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We develop a visuomotor model that implements visual
search as a focal accuracy-seeking policy, with the
target’s position and category drawn independently
from a common generative process. Consistently with
the anatomical separation between the ventral versus
dorsal pathways, the model is composed of two
pathways that respectively infer what to see and where
to look. The “What” network is a classical deep learning
classifier that only processes a small region around the
center of fixation, providing a “foveal” accuracy. In
contrast, the “Where” network processes the full visual
field in a biomimetic fashion, using a log-polar
retinotopic encoding, which is preserved up to the
action selection level. In our model, the foveal accuracy
is used as a monitoring signal to train the “Where”
network, much like in the “actor/critic” framework.
After training, the “Where” network provides an
“accuracy map” that serves to guide the eye toward
peripheral objects. Finally, the comparison of both
networks’ accuracies amounts to either selecting a
saccade or keeping the eye focused at the center to
identify the target. We test this setup on a simple task of
finding a digit in a large, cluttered image. Our simulation
results demonstrate the effectiveness of this approach,
increasing by one order of magnitude the radius of the
visual field toward which the agent can detect and
recognize a target, either through a single saccade or
with multiple ones. Importantly, our log-polar treatment
of the visual information exploits the strong
compression rate performed at the sensory level,
providing ways to implement visual search in a sublinear
fashion, in contrast with mainstream computer
vision.

Introduction

Problem statement

The field of computer vision was recently recast
by the outstanding capability of convolution-based
deep neural networks to capture the semantic content
of images and photographs. Human performance is
now outreached by computer algorithms in numerous
image categorization tasks (He, Zhang, Ren, & Sun,
2015). One of the reasons explaining this breakthrough
is a strong reduction in the number of parameters
used to train the network, through a massive sharing
of weights in the convolutional layers. Reducing the
number of parameters and/or the size of the visual data
that need to be processed is a decisive factor for further
improvements. Initially trained on energy-greedy,
high-performance computers, these algorithms are
now designed to work on more common hardware
such as desktop computers with dedicated GPU
hardware (Sandler, Howard, Zhu, Zhmoginov, & Chen,
2018). Despite much effort in hardware and software
optimization, the processing of pixel-based images is
still done at a cost that scales linearly with the image
size: All pixels present in the image are systematically
processed by the computer algorithm, even the ones
that are useless for the task at hand. Current computer
vision algorithms consequently manipulate millions of
pixels and millions of variables with ensuing energy
consumption, even in the case of downsampled images
and with a still prohibitive cost for large images and
videos. The need to detect visual objects at a glance
while running on resource-constrained embedded
hardware, for instance, in autonomous driving,
introduces a necessary trade-off between efficiency and
accuracy, requiring renewed mathematical treatment
and computational implementations.
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Interestingly, things work differently when human
vision is considered. First, human vision is still
unsurpassable in the case of ecological real-time sensory
flows. Indeed, object recognition can be achieved by the
human visual system both rapidly—in less than 100ms
(Kirchner & Thorpe, 2006)—and at a low energy cost
(< 5W). On top of that, it is mostly self-organized,
robust to visual transforms or lighting conditions,
and can learn with few examples. If many different
anatomical features may explain this efficiency, the
main difference lies in the fact that its sensor (the
retina) combines a nonhomogeneous sampling of the
world with the capacity to rapidly change its center of
fixation: On the one hand, the retina is composed of
two separate systems: a central, high-definition fovea
(a disk of about 6 degrees of diameter in visual angle
around the center of gaze) and a large, lower-definition
peripheral area (Strasburger et al., 2011). On the other
hand, the human vision is active and dynamic: The
retina is attached at the back of the eye, which is
capable of low-latency, high-speed eye movements. In
particular, saccades are stereotyped eye movements
that allow for efficient changes of the position of the
center of gaze: They take about 200ms to initiate, last
about 200ms and usually reach a maximum velocity of
approximately 600 degrees per second (Bahill, Clark,
& Stark, 1975). The scanning of a full visual scene is
thus not done in parallel but sequentially, and only
scene-relevant regions of interest are scanned through
saccades. This implies a decision process between each
saccade that decides where to look next. This behavior is
prevalent in biological vision with on average a saccade
every 2 s, that is, almost a billion saccades in a lifetime.
The interplay of peripheral search and focal inspection
allows human observers to engage in an integrated
action/perception loop that sequentially scans and
analyzes the different parts of the visual scene.

Take, for instance, the case of an encounter with a
friend in a crowded café. To catch the moment of his
or her arrival, a face-seeking visual search is needed,
possibly under heavy sensory clutter conditions. To
do so, relevant parts of the visual scene need to be
scanned sequentially with the gaze. Each saccade
may potentially allow you to recognize your friend,
provided it is accurately focused on each target face.
The main feature of this task is thus the monitoring
of a particular class of objects (e.g., human faces)
in the periphery of the visual field before the actual
eye displacement and the processing of the foveal
visual data. Searching for any face in a peripheral and
crowded display needs thus to precede the recognition
of a specific face identity. Since biological vision is the
result of a continual optimization under strong material
and energy constraints via natural selection, it is
important to understand both its ground principles and
its specific computational and material constraints in
order to implement effective biomimetic vision systems.

The problem we address is thus how to ground an
artificial visual processing system on top of the material
constraints found in human vision that is conforming
to the structure of the visual input and to the capability
of the visual apparatus to rapidly scan a visual scene
through saccades in order to find and identify objects
of interest. We thus start from an elementary visual
search problem, which is how to locate an object in a
large, cluttered image, and take human vision as a guide
for efficient design.

State of the art

The visual search problem, that is, finding and
identifying objects in a visual scene, is a classical task in
computer vision, appealing as well to machine learning,
signal processing, or robotics. Crucially, it also speaks to
neuroscience, for it refers to the mechanisms underlying
foveation and more generally to low-level attention
mechanisms. When restricted to a mere “feature search”
(Treisman & Gelade, 1980), many computational
solutions are proposed in the computer vision literature.
Notably, recent advances in deep learning have been
proven efficient to solve the task with models such as
faster-RCNN (Ren, He, Girshick, & Sun, 2017) or
YOLO (Redmon, Divvala, Girshick, & Farhadi, 2016).
Typical object search implementations predict in the
image the probability of proposed bounding boxes
around visual objects. While rapid, the potential number
of boxes may significantly increase with image size,
and the approach more generally necessitates dedicated
hardware to run in real time (Feng, Jiang, Yang, Du,
& Li, 2019). Under fine-tailored algorithmic and
material optimization, the visual search problem can
be considered in the best case as linear in the number
of pixels (Strengert, Kraus, & Ertl, 2006), which still
represents a heavy load for real-time image processing.
This poses the problem of the energy scaling of current
computer vision algorithms to large/high-definition
visual displays. This scaling problem becomes even
more crucial when considering a dynamical stream of
sensory images.

Analogously to human visual search strategies,
low-level attentional mechanisms may help guide the
localization of targets. A sequence of saccades over a
natural scene defines a scan-path that provides ways to
define saliency maps (Itti & Koch, 2001). These quantify
the attractiveness of the different parts of an image that
are consistent with the detection of objects of interest.
Essential to understand and predict saccades, they
also serve as phenomenological models of attention.
Estimating the saliency map from a luminous image
is a classical problem in neuroscience that was shown
to be consistent with a distance from baseline image
statistics known as the “Bayesian surprise” (Itti &
Baldi, 2009). Such an approach was extended in the
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Figure 1. Problem setting: In generic, ecological settings, when searching for one target (from a class of targets) in a cluttered
environment, the visual system is bound with an action selection problem. It is synthesized in the following virtual experiment: (A)
After a fixation period FIX of 200ms, an observer is presented with a luminous display DIS showing a single target from a known
class (here digits) put at a random position within the field of view. The display is presented for a short period of 500ms (light shaded
area in B), which is enough to perform at most one saccade on the potential target (SAC, here successful). Finally, the observer has to
identify the digit by a keypress ANS. NB: the target contrast is here enhanced to 100% for better readability. (B) Prototypical trace of a
saccadic eye movement to the target position. In particular, we show the fixation window FIX and the temporal window during
which a saccade is possible (green shaded area). (C) Simulated reconstruction of the visual information from the internal retinotopic
map at the onset of the display DIS and after a saccade SAC, the dashed red box indicating the foveal region. The task does not
consist of inferring the location of the target, but rather to infer an action that may provide relevant pixels at the center of fixation,
allowing to identify the target’s category. By comparison with the external display (see A), the action is processed from log-polar
coefficients, representing a focal sample of the total visual field. Controlling the clutter and reducing the contrast of the digit allows
modulating the task’s difficulty.

AIM (Bruce & Tsotsos, 2009) and SUN (Zhang, Tong,
Marks, Shan, & Cottrell, 2008) models. Recently, the
saliency approach was updated using deep learning to
estimate saliency maps over large databases of natural
images (Kummerer, Wallis, Gatys, & Bethge, 2017).
While efficient at predicting the probability of fixation,
these methods miss an essential component in the
action-perception loop: They operate on the full image
while the retina operates on the nonuniform, foveated
sampling of visual space (see Figure 1C). Herein,
we believe that this constitutes an essential factor to
reproduce and understand the active vision process.

Foveated models of vision have been considered
for a long time in robotics and computer vision as
a way to leverage the visual scene scaling problem.
Focal computer vision relies on a nonhomogeneous
compression of an image that maintains the
pixel information at the center of fixation and
strongly compresses it at the periphery, including
pyramidal encoding (Kortum & Geisler, 1996;

Butko & Movellan, 2010), local wavelet decomposition
(Daucé, 2018) and log-polar encoding (Traver &
Bernardino, 2010). A recent deep-learning-based
implementation of such compression shows that in
a video flow, a log-polar sampling of the image is
sufficient to provide a reconstruction of the whole
image (Kaplanyan et al., 2019). However, this particular
algorithm lacks a system predicting the best saccadic
action to perform. In summary, though focal and
multiscale encoding is now largely considered in
static computer vision, sequential implementations
have not been shown effective enough to overtake
static object search methods. Several implementations
of a focal sequential search in visual processing
can be found in the literature, with various degrees
of biological realism (Mnih, Heess, Graves, et al.,
2014; Fu, Zheng, & Mei, 2017) that often rely on a
simplified focal encoding, long training procedures,
and bounded sequential processing. More realistic
attempts to combine foveal encoding and sequential
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visual search can be found (Butko & Movellan, 2010;
Denil, Bazzani, Larochelle, & de Freitas, 2012), to
which our approach is compared later on.

In contrast with the phenomenological (or
“bottom-up”) approaches, active models of vision
(Najemnik & Geisler, 2005; Butko & Movellan, 2010;
Daucé, 2018) provide the ground principles of saccadic
exploration. In general, they assume the existence of a
generative model from which both the target position
and category can be inferred through active sampling.
This comes from the constraint that the visual sensor
is foveated but can generate a saccade. Several studies
are relevant to our endeavor. First, one can consider
optimal strategies to solve the problem of the visual
search of a target (Najemnik & Geisler, 2005). In a
setting similar to that presented in Figure 1A, where
the target is an oriented edge and the background is
defined as pink noise, authors show first that a Bayesian
ideal observer comes out with an optimal strategy and
second that human observers are close to that optimal
performance. Though it is well predicting sequences
of saccades in a perception action loop, this model
is limited by the simplicity of the display (elementary
edges added on stationary noise, a finite number of
nonoverlapping locations on a discrete grid) and by the
abstract level of modeling. Despite these (inevitable)
simplifications, this study could successfully predict
some key characteristics of visual scanning such as
the trade-off between memory content and speed.
Looking more closely at neurophysiology, the study
by Samonds, Geisler, and Priebe (2018) allows one
to go further in understanding the interplay between
saccadic behavior and the statistics of the input. In
this study, authors were able to manipulate the size of
saccades by monitoring key properties of the presented
(natural) images. For instance, smaller images generate
smaller saccades. Interestingly, they also predicted
the size of saccades from the size of visual receptive
fields for different species, including mice, which lack a
foveal region. One key prediction of this study that is
relevant for our problem is the fact that saccades seem
optimal to a priori decorrelate the visual input, that is,
to minimize redundancy in the sequence of generated
saccades, knowing the statistics of the visual inputs.

A further modeling perspective is provided by
Friston, Adams, Perrinet, and Breakspear (2012). In
this setup, a full description of the visual world is
used as a generative process. An agent is completely
described by the generative model governing the
dynamics of its internal beliefs and is interacting with
this image by scanning it through a foveated sensor, just
as described in Figure 1. Thus, equipping the agent with
the ability to actively sample the visual world allows one
to interpret saccades as optimal experiments, by which
the agent seeks to confirm predictive models of the
(hidden) world. One key ingredient to this process is the
(internal) representation of counterfactual predictions,

that is, the probable consequences of a possible
hypothesis as they would be realized into actions (here,
saccades). Following such an active inference scheme,
numerical simulations reproduce sequences of eye
movements that fit well with empirical data (Mirza,
Adams, Mathys, & Friston, 2018). Compared to
previous studies (Najemnik & Geisler, 2005), saccades
are not the output of a value-based cost function such
as a saliency map but are the consequence of an active
strategy by the agent to minimize the uncertainty about
his or her beliefs, knowing his or her priors on the
generative model of the visual world.

Outline

So far, few models in active vision come with an
integrated processing of the visual scene, from early
visual treatment toward saccade selection. The difficulty
lies in combining object hypothesis (feature) space
along with their spatial mapping. As pointed out
earlier, the system needs to guess where the interesting
objects lie in space before actually knowing what they
are. Establishing the position of the objects in space
is thus crucial, for it resorts to the capability of the
eye to reach them with a saccade, so as to finally
identify them. Inferring the target’s position in the
peripheral visual field is thus an essential component of
focal visual processing, and the acuity of such target
selection ultimately conditions the capability to rapidly
and efficiently process the scene. Stemming from the
active vision principles, we thus address the question
of the interplay of the location and identity processing
in vision and provide an artificial vision setup that
efficiently implements those principles. Moreover,
despite refined generative models, the processing of the
visual data found in biomimetic models should resort
to a combination of local features to build posterior
beliefs. Herein, our framework is made as general as
possible, with minimal mathematical treatment, to
speak largely to fragmented domains, such as machine
learning, neuroscience, and robotics.

The article is organized as follows. After this
introduction, the principles underlying accuracy-based
saccadic control are defined in the second section.
We first define notations, variables, and equations
for the generative process governing the experiment
and the generative model for the active vision agent.
Complex combinatorial inferences are here replaced
by separate pathways, that is, the spatial (“Where”)
and categorical (“What”) pathways, whose output
is combined to infer optimal eye displacements and
subsequent identification of the target. Our agent,
equipped with a foveated sensor, should learn an
optimal behavior strategy to actively scan the visual
scene. Numerical simulations are presented in the
Results section, demonstrating the applicability of this
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framework to tasks with different complexity levels.
The Discussion section finally summarizes the results,
showing their relative advantages in comparison with
other frameworks and providing ways toward possible
improvements. Implementation details are provided
in the Methods section, giving ways to reproduce our
results, showing in particular how to simplify the
learning using accuracy-driven action maps.

Setup

Experimental design

In order to implement our visual processing setup,
we provide a simplified visual environment toward
which a visual agent can act on. This visual search task
is formalized and simplified in a way reminiscent to
classical psychophysical experimentation: An observer
is asked to classify digits (for instance, as taken from
the MNIST data set, as introduced by Lecun, Bottou,
Bengio, & Haffner, 1998) as they are shown with a
given size on a computer display. However, these digits
can be placed at random positions on the display, and
visual clutter is added as a background to the image
(see Figure 1A). In order to vary the difficulty of the
task, different parameters are controlled, such as the
target eccentricity, the background noise period, and
the signal/noise ratio (SNR). The agent initially fixates
the center of the screen. Due to the peripheral clutter,
he or she needs to explore the visual scene through
saccades to provide the answer. He or she controls a
foveal visual sensor that can move over the visual scene
through saccades (see Figure 1B). When a saccade is
actuated, the center of fixation moves toward a new
location, which updates the visual input (see Figure 1C).
The lower the SNR and the larger the initial target
eccentricity, the more difficult the identification. There
is a range of eccentricities for which it is impossible
to identify the target from a single glance, so that a
saccade is necessary to reduce the relative eccentricity
and issue a proper response. This setup implies also
that the position of the object may be detected in the
peripheral clutter before being properly identified.

This setup provides the conditions for a separate
processing of the visual information. On the one side,
the detailed information present at the center of fixation
needs to be analyzed to provide specific environmental
cues. On the other side, the full visual field, that is,
mainly the low-resolution part surrounding the fovea,
needs to be processed in order to identify regions of
interest that deserve fixation. This basically means
making a choice of what is interesting next. The actual
content of putative peripheral locations does not need
to be known in advance, but it needs to look interesting
enough and of course to be reachable by a saccade. This

is reminiscent of the What/Where visual processing
separation observed in primates’ ventral and dorsal
visual pathways (Mishkin, Ungerleider, & Macko,
1983).

Computational implementation

In order to show it is possible to learn such a
task, it is sufficient to demonstrate the existence of
a simple “deep learning” neural network that would
implement it, for instance, through the effective success
of its training. More specifically, this class of modern
parametric classifiers is composed of many layers
(hence the terminology) that can be trained through
gradient descent over arbitrary input and output feature
spaces. For our specific problem, the anatomy of the
agent is made of two separate pathways for which a
different processing is realized by two different neural
networks (see Figure 2). The proposed computational
architecture is connected in a closed-loop fashion to
the visual environment, with the capacity to produce
saccades whose effect is to shift the visual field from one
visual position to another. By analogy with biological
vision, the identification of the target is assumed to rely
on the very central part of the retina (the fovea) that
comes with higher density of cones and thus higher
spatial precision. In contrast, the saccade planning
should rely on the full visual field, with peripheral
regions having a lower density of sensors and thus a
lower sensitivity to high spatial frequencies.

In a stationary condition, where the target’s position
and identity do not change over time, each saccade thus
provides a new viewpoint over the scene, allowing one to
form a new estimation of the target identity. Following
the active inference setup (Najemnik & Geisler, 2005;
Friston et al., 2012), we assume that, instead of trying
to detect the actual position of the target, the agent
tries to maximize the counterfactual benefit in scene
understanding that would be gained by any potential
saccade. The focus is thus put on action selection metric
rather than spatial representation. This means in short
estimating how accurate a categorical target classifier
will be after moving the eye. In a full setup, predictive
action selection means first predicting the future visual
field, denoted x′, which is obtained at the center of
fixation, and then predicting how good the estimate of
the target identity, denoted y, that is, p(y|x′), will be
at this location. In practice, predicting a future visual
field over all possible saccades is too computationally
expensive. Better off instead is to record, for every
context x, the improvement obtained in recognizing
the target after different saccades a, a′, a′′, . . .. If a is
a possible saccade and x′ the corresponding future
visual field, the result of the central categorical classifier
over x′ can either be correct (1) or incorrect (0). If this
experiment is repeated many times over many visual
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Figure 2. Computational graph. Based on the general anatomy of the visual pathways, we define two streams of information, one
stream for identifying a target (“What”?) and the other for categorizing it in visual space (“Where”?). (A) The visual display is
constructed the following way: first a 128 × 128 natural-like background noise is generated, characterized by noise contrast, mean
spatial frequency, and bandwidth (Sanz-Leon, Vanzetta, Masson, & Perrinet, 2012). Then, a sample digit is selected from the MNIST
data set (of size 28 × 28), rectified, multiplied by a contrast factor, and overlaid on the background at a random position (see another
example in Figure 1A, DIS). Last, a circular mask is put on. (B) The visual display is then transformed in two sensory inputs: (i) A
28 × 28 central foveal-like snippet is fed to a classification network (“What” pathway). (ii) A log-polar set of oriented visual features is
fed to the “Where” pathway. This log-polar input is generated by a bank of filters whose centers are positioned on a log-polar grid and
whose radius increases proportionally with the eccentricity. (C) The “What” network is implemented using the three-layered LeNet
neural network (Lecun et al., 1998). This network outputs a vector predicting the accuracy of detecting the correct digit. In parallel,
the “Where” network is implemented by a three-layered neural network consisting of the retinal log-polar input, two hidden layers
(fully connected linear layers combined with a ReLU nonlinearity), and a collicular-like accuracy map at the output. This map has a
similar log-polar (retinotopic) organization and predicts the accuracy at the hypothetical position of a saccade. Both networks learn to
associate the output with the ground truth through back-propagation. (D) For a given display, the network provides two accuracy
outputs. The two streams converge toward a decision layer that compares the central and the peripheral accuracy, which are
predicted by both pathways, in order to decide whether to issue a saccadic or a categorical response. If the predicted accuracy in the
output of the “What” network is higher than that predicted in the “Where” network, we interrupt the visual search and classify the
foveal image using the “What” pathway such as to give the answer (ANS). In the other case, the position of maximal activity in the
“Where” pathway serves to generate a saccade that shifts the center of gaze. For each saccade realized, the center of vision is
displaced and the process is repeated.

scenes, the probability of correctly classifying the future
visual field x′ from a is a number between 0 and 1 that
reflects the frequency of correct classifications. The
putative effect of every saccade can thus be condensed
in a single number, the accuracy, that quantifies the
final benefit of issuing saccade a from the current
observation x. Extended to the full action space A,
this forms an accuracy map that should monitor
the selection of saccades. This accuracy map can be
trained by trials and errors, with the final classification
success or failure used as a teaching signal. Our main
assumption here is that such a predictive accuracy map
is at the core of a realistic saccade-based vision system.

From the active inference standpoint, the separation
of the scene analysis in two independent tasks relies
on a simple “naïve Bayes” assumption (see Method).
Each processing is assumed to be realized in parallel
through different pathways by analogy with the ventral
and dorsal pathways in the visual pathways (see
Figure 2). A first classifier is thus assigned to process
only the pixels found at the center of fixation, while
a second one processes the full visual field with a
retina-mimetic central log-polar magnification. The
first one is called the “What” network, and the second
one is the “Where” network (see Figure 7 for details).
This combination of a scalar drive with action selection
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is reminiscent of the actor/critic principle proposed for
a long time in the reinforcement learning community
(Sutton & Barto, 1998). In biology, the ventral and the
dorsolateral division of the striatum has been suggested
to implement such an actor-critic separation (Joel,
Niv, & Ruppin, 2002; Takahashi, Schoenbaum, & Niv,
2008). Consistently with those findings, our central
accuracy drive and peripheral action selection map can
respectively be considered the “critic” and the “actor”
of an accuracy-driven action selection scheme, with
foveal identification/disambiguation taken as a “visual
reward.”

The operations that transform the initial visual data
should preserve the initial retinotopic organization, so
as to form a final retinotopic accuracy map. Accordingly
with the visual data, the retinotopic accuracy map
may thus provide more detailed accuracy predictions
in the center and coarser accuracy predictions in the
periphery. Finally, each different initial visual field may
bring out a different accuracy map, indirectly conveying
information about the retinotopic position of the
target. A final action selection (motor map) should then
overlay the accuracy map through a winner-takes-all
mechanism (see Figure 2D), implementing the saccade
selection in a biologically plausible way, as it is thought
to be done in the superior colliculus, a brain region
responsible for oculomotor control (Sparks & Nelson,
1987). With the saccadic motor output showing a
similar log-polar compression than the visual input,
the saccades should be more precise at short than at
long distance, and several saccades may be necessary to
precisely reach distant targets.

In practice, the “What” and ‘Where” networks are
both implemented in PyTorch (Paszke et al., 2019)
and trained with gradient descent over multiple layers.
Each network is trained and tested separately. Because
the training of the “Where” pathway depends on the
accuracy given by the “What” pathway (and not the
reverse), we trained the latter first, though a joint
learning also yielded similar results. Finally, these are
evaluated in a coupled, dynamic vision setup.

Results

One-saccade setup

After training, the “Where” pathway is now capable
of predicting an accuracy map (see Figure 3), whose
maximal argument drives the eye toward a new
viewpoint with one saccade. There, a central snippet
is extracted, that is processed through the “What”
pathway, allowing one to predict the digit’s label.
Examples of this simple sequence with one saccade
are presented in Figure 3, where the digits contrast
parameter is set to 70% and the digits eccentricity

varies between 0 and 40 pixels. The presented examples
correspond to strong eccentricity cases, when the target
is hardly visible on the display (Figure 3a) and almost
invisible on the reconstructed input (Figure 3b). The
radial maps (Figure 3c,d) respectively represent the
actual and the predicted accuracy maps. The final focus
(foveal area at the location of the selected saccade) is
represented in Figure 3e, with cases of classification
success (Figure 3A,B) and cases of classification failures
(Figure 3C–E). In the case of successful detection
(Figure 3A,B), the accuracy prediction is not perfect
and the digit is not perfectly centered on the fovea. This
“close match” still allows for a correct classification,
as the digit’s pixels are fully present on the fovea. The
case of Figure 3B,C is interesting for it shows two cases
of a bimodal prediction, indicating that the network is
capable of doing multiple detections in a single pass,
that is, at a glance. The case of Figure 3C corresponds
to a false detection, with the true target detected still,
though with a lower intensity. The case of Figure 3D
is a “close match” detection that is not precise enough
to correctly center the visual target. With some pixels
of the digit being invisible on the fovea, the label
prediction is mistaken. The last failure case (Figure 3E)
corresponds to a correct localization that is harmed by
a wrong label prediction, which is due to the “What”
classifier inherent error rate.

To test for the robustness of our framework, the
same experiment was repeated at different SNRs of
the input images. Both pathways being interdependent,
it is indeed crucial to disentangle the relative effect
of both sources of errors in the final accuracy. By
manipulating the SNR and the target eccentricity,
one can precisely monitor the network detection
and recognition capabilities, with a detection task
ranging from “easy” (small shift, strong contrast) to
“highly difficult” (large shift, low contrast). The digit
recognition capability is systematically evaluated in
Figure 4 for different eccentricities and different SNRs.
We test the final accuracy of the system for three target
contrasts conditions ranging from 30% to 70% of
the maximal contrast and 10 different eccentricities
ranging from 4 to 40 pixels. It is averaged over 1,000
trials both on the initial central snippet and the final
central snippet (that is, at the landing of the saccade).
The (transparent) orange bars provide the initial
classification rate (without saccade) and the blue bars
provide the final classification rate (after saccade); see
Figure 4. As expected, the accuracy decreases in both
cases with the eccentricity, for the targets become less
and less visible in the periphery. The decrease is rapid
in the presaccadic case: The accuracy drops to the
baseline level for a target distance of approximately
20 pixels from the center of gaze. The postsaccadic
accuracy has a much wider range, with a slow decrease
up to the border of the visual display (40 pixels away
from the center). When varying the target contrast, the
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Figure 3. (A–E) Representative samples of active vision after training the “Where” network: (A, B) classification success samples and
(C–E) classification failure samples. Digit contrast set to 70%. From left to right: (a) The initial 128 × 128 visual display, with blue cross
giving the initial center of gaze. The visual input is retinotopically transformed and sent to the multilayer neural network
implementing the “Where” pathway. (b) Magnified reconstruction of the visual input, as it shows off from the primary visual features
through an inverse log-polar transform. (c, d) Color-coded radial representation of the output accuracy maps, with dark violet for the
lower accuracies and yellow for the higher accuracies. The network output (“Predicted”) is visually compared with the ground truth
(“True”). (e) The foveal image as the 28 × 28 central snippet extracted from the visual display after doing a saccade, with label
prediction and success flag in the title.

presaccadic accuracy profile is scaled by the reference
accuracy (obtained with a central target), whose values
are approximately 92%, 82%, and 53% for contrasts of
70%, 50%, and 30%. The postsaccadic accuracy profile
undergoes a similar scaling at the different contrast
values, indicating the critical dependence of the global
setup to the central processing reliability.

The high-contrast case (see Figure 4) provides the
greatest difference between the two profiles, with an
accuracy approaching 90% at the center and 60% at
the periphery. This allows one to recognize digits after

one saccade in a majority of cases, up to the border
of the image, from very scarce peripheral information.
With decreasing target contrast, a general decrease of
the accuracy is observed, both at the center and at the
periphery, with about 10% decrease with a contrast
of 50% and 40% decrease with a contrast of 30%.
In addition, the proportion of false detections also
increases as contrast decreases. At 40 pixels away from
the center, the false detection rate is approximately 40%
for a contrast of 0.7, 60% for a contrast of 0.5, and 80%
for a contrast of 0.3 (with a recognition close to the
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Figure 4. Effect of contrast and target eccentricity. The active vision agent is tested for different target eccentricities (in pixels) and
different contrasts. The final classification rate is plotted as transparent orange and blue bars, which correspond respectively to the
presaccadic accuracy from the central classifier (0 saccade) and the postsaccadic accuracy (1 saccade). These are plotted with respect
to the target’s eccentricity and averaged over 1,000 trials per eccentricity.

baseline at the periphery in that case). The difference
between the initial and the final accuracies is maximal
for eccentricities ranging from 15 to 30 pixels. This
optimal range reflects a proportion of the visual field
around the fovea where the target detection is possible,
but not its identification. The visual agent knows where
the target is, without exactly knowing what it is.

Analysis

This full covering of the 128×128 image range is
done at a much lesser cost than what would be done by
a systematic image scan, as in classic computer vision.
Taking n the number of pixels in the original image
(in our case, n = 128 × 128 = 16,384), our log-polar
encoding provides O(log n) log-polar visual features
by construction. The total visual data processed is the
addition of the C pixels processed at the fovea and
the O(log n) log-polar visual features processed at the
periphery. The total processing cost is thusO(C + log n).
TakingC as a constant, the total processing cost can be
O(log n) (for constant processing times do not change
the order). In the case of multiple saccades (see next
section), the total cost is O(k × (C + log n)) with k
the number of saccades. If the number of saccades
k is bounded by a constant K, this allows one to
estimate the processing cost as O(K × (C + log n)) in
the worst case, which also resumes to O(log n). This
is to be contrasted, for instance, with the linear cost
obtained with a full convolutional scan with a window
of size C and a stride of 1, which is precisely O(C × n).
Various optimizations can of course be considered,
one of which is the well-known max-pooling principle
used in deep learning, but image processing (without
compression loss) is generally considered linear in the
size of the visual data processed (Strengert et al., 2006).

Our sublinear processing time thus justifies a strategy
that may have been chosen in a variety of natural
vision systems. The compromise between the urgency
to detect and the need to be accurate may justify the
different balances that may exist in different species.
In particular, this may justify the differences observed
between prey (with a less sparse cone density at the
periphery) and predators (with a tendency toward
denser foveal regions).

Multiple-saccades setup

In our simulation results, the postsaccadic accuracy
is found to overtake the presaccadic accuracy except
when the target is initially close to the center of gaze.
When closely inspecting the 1- to 10-pixels eccentricity
range in our first experiment (not shown), a decision
frontier between a positive and a negative information
gain is found at 2 to 3 pixels away from the center.
Inside that range, no additional saccade is expected
to be produced, and a categorical response should
be given instead. It is crucial here to understand that
this empirical accuracy difference can be predicted,
by construction, as the difference of the maximal
outputs of the “Where” and the “What” pathways.
This difference-of-accuracies prediction can serve as a
decision criterion before actuating the saccade, like a
GO/NOGO signal. It is moreover interpretable as an
approximation of the information gain provided by the
“Where” pathway, with the true label log-posterior seen
as a sample of the posterior entropy (see Equation 1).

After the first saccade, while the decision criterion
is not attained, additional saccades may be pursued
in order to search for a better centering. In the case
of a false detection, for instance, the central accuracy
estimate should be close to the baseline and may
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Figure 5. Multiple saccade setup. (A) Example of a trial with a sequence of three saccades. The subjective visual field is reconstructed
from the log-polar visual features, with the red square delineating the 28 × 28 foveal snippet after zero, one, two, and three saccades
(from left to right). After the first saccade, the accuracy predicted by the “Where” network is higher than that predicted by the
“What” network, and a corrective saccade is realized to center the target. After this second saccade, the foveal accuracy is higher
than that predicted in the periphery, and the answer ANS is given. (B) Average classification accuracies measured for different target
eccentricities (in pixels) and a different number of saccades. Target contrast set to 70%. (Transparent) light orange bars: presaccadic
central accuracy (0 saccade) with respect to eccentricity, averaged over 1,000 trials per eccentricity. Blue bars: final classification rate
after one, two, and three saccades (from left to right, respectively).

allow to “explain away” the current center of gaze
and its neighborhood, encouraging one to actuate
long-range saccades toward less salient peripheral
positions, making it possible to escape from initial
prediction errors. This incitement to select a saccade
“away” from the central position is reminiscent of
a well-known phenomenon in vision known as the
“inhibition of return” (Itti & Koch, 2001). Combining
accuracy predictions from each pathway may thus
allow one to refine saccade selection in a way that
complies with the sequential processing observed in
biological vision. Note that extended to a multitarget
case, the information gain maximization principle
still holds as a general measure of the improvement
of scene understanding through multiple saccades. It
is uncertain, however, whether biologically realistic
implementations would be possible in that case.
In particular, we predict that such a mechanism is
dependent on the class of inputs and would be, for
instance, different when searching for faces as compared
to digits.

Some of the most peripheral targets are thus difficult
to detect in just one saccade, resulting in degraded
performances at the periphery (see Figure 4). Even
when correctly detected, our log-polar action maps also
preclude precise centering. As a consequence, peripheral
targets are generally poorly centered after the first
saccade, as shown, for instance, in Figure 3D, resulting
in classification errors. The possibility to perform a
sequential search using more saccades is thus crucial to
allow for a better recognition. Results on multisaccade
visual search results are presented in Figure 5.

An example of a trial with a sequence of three
saccades is shown in Figure 5A. A hardly visible
peripheral target (digit) is first approximately shifted
to the foveal zone thanks to the first saccade. Then, a
new retinal input centered at the new point of fixation
is computed, such that it generates a novel predicted
accuracy map. The second saccade allows one to
improve the target centering. As the predicted foveal
accuracy given by the “What” network is higher than
the peripheral one given by the “Where” network, a
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third saccade would not improve the centering: The
stopping criterion is met. In practice, one or two
saccades were sufficient in most trials to reach the actual
target. Another behavior was also observed for some
“bad start,” which exhibited a false localization (as in
Figure 3C, for instance), when the target is shifted away
in the opposite direction and the agent cannot recover
from its initial error. From Figure 5B, this case can
be estimated at about 15% of the cases for the most
peripheral targets.

Overall, as shown in Figure 5B, the corrective
saccades implemented in this multiple saccade setup
provide a significant improvement in the classification
accuracy. Except at the center, the accuracy increases
by about 10% both for the midrange and the most
peripheral eccentricities. Most of the improvement,
however, is provided by the first corrective saccade.
The second corrective saccade only shows a barely
significant improvement of about 2%, which is only
visible at the periphery. The following saccades would
mostly implement target tracking, without providing
additional accuracy gain. A three-saccade setup finally
allows a wide covering of the visual field, providing a
close to central recognition rate at all eccentricities, with
the residual peripheral error putatively corresponding
to the “bad start” target miss cases.

Discussion

Summary

In summary, we have proposed a visuomotor
action-selection model that implements a focal
accuracy-seeking policy across the image. Our main
modeling assumption here is an accuracy-driven
monitoring of action, stating in short that the ventral
classification accuracy drives the dorsal selection in
building an extrafoveal accuracy map. The comparison
of both accuracies amounts either to select a saccade or
to keep the eye focused at the center, so as to identify
the target. The predicted accuracy map has, in our
case, the role of a value-based action selection map,
as it is the case in model-free reinforcement learning.
However, it also owns a probabilistic interpretation,
making it possible to combine concurrent accuracy
predictions, such as the ones done through the
“What” and the “Where” pathways. This allows one
in particular to explain more elaborate aspects of the
whole decision-making processes, such as the inhibition
of return (Itti & Koch, 2001), without further specific
heuristic.

Moreover, one crucial aspect highlighted by our
model is the importance of centering objects in
recognition. Despite the robust translation invariance
observed on the “What” pathway, a small tolerance

radius of about 4 pixels around the target’s center needs
to be respected to maximize the classification accuracy.
The translation invariance is in our case an effect of
the max-pooling operations in the convolutional layers,
built in at the core of the “What” layer. This relates
to the idea of finding an absolute referential for an
object, for which the recognition is easier. If the center
of fixation is fixed, the log-polar encoding of an object
has the notable properties to map object rotations and
scalings toward translations in the radial and angular
directions of the visual domain (Traver & Bernardino,
2010). Extensions to scale and rotation invariance
would in principle be feasible through central log-polar
encoding, with little additional computational cost.
This prospect is left for future work.

Comparison with other models

A lot of computer models found in the literature
reflect to some degree the foveal/sequential visual
processing principles developed here. Since the question
of a normative and quantitative comparison with
them is important, no specific or unified data set is
proposed at present to address this specific case. Every
model found uses a different retinal encoding, different
computing methodologies, and different training data
sets. We thus provide here a qualitative comparison
with the more prominent computer-based focal vision
models proposed in the literature.

First, active vision is of course an important topic
in mainstream computer vision. In the case of image
classification, it is considered a way to improve object
recognition by progressively increasing the definition
over identified regions of interest, referred as “recurrent
attention” (Mnih et al., 2014; Fu et al., 2017). Standing
on a similar mathematical background, recurrent
attention is, however, at odds with the functioning of
biological systems, with a mere distant analogy with the
retinal principles of foveal-surround visual definition.
Phenomenological models, such as the one proposed
in Najemnik and Geisler’s seminal study (Najemnik
& Geisler, 2005), rely on a rough simplification,
with foveal center-surround acuity modeled as a
response curve. Despite providing a bio-realistic
account of sequential visual search, the model owns
no foveal image-processing implementation. Stemming
on Najemnik and Geisler’s principles, a trainable
center-surround processing system was proposed in
Butko and Movellan (2010), with a sequential scan of
an image in a face-detection task. However, the visual
search task relies there on a systematic scan over a
dynamically blurred image, with all the visual processing
delegated to standard feature detectors.

In contrast, the Akbas and Eckstein (2017) model
(foveated object detector) uses an explicit bio-inspired
log-polar encoding for the peripheral processing,
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with trainable local features. With a focus put on
the processing effectiveness provided by this specific
compression, the model approaches the performance
of state-of-the-art linear feature detectors, with
multiscale template matching (bounding box approach).
However, the use of a local/linear template matching
processing makes here again the analogy with the brain
oversimplistic.

Denil et al.’s (2012) article is probably the one that
shows the closest correspondence with our setup. It
owns an identity pathway and a control pathway, in a
What/Where fashion, just as ours. Interestingly, only
the “What” pathway is neurally implemented using a
random foveal/multifixation scan within the fixation
zone. The “Where” pathway, in contrast, mainly
implements object tracking, using particle filtering
with a separately learned generative process. The
direction of gaze is here chosen so as to minimize the
target’s position, speed, and scale uncertainty, using the
variance of the future beliefs as an uncertainty metric.
The control part is thus much similar to a dynamic
region of interest (ROI) tracking algorithm, with no
direct correspondence with foveal visual search or with
the capability to recognize the target

Perspectives

We have thus provided here a proof of concept
that a log-polar retinotopy can efficiently serve object
detection and identification over wide visual displays.
Despite its simplicity, the model used to generate our
visual display allowed to assess the effectiveness and
robustness of our learning scheme, which should be
extended in the future to more complex displays and
more realistic closed-loop setups. In particular, the
restricted 28 × 28 input used for the foveal processing
is a mere placeholder that should be replaced by
more elaborate computer vision frameworks, such as
Inception (Szegedy et al., 2015) or VGG-19 (Simonyan
& Zisserman, 2014), that can handle more ecological
natural image classification setups.

The main advantage of our peripheral image
processing is its cost-efficiency. Our full log-polar
processing pathway consistently conserves the high
compression rate performed by retina and V1 encoding
up to the action selection level. The organization of
both the visual filters and the action maps in concentric
log-polar elements, with radially exponentially growing
spatial covering, can thus serve as a baseline for a future
sublinear (logarithmic) complexity for visual search
in computer vision. Our work thus illustrates one of
the main advantages of using a focal/sequential visual
processing framework, which is providing a way to
process large images with a sublinear processing cost.
This may allow one to detect an object in large visual
environments, which should be particularly beneficial

when the computing resources are under constraint,
such as for drones or mobile robots.

If the methodology and principles developed here are
clearly intended to deal with real images, an important
contribution of the study is providing principles that
justify the separation between a ventral and a dorsal
stream in the early visual pathways. If some forms
of “dual-pathway models” have been proposed in the
past through separating the central and the peripheral
processing, as in Denil et al. (2012), and also in one
instance of the Akbas and Eckstein (2017) model,
their guiding principles stem on computing efficacy
rather than biological fidelity. We thus think that our
principled ventral/dorsal concurrent processing, rooted
on dorsal accuracy map predictions, is both important
and novel.

Finally, our approach relies on a strong idealization,
assuming the presence of a unique target. This is
well adapted to a fast-changing visual scene as is
demonstrated by our ability to perform as fast as
five saccades per second to detect faces in a cluttered
environment (Martin, Davis, Riesenhuber, & Thorpe,
2018). However, some visual scenes—such as when
looking at a painting in a museum—allow for a longer
inspection of their details. The presence of many
targets in a scene should be addressed, which amounts
to sequentially select targets, in combination with
implementing a more elaborate inhibition of return
mechanism to account for the trace of the performed
saccades. This would generate more realistic visual
scan-paths over images. Actual visual scan-paths over
images could also be used to provide priors over action
selection maps that should improve realism. Identified
regions of interest may then be compared with the
baseline bottom-up approaches, such as the low-level
feature-based saliency maps (Itti & Koch, 2001).
Maximizing the information gain over multiple targets
needs to be envisioned with a more refined probabilistic
framework extending previous models (Friston et al.,
2012), which would include phenomena such as mutual
exclusion over overt and covert targets. Next, scan-paths
could be generated on actual dynamical scenes, despite
existing oculomotor delays (Perrinet et al., 2014),
extending such a framework in the temporal domain.
How the brain may combine and integrate these
various probabilities dynamically is still an open
question that amounts to the fundamental binding
problem.

Methods

Image generation

We first define here the generative model for input
display images as shown first in Figure 1A (DIS) and
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as implemented in Figure 2A. Following a common
hypothesis regarding active vision, visual scenes consist
of a single target embedded in a large image with a
cluttered background.

Targets
We use the MNIST data set of handwritten digits

introduced by Lecun et al. (1998): Samples are drawn
from the data set of 60,000 grayscale, 28 × 28 pixel
images. There are 10 categories (from “zero” to “nine”).
These are separated between a training and a validation
set (see below the description of the “Where” network).
Note that to simplify the task, there is one and only one
target per image.

Full-scale images
We call “full-scale images” input images that

correspond to a discretized, rectangular sampling
(pixels) of the visual field, which are usually used in
computer vision. These input images are set to a size of
128 × 128 pixels in which we embed the target. Each
target location is drawn at random in this large image.
To enforce isotropic generation (at any direction from
the fixation point), a centered circular mask covering
the image (of radius 64 pixels) is defined. Also, the
target’s location is such that the embedded sample fits
entirely into that circular mask.

Background noise setting
To implement a realistic background noise, we

generate synthetic textures (Sanz-Leon et al., 2012)
using a bidimensional random process. The texture
is designed to fit with the statistics of natural images.
We chose an isotropic setting where textures are
characterized by solely two parameters, one controlling
the median spatial frequency of the noise, the other
controlling the bandwidth around the central frequency.
Equivalently, this can be considered the band-pass
filtering of a random white noise image. The spatial
frequency is set at 0.1 pixel−1 to fit that of the original
digits. This specific spatial frequency occasionally
allows one to generate some “phantom” digit shapes in
the background. Finally, these images are rectified to
have a normalized contrast.

Mixing the signal and the noise
Finally, both the noise and the target image are

merged into a single image. Two different strategies
are used. A first strategy emulates a transparent
association, with an average luminance computed
at each pixel, while a second strategy emulates an
opaque association, choosing for each pixel the
maximal value. The quantitative difference was tested in

simulations but proved to have a marginal importance,
and results shown here are the result of the opaque
association.

Active inference and the Naïve Bayes
assumption

Saccade selection in visual processing can be captured
by a statistical framework called a partially observed
Markov decision process (POMDP) (Najemnik &
Geisler, 2005; Butko & Movellan, 2010; Friston et al.,
2012), where the cause of a visual scene is made up
from the couple of independent random variables of
the viewpoint and of the scene elements (here a digit).
For instance, changing the viewpoint will lead to a
different scene rendering. A generative model tells how
the visual field should look knowing the scene elements
and a certain viewpoint. In general, active inference
assumes a hidden external state e, which is known
indirectly through its effects on the sensor. The external
state corresponds to the physical environment. Here the
external state is assumed to split into two (independent)
components, namely, e = (u, y), with u the interoceptive
body posture (in our case, the gaze orientation, or
“viewpoint”) and y the object shape (or object identity).
The visual field x is the state of the sensors, that is, a
partial view of the visual scene, measured through the
generative process: x ∼ p(X |e).

Using the Bayes rule, one may then infer the
scene elements from the current viewpoint (model
inversion). With the real physical state e being hidden, a
parametric model θ is assumed to allow for an estimate
of the cause of the current visual field through model
inversion thanks to the following Bayes formula:
p(E |x) ∝ p(x|E; θ ). It is also assumed that a set
of motor commands A = {..., a, ...} (here saccades)
may control the body posture (gaze orientation) but
not the object’s identity, so that y is independent of
a. Actuating a command a changes the viewpoint
to u′, which feeds the system with a new visual
sample x′ ∼ p(X |u′, y). The more viewpoints you
have, the more certain you are about the object
identity through a chain rule sequential evidence
accumulation.

In an optimal search setup, however (Najemnik &
Geisler, 2005), you need to choose the next viewpoint
that will help you to disambiguate at best the scene. In
a predictive setup, the consequence of every saccade
should be analyzed through model inversion over the
future observations, that is, predicting the effect of
every action to choose the one that may optimize
future inferences. The benefit of each action should be
quantified through a certain metric (future accuracy,
future posterior entropy, future variational free energy,
...) that depends on the current inference p(U,Y |x).
The saccade a that is selected thus provides a new

Downloaded from jov.arvojournals.org on 09/24/2020



Journal of Vision (2020) 20(8):22, 1–20 Daucé, Albiges, & Perrinet 14

visual sample from the scene statistics. If well chosen,
it should improve the understanding of the scene (here
the target position and category). However, estimating
in advance the effect of every action over the range
of every possible object shape and body posture is
combinatorially hard, even in simplified setups, and
thus infeasible in practice.

The predictive approach necessitates in practice to
restrain the generative model in order to reduce the
range of possible combinations. One such restriction,
known as the “naïve Bayes” assumption, considers
the independence of the factors that are the cause of
the sensory view. The independence hypothesis allows
considering the viewpoint u and the category y being
independently inferred from the current visual field,
that is, p(U,Y |x) = p(U |x)p(Y |x). This property is
strictly true in our setting and is very generic in vision
for simple classes (such as digits) and simple displays
(but see Võ & Wolfe, 2012, for more complex visual
scene grammars).

Foveal vision and the “What” pathway

At the core of the vision system is the identification
module, that is, the “What” pathway (see Figure 2). It
consists of a classic convolutional classifier for which
we will show some translation invariance in the form
of a shift-dependent accuracy map. Importantly, it can
quantify its own classification uncertainty, which may
allow comparisons with the output of the “Where”
pathway.

The foveal input is defined as the 28 × 28 grayscale
image cropped at the center of gaze (see dashed red
box in Figure 1C). This image is passed unmodified
to the agent’s visual categorical pathway (the “What”
pathway), which is realized by a convolutional neural
network, here the well-known “LeNet” classifier (Lecun
et al., 1998). The network structure that processes the
input to identify the target category is made of three
convolution layers interleaved with max-pooling layers,
followed by two fully connected layers as provided (and
unmodified) by its PyTorch library implementation
(Paszke et al., 2019). Each intermediate layer’s output
is rectified, and the network output uses a sigmoid
operator to predict the likelihood of detecting each of
the 10 digits. The index of one of the 10 output neurons
with maximum probability provides the image category.
It is first trained over the (centered) MNIST data set
after approximately 20 training epochs. This strategy
achieves an average 98.7% accuracy in the center on the
validation data set (Lecun et al., 1998).

To achieve an even more generic “What” pathway,
a specific data set is constructed to train the network.
It is made of randomly shifted digits overlaid on a
randomly generated noisy background, as defined
above. Both the shift and the contrast relative to the

Figure 6. (A) Input samples from the “What” training set, with
randomly shifted targets using a Gaussian bivariate spatial shift
with a standard deviation of 15 pixels. The target contrast is
randomly set between 30% and 70%. (B) 55 × 55
shift-dependent accuracy map, measured for different target
eccentricities on the test set after training.

background noise make the task more difficult than the
original MNIST categorization. The relative contrast of
the digit is randomly set between 30% and 70% of the
maximal contrast. The network is trained incrementally
by progressively increasing the shift variability (of
a bivariate central gaussian) and by increasing the
standard deviation from 0 to 15 (with a maximal shift
set at 27 pixels). The network is trained on a total of
75 epochs, with 60,000 examples generated at each
epoch from the original MNIST training set, using
the cross-entropy loss. The shifts and backgrounds
are regenerated at each epoch. The shifts’ standard
deviation increases one unit every five epochs such that
at the end of the training, many digits fall outside the
center of the fovea, so that many examples are close
to impossible to categorize, either because of a low
contrast or a too large eccentricity. At the end of the
training process, the average accuracy is thus 34% and a
maximum accuracy of 91% at the center.

After training, this shift-dependent accuracy map
is validated by systematically testing the network
accuracy on every horizontal and vertical shift, each
on a set of 1,000 cluttered target samples generated
from the MNIST test set and within the range of ±27
pixels (see Figure 6). This forms a 55 × 55 accuracy
map showing higher accuracy at the center and a slow
decreasing accuracy with target eccentricity (with an
accuracy plateau over 70% showing a relative shift
invariance on around a 7-pixel eccentricity radius).
This shift invariance is a known effect of convolutional
computation. Note that the categorization task is
here harder by construction and the accuracy that
is obtained here is lower (with a central recognition
rate of around 80%). The accuracy sharply drops
for eccentricities greater than 10 pixels, reaching the
baseline 10% chance level at shift amplitudes at around
20 pixels.
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Figure 7. Implementing the “Where” pathway: (A) A visual display is transformed by a feature vector, in which elements compute the
similarity of the full image with a bank of oriented filters placed at positions defined by a log-polar grid. This defines a linear
transform of the 128 × 128 = 16,384 input pixels into 2,880 coefficients. It is possible to represent this information in visual space by
using the pseudo-inverse of the linear transform (see, for instance, Figure 1C). (B) The “Where” network consists of two hidden layers
composed with a RELU operator transforming the retinal feature vector. A sigmoid operator ensures that this output vector is a
distribution of predicted likelihoods in log-polar space. (C) Similar to (A), any full accuracy map computed by shifting the
pre-computed shift-dependent accuracy map of the “What” pathway (see Figure 6) can be transformed into a distribution in log-polar
space, similar to a collicular representation. As the full accuracy map is itself a distribution, this can be implemented by a linear
(matrix) transform. In practice, one can use the inverse of this linear transform to project any collicular representation into the visual
space, for instance, to predict for the position with maximal accuracy (red cross).

“Where” pathway: Transforming log-polar
feature vectors to log-polar action maps

Here, we assume the “Where” implements the
following action selection: where to look next in order
to reduce the uncertainty about the target identity? The
“Where” pathway is thus devoted to choosing the next
saccade by predicting the location of the target in the
(log-polar) visual field. This implies moving the eye to
increase the “What”categorization accuracy. For a given
visual field, each possible future saccade has an expected
accuracy that can be trained from the “What” pathway
output. To accelerate the training, we use an equivalent
strategy by training the network on a translated
accuracy map (see below for details). The output
is thus an accuracy map that tells for each possible
visuomotor displacement the value of the future
accuracy.

Primary visual representation: log-polar orientation
filters

In order to reduce the processing cost, and in
accordance with observations (Connolly & Van Essen,
1984; Sparks & Nelson, 1987), a similar log-polar
compression pattern is assumed to be conserved from
the retina up to the visuomotor layers. The nonuniform
sampling of the visual space is adequately modeled
as a log-polar conformal mapping, as it provides a
good fit with observations in mammals (Traver &
Bernardino, 2010) and has a long history in computer
vision and robotics. Both the visual features and the
output accuracy map are to be expressed in retinal
coordinates. On the visual side, local visual features are
extracted as oriented edges as a combination of the
retinotopic transform with primary visual cortex filters
(Fischer, Sroubek, Perrinet, Redondo, & Cristobal,
2007); see Figure 7A. The centers of these first- and
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second- order orientation filters are radially organized
around the center of fixation, with small and tightened
receptive fields at the center and more large and
scarce receptive fields at the periphery. The size of the
filters increases proportionally to the eccentricity. The
filters are organized in 10 spatial eccentricity scales
(respectively placed at around 2, 3, 4.5, 6.5, 9, 13, 18, 26,
36.5, and 51.3 pixels from the center) and 24 different
azimuth angles, allowing them to cover most of the
original 128 × 128 image. At each of these positions,
six different edge orientations and two different phases
(symmetric and antisymmetric) are computed. This
finally implements a (fixed) bank of linear filters, which
models the receptive fields of the primary visual cortex.

To ensure the balance of the coefficients across
scales, the images are first whitened and then linearly
transformed into a retinal input as a feature vector x.
The length of this vector is 2,880, such that the retinal
filter compresses the original image by about 83%, with
high spatial frequencies preserved at the center and
only low spatial frequencies conserved at the periphery.
In practice, the bank of filters is precomputed and
placed into a matrix for a rapid transformation of input
batches into feature vectors. This matrix transformation
allows also the evaluation of a reconstructed visual
image given a retinal activity vector thanks to a
pseudo-inverse of the forward transform matrix. In
summary, the full-sized images are transformed into
a primary visual feature vector, which is fed to the
“Where” pathway.

Visuomotor representation: “Collicular” accuracy maps
The output of the “Where” pathway is defined as an

accuracy map representing the recognition probability
after moving the eye, independently of its identity.
Like the primary visual map, this target accuracy
map is also organized radially in a log-polar fashion,
making the target position estimate more precise at
the center and fuzzier at the periphery. This modeling
choice is reminiscent of the approximate log-polar
organization of the superior colliculus (SC) motor map
(Sparks & Nelson, 1987). To ensure that this output
is a distribution function, we use a sigmoid operator
at the output of the “Where” network. In ecological
conditions, this accuracy map should be trained by
sampling, that is, by “trial and error,” using the actual
recognition accuracy (after the saccade) to grade the
action selection. For instance, we could use corrective
saccades to compute (a posteriori) the probability of a
correct localization. In a computer simulation, however,
this induces a combinatorial explosion that does render
the calculation not amenable.

In practice, as we designed the generative model for
the visual display, the position of the target (which
is hidden to the agent) is known. Combining this
translational shift and the shift-dependent accuracy

map of the “What” classifier (Figure 6B), the full
accuracy map at each pixel can be thus predicted for
each visual sample under an ergodic assumption by
shifting the central accuracy map on the true position
of the target (see Figure 7C). Such a computational
shortcut is allowed by the independence of the
categorical performance with position. This full
accuracy map is a probability distribution function
defined on the rectangular grid of the visual display. We
project this distribution on a log-polar grid to provide
the expected accuracy of each hypothetical saccade in a
retinotopic space similar to a collicular map. In practice,
we used Gaussian kernels defined in the log-polar space
as a proxy to quantify the projection from the metric
space to the retinotopic space. This generates a filter
bank at 10 spatial eccentricities and 24 different azimuth
angles, that is, 240 output filters. To ensure keeping a
distribution function, each filter is normalized such that
the value at each log-polar position is the average of the
values that are integrated in visual space. Applied to
the full-sized ground truth accuracy map computed in
metric space, this gives an accuracy map at a different
location of a retinotopic motor space.

Classifier training
The “Where” pathway is a function transforming an

input retinal feature vector x into an output log-polar
retinotopic vector a representing for each area of the
log-polar visual field a prediction of the accuracy
probability. Following the active inference framework,
the network is trained to predict the likelihood ai at
position i knowing the retinal input x by comparing
it to the known ground truth distribution computed
over the motor map. The loss function that comes
naturally is the binary cross-entropy. At each individual
position i, this loss corresponds to the negative term
of Kullback-Leibler divergence for a binomial random
variable ai given by the predicted map and the ground
truth (see Figure 7B). The total loss is the average
over all positions i. This scalar measures the distance
between both distributions; it is always positive and null
if and only if they are equal.

The parametric neural network consists of a
primary visual input layer, followed by two fully
connected hidden layers of size 1,000 with rectified
linear activation and a final output layer with a
sigmoid nonlinearity to ensure that the output is
compatible with a likelihood function (see Figure 7B).
An improvement in convergence speed was obtained
by using batch normalization. The network is trained
on 60 epochs of 60,000 samples, with a learning rate
equal to 10−4 and the Adam optimizer (Kingma &
Ba, 2014) with standard momentum parameters. One
full training takes about 1 hr on a laptop. The code
is written in Python (Version 3.7.6) with PyTorch
library (Paszke et al., 2019) (Version 1.1.0). The full
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Figure 8. Quantitative role of parameters: We tested all parameters of the presented model, from that controlling the architecture of
image generation to the parameters of the neural network implementing the “Where” pathway (including meta-parameters of the
learning paradigm). We show here the results that show the most significative impact on average accuracy. The accuracy is given by a
blue line, with the red line giving the rate of errors. The black dashed line gives the chance level (10%), while the blue box gives the
99% confidence interval as estimated over eight repetitions of the learning. (A) First, we tested some properties of the input,
respectively from left to right: noise level (Noise), standard deviation of the distance of the target with respect to the fixation
(Offset_std), mean spatial frequency of clutter (Sf_0), and bandwidth (B_sf) of the clutter noise. This shows that average
accuracy evolves with noise (see also Figure 4 for an evolution as a function of eccentricity) but also the characteristics of the noise
clutter. In particular, there is a drop in accuracy whenever noise is of similar wavelength as digits, but it becomes less pronounced as
the bandwidth increases. (B) Finally, we scanned parameters of the deep learning neural network. We observed that accuracy quickly
converged after approximately 25 epochs (Epochs_adam). We then tested different values for the dimension of respectively the
first (Dim1) and second (Dim2) hidden layers, showing weak changes in accuracy. (C) The accuracy also changes with the architecture
of the foveated input, as shown here by changing the number N_azimuth of azimuth directions, which are sampled in visual space.
This shows a compromise between a rough azimuth representation and a large precision, which necessitates a longer training phase,
such that the optimal number is around 24 azimuth directions.

scripts for reproducing the figures and exploring the
results to the full range of parameters are available at
https://github.com/laurentperrinet/WhereIsMyMNIST.

Quantitative role of parameters
In addition, we controlled that the training results

are robust to changes in an individual experimental or
network parameter from the default parameters (see
Figure 8). From the scan of each of these parameters,
the following observations were remarkable. First we
verified that accuracy decreased when noise increased
and while the bandwidth of the noise imported weakly,
the spatial frequency of the noise was an important
factor. In particular, final accuracy was worst for
a clutter spatial frequency of ≈ 0.07, that is, when
the characteristic texture elements were close to the
characteristic size of the objects. Second, we saw that

the dimension of the “Where” network was optimal
for a dimensionality similar to that of the input but
that this mattered weakly. The dimensionality of the
log-polar map is more important. The analysis proved
that an optimal accuracy was achieved when using a
number of 24 azimuthal directions. Indeed, a finer
log-polar grid requires more epochs to converge and
may result in an overfitting phenomenon, hindering
the final accuracy. Such fine-tuning of parameters may
prove to be important in practical applications and
to optimize the compromise between accuracy and
compression.

Concurrent action selection

Finally, when both pathways are assumed to work in
parallel, each one may be used concurrently to choose
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the most appropriate action. Two concurrent accuracies
are indeed predicted through separate processing
pathways, namely, the central pixel recognition accuracy
through the “What” pathway and the log-polar
accuracy map through the “Where” pathway. The
central accuracy may thus be compared with the
maximal accuracy, as predicted by the “Where”
pathway.

From the information theory standpoint, each
saccade comes with fresh visual information about the
visual scene that can be quantified by a conditional
information gain, namely:

IGmax = max
x′

log p(y|x, x′) − log p(y|x)

with the left term representing the future accuracy (after
the saccade is realized) and the right term representing
the current accuracy as it is obtained from the “What”
pathway. Estimating the joint conditional dependence
in the first term being once again out of reach for
computational reasons, the following approximative
estimate is used instead:

˜IGmax � IGmax = max
x′

log p(y|x′) − log p(y|x), (1)

which is a simple difference between the log accuracy
after the saccade minus the log accuracy before the
saccade. To provide a reliable estimate, the information
gain may be averaged over many saccades and many
target eccentricities (so that the information gain may
be close to zero when the target eccentricity is close
to zero). Since the saccade is subject to prediction
errors and execution noise, the saccade landing position
may be different from the initial prediction. The final
accuracy, as instantiated in the accuracy map, contains
this intrinsic imprecision and is thus necessarily lower
than the optimal one. The consequence is that in some
cases, the approximate information gain may become
negative, when the future accuracy is actually lower
than the current one. This is, for instance, the case when
the target is exactly positioned at the center of the
fovea.

Keywords: object detection, active inference, visual
search, visuomotor control, deep learning
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