artificial data, either totally random or presenting
by construction the Guttman effect. The latter dataset consisted of three functions
supported by [−a, a] with a = 1.23758, corrupted by a uniformly distributed noise
of increasing level σ. For each one of these functions, f(x) say, we calculated f̄ :=

max
x∈[−a,a]

f(x), f := min
x∈[−a,a]

f(x) and divided R into a family F of seven disjointed

intervals:

F =

{
]−∞, f +

(f̄−f)
3 ], · · · , ]f̄ − (f̄−f)

3 ,+∞[

}
.

Then, we generated the data

{yk = f(xk) +Dσ, 1 ≤ k ≤ 200} (13)

where Dσ denotes the uniform distribution on

[
−σ(f̄−f)

6 ,
σ(f̄−f)

6

]
, with σ ∈

{0, 0.1, 0.5, 1, 1.5, 3} and xk denotes the kth Chebyshev point on [−a, a]. The chosen
functions were:


Θ (x) := 20 arcsin

(
x
a

)
f(x) := (5(x+ 1)− 3)(5(x+ 1)− 6)(5(x+ 1)− 9)/5

g(x) := −50 x exp
(
−
√
a+ x

)
and the obtained data are plotted on Figure 1.

[Figure 1 about here.]
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Each yk was then assigned to the right interval of F (logical coding), giving rise
to some binary table, and the complete table U = (U1 | U2 | U3) ∈ 200 × 21 was
submitted to CA. The 21 characters associated with the three functions and the seven
intervals were labeled {Θ1, · · · ,Θ7}, {f1, · · · , f7} and {g1, · · · , g7}.

7.1. Analysis of a random dataset

It consisted in a purely random table U = (U1 | U2 | U3) ∈ 200 × 21. At the level
0.9, the trace test of Section 4.2.1 didn’t indicate any structure in these data. This is
confirmed by Figure 2: none of the eigenvalues (except the fifth one, by chance) was
significant, and all of them were situated in the confidence band given by [12] (see
Section 4.2.2). More precisely, on the left upper panel of Figure 2, one can find:

• the plot of eigenvalues (black stars and dashed curve)
• the typical value λ̄ and the confidence band given by [12, 13] (gray horizontal

lines)
• the box-plot of eigenvalues issued from randomization, and the associated quan-

tiles of order 0.9 (green curve).

On the right panel, the reader will find the corresponding information (when it is
available) for the polynomials: while none of the eigenvalues seemed significant, the
coefficients of polynomials of degree 1 and 3 were slightly above the corresponding
quantiles of order 0.9.

[Figure 2 about here.]

In addition, Figure 2 shows that, even if a lot of interactions were significant at the
prescribed level, the Guttman effect was absent, since no interaction was compatible
with Definition 6.2, for α = 0.1.

7.2. Analyses of the functional datasets

We analyzed the six datasets associated with σ ∈ {0, 0.1, 0.5, 1, 1.5, 3} but, for sake of
brevity, we will only detail two cases; the complete results are summarized in Table 1.

Consider first a moderately noisy dataset, generated according to formula (13) with
σ = 0.1 (see Figure 1). We plotted on Figure 3 the six first Emerson’s polynomials
associated with the first eigenvector of CA as a score (21 characters: 3 variables, seven
intervals). Formulas corresponding to the four first ones are: 0.999886x−0.000162283,
2.33877x2 + 2.40305x − 2.33969, 2.95361x3 + 5.83345x2 − 0.619064x − 2.79967 and
8.49825x4 + 18.6544x3 − 3.41594x2 − 13.9222x+ 3.5578.

[Figure 3 about here.]

According to the trace test, (H ) was clearly rejected while, according to the permu-
tation tests, 5 eigenvalues and 5 polynomials were significant (see the upper panels of
Figure 4).

[Figure 4 about here.]

Furthermore, one can see on the lower right panel of Figure 4 that a Guttman effect
could be detected, which was strongly of order 3 (black cells on the diagonal of the
table of interactions). The first principal plane is represented on Figure 5; notice that
both variables and individuals are projected on a common parabola.

13



[Figure 5 about here.]

Consider now a much noisier dataset, with σ = 3 (see Figure 1). According to the
trace test, (H ) was accepted; nevertheless, contrary to the purely random case (see
Figure 4), a single factor and a single polynomial could be detected on the upper
panels of Figure 6; this is confirmed on the lower right panel of the figure.

[Figure 6 about here.]

The first principal plane is represented on Figure 7. Notice that variables don’t
exhibit any particular structure, while individuals are projected yet on some
”fuzzy parabola”. So, no Guttman effect could be detected by the tests in this case.
Nevertheless, thanks to CA, one can suspect its reality, although the functional nature
of the data has been blurred by the noise.

The main results are displayed on Table 1; one can see that the Guttman effect was
of order 3 (for ρ = 0.4), except for very noisy data; the strong Guttman order was
similar, with higher fluctuations.

[Figure 7 about here.]

When a stronger similarity was demanded (ρ = 0.8) the order of the Guttman effect
decreased, but it was still unveiled, except for data contaminated by some high level
of noise.

[Table 1 about here.]

8. A toy dataset: the archaic Chinese vases data

We will exemplify a data set analyzed by Benzécri and his collaborators [14, pp.
323-325], after Elisseeff [24] who used Guttman’s permutation methods. The original
dataset [14, 24] was a contingency table: 17 types of vases (“large Yeou”) described by
8 binary characters. Notice there were indeed 112 vases assigned to these 17 types.
Eliminating four characters, Benzécri and his collaborators [14, pp. 323-325] built a
sub-table resulting in a perfect scalogram. We built from this sub-table the complete
disjunctive table U = (U1 | U2 | U3 | U4) ∈ 112 × 8, and analyzed it. According to
the trace test, (H ) was rejected (p-value: 10−5).

The reader can see on the upper panels of Figure 8 that, according to the permu-
tation tests, a single eigenvalue and two polynomials were statistically significant at
the level 0.9, while a single interaction was strongly significant (right lower panel of
Figure 8). U could be represented by a perfect scalogram, and the detected Guttman
effect was of order two (see the right panel of Figure 9).

[Figure 8 about here.]

Remark 8. We plotted on the left panel of Figure 9 similarities between all the sorted
factors π � ϕf and Pk (with 0.1 as a threshold), and similarities between the pairs
(π�ϕk, Pk), on the right panel. Both figures show a clear Gutmann effect of order two,
but it is worth noting (see the left panel of this figure) that further factors were similar
to others Beh’s polynomials... More precisely, while the similarity between π�ϕ2 and
P2 was 0.984977, we found that between π � ϕ3 and P4 it was 0.564397; π � ϕ3 and
P5 corresponded to 0.380075, while the similarity between π�ϕ4 and P6 was 0.98357!
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[Figure 9 about here.]

In conclusion, these archaic Chinese vases presented a Guttman effect of order two,
but not statistically significant (strongly of order one)...

9. Application to the synchrotron X-ray diffraction dataset

Lessivage is among the most widespread processes in soils and it has been described
in many soils types. This process is defined as a substantial vertical transfer of fine
particles from a horizon, called eluviated horizon to another horizon referred to illuvi-
ated horizon. It was experimentally simulated in lab (i.e. simulation on a sequence of
rainfall events) to identify the processes and factors responsible for it. The lab exper-
iment setup consists in a sequence of 30 rainfalls on undisturbed and unsaturated soil
columns of decimeter size. As smectites were described as especially sensitive to elu-
viation, an experiment, designed to simulate illuviation, consisted in columns made of
two overlaid soil monoliths, the upper one contained smectite while the lower one did
not (for more information, see [20]). Thin sections were made in the lower monoliths
for different amounts of rain and different rainfall intensities. Localizing and deter-
mining the mineralogical composition of these thin sections by mapping them with a
focused X-ray beam (for lateral resolution) would allow to locate structural changes
due to lessivage, thanks to the presence of eluviated smectite. X-ray diffraction (XRD)
is used for this purpose. For technical reasons (need of micron-sized collimated intense
X-ray beams), analyzing them with a conventional lab X-ray diffraction device is im-
possible in our case and synchrotron X-ray diffraction had to be considered. However,
with that technique, the main peaks classically used for clay identification were not
recorded, and the relative intensities of the different diffraction peaks are meaningless.
Indeed, with a probed sample volume of 10× 10× 30 µ m3 and ”large” sizes of crys-
tallites (within the micron), the sample is very far from what a powder used in XRD
experiments would be. Consequently, depending on the size, number and orientation
of the crystallites present in the illuminated volume, the diffracted signal is, in the
most favorable case, a spotty one approximating the ring- shape (2θ = constant) of a
diffraction peak. Even if using an area detector (like in our experiment) and consider a
random orientation of crystallites, it is still possible that no crystallite will diffract in
the detector (i.e. missing Bragg peak) or, in a more favorable case, to detect intensity
originating only from few crystallites (i.e. only few spots on the area detector). Conse-
quently, the corresponding detected scattered intensity is not representative anymore
to be used in a structure refinement procedure. This can be summarized as follows: if
a Bragg peak is not detected, it does not mean the corresponding lattice does not exist
(possibly no crystallites oriented in Bragg condition). If a Bragg peak is detected, the
corresponding inter-reticular distance is present and fulfill Bragg law (but the corre-
sponding detected intensity is meaningless, since not proportional to the quantity of
the corresponding crystalline phase in the investigated volume, even after structure
factor correction). The low number of crystallites in the probed sample volume (due
to the large grain sizes) is the origin of both of these issues.

Therefore the herunder preliminary analysis, consisting in investigating the feasi-
bility of identifying the minerals of interest by synchrotron X-ray diffraction mapping
of soil features, was unavoidable. More precisely, if each mineral was associated with
a specific group of “coding diffraction angles”, the minerals could be considered as
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independent: the detection of angles associated with some mineral S, say, would bore
no information about the possible detection of S′ 6= S. But it is not the case: many
angles are paired with several minerals! Moreover, as it will be shown later in this
paper, there is co-localization / coexistence of phases on particular lateral positions
on the sample slab. That’s why it was relevant to analyze the relationship between
angles and minerals.
9.1. The coding used

The following list of minerals was selected: {Feldspars, Goethite, Illite, Kaolinite,
Maghemite, Quartz, Smectite}. All the minerals were characterized (in 0/1) by 228
diffraction angles, each angle making possible to detect one or several minerals. Each
mineral S was thus associated with a binary vector of length 228.

Notice that the masses (number of characteristic angles) of these 7 vectors were very
different from each other (see Table 2), and that each one of the minerals is associated
with a smaller number of exclusive angles. Consequently we split each S into S+

(detection of S) and the “anti-mineral” S− (non-detection of S) in order that all the
minerals, described by both these variables, had the same weight: 228. In addition,
any S, characterized by the pair (S+, S−), will have 1

Q = 1
7 as part of variance (see

Section 3.2). So, no mineral was favored in the CA of the resulting 228 × 14 binary
table.

[Table 2 about here.]

9.2. Results of the tests

We displayed on Figure 10 issues from the analysis of this table, which are rather simi-
lar to Figure 6. According to the trace test, the variables seemed independent, while ac-
cording to the permutation tests, two polynomials (of degree 1 and 13) and two factors
were significant. These factors were accounted for 23% and 18% of the total variance,
respectively, or 80% and 15% if we adopt the Benzécri’s correction for percentages of
inertia (4) based on the three first eigenvalues (see Figure 10). A number of interactions
were retained by the permutation test, but only Z1, 1 and Z1, 13 were strongly signifi-
cant. It is worth noting here, in connection with the considerations of Section 5.1, that
the orthonormality relationship (7) between Beh’s polynomials gradually deteriorated
for degrees greater than 11; more precisely,

∑
j≤J Pj P13,j Pp,j ≈ 3. 10−5 for p ≤ 3. So,

we cannot be sure that the three last polynomials were determined with a satisfactory
precision...

[Figure 10 about here.]

Thus, there was no Guttman effect in this case, and only the first factor was un-
doubtedly significant. It is displayed on Figure 11, together with the second factor
(not significant). Interestingly, none of the “anti-minerals” (except Feldspars-) seems
to play an important part in the analysis. We can distinguish along the first factor
six clusters of variables: Goethite+, Quartz+, {Kaolinite+, Feldspars-}, Feldspars+,
{Maghemite+, Illite+}, {Smectite+, Goethite-, Illite-, Maghemite-, Quartz-, Smectite-
} and Feldspars+.

In conclusion, only this common structure seems meaningful, while the remaining
variability is noise.

Remark 9. The fact that Smectite+ and Smectite- are very close to each other along
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factor 1 means on the one hand that this mineral is rather hard to detect for us and,
on the other hand that the presence or absence of Smectite does not depend much on
the other minerals of interest. This is perhaps due to the fact that it possesses a single
exclusive angle (see Table 2), but Maghemite shares the same property.

[Figure 11 about here.]

10. Conclusion

We propose a method for detecting the existence of a Guttman effect in a complete
disjunctive table, with a given level of confidence.

Firstly, we recall results from the literature about the significance of eigenvalues
resulting from the MCA of such tables, and about the χ2 independence test for associ-
ated Burt’s tables. Thanks to the randomization method proposed afterward, we are
able to test the presence of this phenomenon and its order K (i.e. the maximum degree
of the significant polynomials). The data could in this case be approximately repre-
sented by a parametric curve in RK and, as a consequence, the original table could
be roughly reconstituted (filtered) from the first K components of either CA or OCA,
thanks to the reconstitution formulas (it seems that JCA works better than MCA
for data reconstruction [19]; nevertheless superseding MCA by JCA in the proposed
method is not straightforward).

The original table could be this way split into a table associated with the Guttman
effect, and a residual. When the Guttman effect is associated with some gradient, its
influence could be eliminated by considering only the residual table. This method is
related to the ”detrending-by-polynomials” approach of DCA, but in this case the
existence and the order of the phenomenon could be tested (not postulated), and
the polynomials used for a possible detrending would be directly associated with the
Guttman effect, instead of being arbitrary. At last, while the importance of some
component is classically measured by the corresponding eigenvalue, in the case of a
Guttman effect of order K, it would be consistent to measure the importance of the
first component by the sum of the K first eigenvalues.

With a view to future work, it would be judicious to improve the computation
of the orthogonal polynomials. This problem has been tackled by Gautschi [25, 27],
who proposed to supersede the Stieltjes procedure (5,6) by the modified Chebyshev
algorithm. Roughly speaking, it consists in the orthogonalization (in L2

λ) of some
standard family of orthogonal polynomials (Legendre, Chebyshev, Laguerre, Hermite,
Krawtchouk, etc), much better conditioned, thanks to another recurrence relation
found by Chebyshev in 1859 [27].

The method detailed in this work has been implemented in a Mathematica [56]
package, available from the first author (work in progress).
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Thèse de 3 ème cycle, Université Pierre et Marie Curie, Paris, 1981.

[49] C. Manté, G. Bernard, P. Bonhomme and D. Nerini, Application of ordinal correspondence
analysis for submerged aquatic vegetation monitoring, Journal of Applied Statistics (2013),
40, 8, pp. 1619-1638.

[50] G. Michailidis and J. de Leeuw, The Gifi system of Descriptive Multivariate Analysis,
Statistical Science (1998), 13, 4, pp. 307-336.

[51] J.C.W. Rayner and D.J. Best, Smooth extensions of Pearson’s product moment correlation
and Spearman’s Rho, Statist. Probab. Lett. 30 (1996), pp. 171-177.

[52] J.C.W. Rayner and D.J. Best, Analysis of singly ordered two-way contingency tables,
Journal of Applied Mathematics and Decision Sciences (2000), pp. 83-98.

[53] P. Sarnacchiaro, A. D’Ambra and L. D’Ambra, CATANOVA for ordinal variables us-
ing orthogonal polynomials with different scoring methods, Journal of Applied Statistics
(2016), 43, 13, pp. 2490-2502.

[54] M. Tenenhaus and F. Young, An analysis and synthesis of Multiple Correspondence Anal-
ysis, Optimal Scaling, Dual Scaling, Homogeneity analysis and other methods for quanti-
fying categorical multivariate data, Psychometrika (1985), 50, 1, pp. 91-119.

[55] C.J.F. Ter Braak, CANOCO - a FORTRAN Program for Canonical Community Ordina-
tion by [Partial] [Detrended] [Canonical] Correspondence Analysis, Principal Components
Analysis and Redundancy Analysis (Version 2.1), Agriculture Mathematics Group, Wa-
geningen (1987).

[56] Wolfram Research, Inc., Mathematica, Version 12.1, Champaign, IL (2020).

20



Figure captions

Figure 1 : Three functions with added noise.
Figure 2 : Random data. Upper plots: statistical significance of eigenvalues and

polynomials coordinates. Lower plots, left panel: complete table of significant inter-
actions (in black) issued from the permutation test; right panel: no interaction was
strongly significant (see Definition 6.2).

Figure 3 : Moderately noisy data: σ = 0.1. Plot of the five first column orthonormal
polynomials, in accordance with Emerson’s paper [32]. A abscissas correspond to the
21 values of the score (first factor of the preliminary CA.

Figure 4 : Moderately noisy data: σ = 0.1. Same structure as in Figure 2. Upper
plots: statistical significance of eigenvalues and polynomials coordinates. Lower plots,
left panel: complete table of significant interactions (in black) issued from the permu-
tation test; right panel (in black): strongly significant interactions (see Definition 6.2).
The right lower panel indicates the existence of a strong Guttman effect of order 3.

Figure 5 : Moderately noisy data: first plane of CA (the 21 variables are plotted in
green/gray).

Figure 6 : Very noisy data: σ = 3. Same structure as Figure 2. Upper plots: statis-
tical significance of eigenvalues and polynomials coordinates. Lower plots, left panel:
complete table of significant interactions (in black) issued from the permutation test;
right panel (in black): strongly significant interactions (see Definition 6.2).

Figure 7 : Very noisy data: first plane of CA. (the 21 variables are plotted in
green/gray).

Figure 8 : The archaic Chinese vases data. Same structure as Figure 2. Upper plots:
statistical significance of eigenvalues and polynomials coordinates. Lower plots, left
panel: complete table of significant interactions (in black) issued from the permutation
test; right panel (in black): strongly significant interactions (see Definition 6.2).

Figure 9 : The archaic Chinese vases data: representation of the table of similarities
between the sorted factors π�ϕf and the Pk. On the left panel, black cells correspond
to similarities greater than the fixed threshold (0.1). On the right panel, we plotted
the values extracted from the diagonal of this table.

Figure 10 : The X-rays diffraction data. Same structure as Figure 2. Upper plots:
statistical significance of eigenvalues and polynomials coordinates. Lower plots, left
panel: complete table of significant interactions (in black) issued from the permutation
test; right panel (in black): strongly significant interactions (see Definition 6.2).

Figure 11 : Coordinates of the minerals on the first plane of CA . Detection variables
(+) are plotted with a yellow background; non-detection ones (-) are plotted vertically,
with a blue background. Remember that the second dimension is not significant.
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Table 1. Artificial data: summary of the obtained results.

σ Guttman effect order Strong order Significant λk Significant µk
ρ = 0.4 (ρ = 0.8) (α = 0.1) (α = 0.1) (α = 0.1)

0 3 (3) 3 7 5
0.1 3 (3) 3 7 6
0.5 3 (2) 2 6 6
1 5 (3) 5 6 5

1.5 3 (2) 3 4 3
3 1 (1) 1 1 1

Rnd 1 (1) 0 0 0
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Table 2. The minerals characteristics

Mineral: Feldspars Goethite Illite Kaolinite Maghemite Quartz Smectite

Angles: 148 14 17 52 5 12 6
Exclusive: 117 7 11 30 1 7 1
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Figure 1. Three functions with added noise
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Figure 2. Random data. Upper plots: statistical significance of eigenvalues and polynomials coordinates.
Lower plots, left panel: complete table of significant interactions (in black) issued from the permutation test;

right panel: no interaction was strongly significant (see Definition 6.2).
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Figure 3. Moderately noisy data: σ = 0.1. Plot of the five first column orthonormal polynomials, in ac-

cordance with Emerson’s paper [32]. abscissas correspond to the 21 values of the score (first factor of the
preliminary CA.
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Figure 4. Moderately noisy data: σ = 0.1. Same structure as in Figure 2. Upper plots: statistical significance

of eigenvalues and polynomials coordinates. Lower plots, left panel: complete table of significant interactions

(in black) issued from the permutation test; right panel (in black): strongly significant interactions (see Defi-
nition 6.2). The right lower panel indicates the existence of a strong Guttman effect of order 3.
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Figure 5. Moderately noisy data: first plane of CA. (the 21 variables are plotted in green/gray).
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Figure 6. Very noisy data: σ = 3. Same structure as Figure 2. Upper plots: statistical significance of eigen-
values and polynomials coordinates. Lower plots, left panel: complete table of significant interactions (in black)

issued from the permutation test; right panel (in black): strongly significant interactions (see Definition 6.2).
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Figure 7. Very noisy data: first plane of CA. (the 21 variables are plotted in green/gray).

f1

g7

g6

Θ1
g5

f2

f3
Θ3

Θ2

g4

f4

f6

Θ4

g3

Θ5

f5

g1

g2

f7

Θ7

Θ6

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

1.5

30



Figure 8. The archaic Chinese vases data. Same structure as Figure 2. Upper plots: statistical significance
of eigenvalues and polynomials coordinates. Lower plots, left panel: complete table of significant interactions

(in black) issued from the permutation test; right panel (in black): strongly significant interactions (see Defi-

nition 6.2).
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Figure 9. The archaic Chinese vases data: representation of the table of similarities between the sorted factors

π � ϕf and the Pk. On the left panel, black cells correspond to similarities greater than the fixed threshold
(0.1). On the right panel, we plotted the values extracted from the diagonal of this table.
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Figure 10. The X-rays diffraction data. Same structure as Figure 2. Upper plots: statistical significance of
eigenvalues and polynomials coordinates. Lower plots, left panel: complete table of significant interactions (in

black) issued from the permutation test; right panel (in black): strongly significant interactions (see Defini-

tion 6.2).
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Figure 11. Coordinates of the minerals on the first plane of CA . Detection variables (+) are plotted hori-

zontally; non-detection ones (-) are plotted vertically. Remember that the second dimension is not significant.
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