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Université de Toulon,

Aix Marseille Université,
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Abstract—In this article, we address the problem of the
Canonical Polyadic decomposition (a.k.a. CP, Candecomp or
Parafac decomposition) of N -th order tensors that can be
very large. In our case, this decomposition is performed under
nonnegativity constraints. While this problem is often tackled
thanks to deterministic approaches, we focus here, on a stochastic
approach based on a memetic algorithm. It relies on the evolution
of a population and a local search stage. The main drawback of
such algorithms can be their relative slowness. It is the reason
why we suggest and implement a parallel strategy to increase the
acceptance rate of the original algorithm and thus to accelerate
its convergence speed. Numerical simulations are performed in
order to illustrate the effectiveness of our approach on simulated
3D fluorescence spectroscopy tensors.

Index Terms—Tensor decomposition, stochastic optimization,
memetic algorithms, parallel strategy

I. INTRODUCTION

A particular attention has been dedicated to tensor decomposi-
tions with the raise of data arranged in multi-way arrays. There
exist many application fields where tensors are considered
(telecommunication, statistics, data mining, chemometrics, lin-
guistics, (audio) signal processing and so on); an overview can
be found in [1].
By analogy with the singular value decomposition for matri-
ces, the Canonical Polyadic Decomposition (CPD) has been
introduced for tensors by Hitchcock in [2] and rediscovered
several times afterwards. To solve this decomposition problem,
different algorithms have been suggested: i) direct methods
(e.g. GRAM-DTLD), ii) deterministic methods (alternating or
descent algorithms), among which are (Hierarchical) Alternat-
ing Least Squares algorithms (ALS and HALS) [3], proximal
gradient approaches [4] and more recently researchers have
also been interested in iii) stochastic approaches [5], [6] on
which we focus in this article. Most methods of the first two
classes of approaches are well described in [3].
This article is dedicated to the last category of methods,
and more specifically to memetic algorithms [7], which can
be regarded as hybrid methods between genetic evolution

algorithms and local search approaches. More precisely, we
focus, here, on an algorithm called Collaborative Evolution of
Population (CEP) [6] [8]. The main advantages of this kind
of methods are their robustness and their ability to address
different problems without requiring substantive changes or
complicated calculations. However, they are known for being
relatively slow regarding the convergence speed. To improve
the CEP algorithm, a parallel strategy is suggested here. Our
aim is to overcome some issues that might occur during the
local search stage. In fact, in the original version of the algo-
rithm, intermediary created solutions are often discarded. Our
aim is to improve the acceptance rate and thus to accelerate
the algorithm.
In the balance of this article, the following notations will
be used: scalars are denoted in (lowercase or capital) italic
letters, vectors in bold lowercase letters, matrices in bold
capital letters. Tensors, cost functions and equations sets
are in calligraphic uppercase letters. Finally, this article is
organized as follows. After an introduction, the second section
is dedicated to the statement of the CP decomposition problem.
The principle of memetic algorithms and more specifically of
the CEP algorithm as well as the various tricks on which it
relies, are introduced in the third section. In the fourth section,
we explain the principle of the parallel strategy used to im-
prove the convergence rate and speed up the algorithm. Then,
numerical simulations are provided to illustrate the robustness
and effectiveness of the algorithm. Finally, a conclusion is
drawn and perspectives are delineated.

II. PROBLEM STATEMENT

A. The CP model

There exists numerous tensor decompositions (Tucker, Block-
term, Tensor train). We focus, here, on the CP decomposition.
This compact decomposition turns a tensor into a sum of rank-



1 tensors. Let T , a N -way tensor of size I1 × I2 × . . .× IN
and assume its rank is R, its CP decomposition writes:

T =
R∑

r=1

ā(1)
r ⊗ ā(2)

r ⊗ . . .⊗ ā(N)
r = JĀ(1), Ā(2), . . . , Ā(N)K,

(1)

with ⊗ the outer product or equivalently element-wise for
all (i1, i2, . . . , iN ) ∈ I = {1, . . . , I1} × {1, . . . , I2} × . . . ×
{1, . . . , IN}

t̄i1,i2,...,iN =
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ā
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ā
(2)
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. . . ā
(N)
iN ,r, (2)

where the N matrices Ā(n) = (ā
(n)
inr

) =

[ā
(n)
1 , ā

(n)
2 , . . . , ā

(n)
R ] ∈ RIn×R, with n ∈ {1, . . . , N},

are the so-called loading (or factor) matrices, whose R

columns ā
(n)
r , with r ∈ {1, . . . , R}, are the loading vectors.

The tensor rank is unknown in most practical applications.

B. The CP decomposition

Given an observed tensor T , the purpose of the CP decom-
position is to find the best rank-one approximation of T (i.e.
T ∼ T ) and thus to estimate the loading matrices. A usual
way is to minimise a well-chosen objective function F(x),
which measures if the estimated CP model fits the observed
tensor, x standing for the L = (I1 + . . .+ IN )×R unknowns
written in a vector form

x =

 vec{A(1)}
...

vec{A(N)}

 ∈ RL.

The operator vec{·} vertically stacks the columns of a matrix
into a vector. The most commonly used objective function is
the squared Euclidian distance between the estimations and
the observations (fidelity criterium):

F(x) =
∑

(i1,i2,...,iN )∈I

|ti1,i2,...,iN −
R∑

r=1

a
(1)
i1,r

a
(2)
i2,r

. . . a
(N)
iN ,r|

2

=
∑

(i1,i2,...,iN )∈I

|ei1,i2,...,iN |2 (3)

where ei1,i2,...,iN is the entry-wise error for each tensor term.
Yet, the more terms are involved in the calculation of the cost
function, the more computationally expensive this calculation
can become. Moreover, in some applications (such as 3D or
4D fluorescence spectroscopy [9] [10]), the optimization is
performed under non-negativity constraints because the load-
ing vectors are standing for physical non negative quantities
(spectra and concentrations).

III. A STOCHASTIC ALGORITHM

Nowadays, more and more stochastic optimisation algorithms
are used (stochastic gradient descent, Monte Carlo methods,
evolutionary algorithms, genetic algorithm (GA), and so on),
especially in the field of Artificial Intelligence (see Convo-
lutional Neural Networks (CNN) for example). In the tensor

decomposition field, stochastic approaches have already been
used either to create randomly smaller sub-tensors than the
original problem [5] or to build randomly compressed cubes
[15], but the optimisation algorithm often remains determinis-
tic. Here, the optimisation algorithm itself is stochastic since
we use a memetic algorithm. Such algorithms were introduced
by Mocasto in [7]. As a metaheuristic technique, memetic
algorithms are iterative. Like GAs, memetic algorithms are
based on the convergence of all the elements of a population to
the same solution. But to avoid the problem of convergence to
a local extremum (which might occur with GA), a local search
stage is added. Thus, each iteration a.k.a a generation, contains
three main stages: a selection, a search and a replacement.

A. The CEP algorithm

We focus on the Collaborative Evolution of Population (CEP)
algorithm, which has been adapted for CP decomposition
in [6]. It consists of a competition between two candidates
randomly picked among the population. Their respective cost
functions are compared, the best candidate is kept and a
new candidate is created around this one while the worst is
discarded. In the context of CP decompositions, a candidate
represents the set of all the unknowns i.e. the components of all
the loading matrices. The principle of memetic algorithms for
the minimization problem minx∈Ω f(x) where Ω ⊂ RL, f :
Ω→ R can be summarized as follows:

Algorithm 1 Principle of the CEP algorithm
Step 1: Initialisation (at iteration k = 0) of a random
population of N ≥ 2 candidates {x1[0], . . . ,xN [0]} ⊂ Ω.
Compute f(x1[0]), . . . , f(xN [0]) to sort the population.
Step 2: At iteration k > 0,
• Selection stage: choose, according to a uniform law, two

different candidates in the population. The candidate with
the smallest cost function is kept while the other one is
discarded from the population.

• Local search: create a new candidate in the neighbour-
hood of the previously selected candidate

• Replacement: introduce this new candidate in the popu-
lation

Step 3: Return to the Step 2 and set k → k + 1 until the
stopping criterium is reached

During the local search stage, we opt for a really simple
rule. Only one component xl of the selected candidate x is
randomly picked (l ∈ {1, . . . , L}). It is modified by simply
adding a quantity µ to its value (or µ[k] when iteration k is
considered). Variable xl corresponds to one single variable
a

(nl)
il,rl

among all the unknown parameters that have to be
estimated which also means that the only term which is
modified is at the position (il, rl) in the nl-th loading matrix.

So the elements of the different loading matrices ã(n)
in,r

[k + 1]



of the new candidate x̃[k + 1], can be written as:

ã
(n)
in,r

[k+1] =

{
|a(n)

in,r
[k] + µ[k]| if n = nl, in = il and r = rl

a
(n)
in,r

[k] otherwise
(4)

The absolute value |.| is here to ensure the imposed non-
negativity constraint. The choice of the step size is crucial
and is discussed in the next section. The main inconvenient
of stochastic optimisation algorithms is that they are com-
putationally expensive and converge after a huge amount of
iterations.

B. Optimisation tools of the CEP algorithm

To reduce the computational cost of each iteration, two nu-
merical tools have already been developed in [8]: 1) the use
of a partial cost function and 2) the use of a more efficient
calculation of the cost function.

1) Use of a partial cost function: In the context of CP
decompositions, the number of tensor terms which is equal
to I1 × I2 × . . . × IN is much more larger than the number
of unknowns (I1 + I2 + . . .+ IN )×R. Therefore, all tensor
elements are not taken into account in the calculation of the
cost function to decrease its computational cost. Only M
tensor elements are picked randomly making it possible to
build a new set IM ⊂ I, on which the partial cost function is
effectively calculated:

FM (x) =
∑
IM⊂I

|ti1,i2,...,iN −
R∑

r=1

a
(1)
i1,r

a
(2)
i2,r

, . . . , a
(N)
iN ,r|

2with

IM = {(i1, i2, . . . , iN ) ∈ I | eq. (i1, i2, . . . , iN ) is chosen}.

Such a partial cost function is also very useful in the particular
case of outliers or missing data. It makes it possible to not take
them into account whereas a modified weighted cost function
has to be introduced with most approaches considering block
of unknowns [11] [12].

2) The choice of the step size: A too large step size µ in
Eq. (4) may lead to divergence while a too small one may
decrease the convergence speed. In the following, a stochastic
step size is drawn from a uniform law U(−b[k], b[k]). b[k]is
calculated thanks to two heuristics detailed in [8]:

b[k] =

√
F(x[k])

M

/
τN−1 (5)

where τ =
N

√∑
(i1,i2,...,iN )∈I ti1,i2,...,iN

MR

where the integer M corresponds to the number of equations
among the I1×I2×. . .×IN available ones that are selected in
(2). We can notice that b[k] decreases when F(x[k]) decreases.

3) Economic cost function calculation: In [8], it has been
shown that a population of two candidates is more suited for
the CP decomposition. So, the algorithm sums up in a local
search around a candidate x[k] and if the new candidate x̃[k+
1] is better, it is kept and the other discarded (x[k+1] = x̃[k+

1]); otherwise, the new one is discarded (x[k+1] = x[k]) and a
local search around the previous candidate is again performed.
Since there is only one variable characterized by (nl, il, rl) that
is modified between the two candidates, only a few residual
errors ei1,i2,...,iN [k+1] are impacted by this modification when
inl

= il, although the others remain the same. Thus, the new
modified residual errors can be calculated:

ei1,...,il,...,iN [k + 1] = ei1,...,il,...,iN [k]− µ[k]z
(−nl)
i1,...iN ,rl

(6)

where
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a
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The difference between the two cost functions GM (x̃[k +
1],x[k]) = FM (x̃[k + 1])−FM (x[k]) can be computed by:

GM (x̃[k + 1],x[k]) =∑
(i1,...,iN )∈IM,in

l
=i

l

[|ei1,...,iN [k + 1]|2 − |ei1,...,iN [k]|2] (7)

IM,in
l
=il

is a subset of IM where the tensor index inl
is fixed

at il.
The set on which GM (x̃[k + 1],x[k] is calculated, is then far
smaller than IM . Therefore, a cheap computation of the new
candidate cost function can be performed by FM (x̃[k+ 1]) =
FM (x[k])+GM (x̃[k+1],x[k]). If FM (x̃[k+1]) < FM (x[k]),
then the update of the residual errors is taken in account
otherwise not.

IV. A PARALLEL STRATEGY TO IMPROVE THE ALGORITHM

With the rise of “Big Data” tensors, the optimisation problems
can become very large and the scale-up of the algorithms
can be a real challenge. This raises issues linked to hardware
constraints such as memory capacity and processor speed. To
overcome these constraints, the asynchronous parallel methods
have been considered for solving optimisation problems [13].
For tensor decomposition with non-negativity constraints, a
parallel algorithm via Alternating Direction Method of Mul-
tiplier has already been studied in [14] and another approach
consisting of analysing in parallel randomly compressed cubes
has been suggested in [15].

A. Purpose of the parallel strategy used in the CEP algorithm

Due to their inherent “parallel nature”, it is easy to apply a
parallel strategy to memetic algorithms. In fact, they rely on
the notion of a population of candidates which means that the
cost function of each candidate can be calculated separately.
Parallel memetic algorithms have already been considered in
[16] but for other problems.
In the context of the CEP algorithm, a parallel strategy is
introduced in order to improve the acceptation rate after the
local search milestone. A “reject” instead of an “acceptation”
results from the fact that the new created candidate often has
a cost function larger than the one of the previous candidate.
In some situations, the rejection rate can be close to 100% (in
the following example, it was roughly equal to 98%). The aim



is to improve the acceptation rate, so the convergence speed
of the algorithm will increase. In our case, the parallel part of
the algorithm is coded thanks to OpenMP.

B. Description of our parallel strategy

We start our algorithm with just one candidate. At each
iteration, a certain number thread of new candidates are
created independently in parallel during the local search stage
in the neighbourhood of the previous one. More precisely,
we apply a different step size on a randomly picked variable
thanks to Eq. (4), for each new candidate. After comparing the
value of their cost function, the candidate with the smallest
cost function is kept (or the previous candidate if no new
candidate is able to improve the value of the cost function).
At each iteration, the probability to find an “acceptable” new
candidate increases and thus, we are more likely to improve
the acceptation rate even if each iteration becomes more time
consuming.
Evaluating the cost function value after each move consumes
about the same time because we can consider that the number
of selected tensor terms related to each variable is in the
same order of magnitude. Therefore, each thread created in
the parallel section is associated with a new candidate. The
resulting algorithm can be summed up as follows:

Algorithm 2 Principle of a parallel strategy for the CEP
algorithm
Step 1: Initialisation (iteration k = 0) of a random candidate
x[k] and compute FM (x[k])
Step 2: At iteration k > 0,
• Parallel section (local search stage):

– Create a population of thread new candidates x̃0[k+
1], . . . , x̃thread-1[k+1] from x[k] with different moves
(variable that is moved and the used step size)

– Compute FM (x̃0[k + 1]), . . . ,FM (x̃thread-1[k + 1])
– Keep the best candidate x̃∗[k + 1] with its cost

function value FM (x̃∗[k + 1])

• Replacement: if FM (x̃∗[k + 1]) < FM (x[x]) , then
FM (x[k+1]) = FM (x̃∗[k+1]) and x[k+1] = x̃∗[k+1]
otherwise the candidate and its cost function value re-
mains the same (rejection case)

Step 3: Return to the Step 2 and set k → k + 1 until the
stopping criteria are reached

V. SIMULATIONS AND COMPARISON

The application targeted, here, is the 3D fluorescence spec-
troscopy. This kind of data set constitutes a 3-way tensor in
which are saved emitted light intensities for different excitation
wavelengths and for several observations. The tensor is a jux-
taposition of the so-called Fluorescence Emission-Excitation
Matrices (FEEM). This application is interesting, because, at
low concentrations of fluorophores (fluorescent components
that are present in the different observations/mixtures), the
non-linear model predicted by the Beer-Lambert law can be

linearized and it has been shown that it follows the CP model
[9]. The columns of the loading matrices A(1),A(2) and A(3)

stand for physical quantities: excitation and emission spectra
of the different fluorophores and the evolution of the relative
concentration of each fluorophore along the different exper-
iments. In this case, the tensor rank R in the CP model,
corresponds to the number of fluorophores that are present in
the studied solutions. Since we are dealing with intrinsically
non-negative data (spectra, concentrations), it is quite relevant
to impose non-negativity constraints during the optimization
scheme. In this section, all the considered tensors are simulated
synthetic fluorescence spectroscopy like data.
The Relative Reconstruction Error (RRE) is defined as:

RRE =
||T − T̃ ||2F
||T ||2F

and RREdB = 10 log10(RRE) (8)

where || · ||F stands for the Frobenius norm. The stopping
criteria for each experiments are RRE< 10−8 with a maximum
number of iterations 2.4×108 and for all memetic algorithms
an another stopping criterium is added: all 40 000 iterations the
ratio between the two values of cost function FM (x[k])

FM (x[k−40000]) <
0.99999. For all tested parallel strategies, the relative recon-
struction errors and the CPU time are recorded each 40000
iterations, although in the classic case, each 400000 iterations.
In the following, the results for parallel strategies are averaged
on five executions because the random generator behaviour is
different at each execution.
To compare the performances of the different algorithms, the
studied tensors, in this example, are 100×100×100 and their
rank is 5. Only M = 10 × L (with L the number of latent
variables i.e. 1500) tensor terms are taken into account for the
partial cost function.

Figure 1. Performance vs CPU time for different number (thread) of
candidates created in parallel

In Fig. 1 and Tab. I, we clearly observe that the application
of a parallel strategy on the CEP algorithm allows to reduce
the computation time. Moreover, all variants of the algorithm
were able to reach the true solution as it appears on the Figure
3. The best choice among the different values of thread seems
to be here thread = 48 for 96 available processors.
The lasting time between two records becomes shorter when
the number of thread is decreasing and inversely. It makes



Table I
COMPARISON OF THE MEAN TIME CONSUMED DURING 40000 ITERATIONS

AND MEAN NUMBER OF ACCEPTATIONS BY ITERATION VERSUS THE
NUMBER OF THREADS CREATED IN THE PARALLEL SECTION

Number of threads 24 48 72
Mean time during 40 000 iterations 9.24s 12.05s 19.11s
Mean number of acceptations 17.88% 19.58% 22.49%

sense because thread cost function values for the new created
candidates are computed at each iteration.

Figure 2. Impact of the number of new created candidates thread on the perf.

As illustrated on Fig. 2, the parallel strategy version with
thread = 72 leads to convergence in less iterations. Indeed, the
more created threads there are, the less iterations to achieve the
converge are required. However, this version of the algorithm
is not the fastest since each iteration takes much more time
to be completed. As a conclusion, there is a compromise to
find between the time taken by each iteration and the total
number of iterations required to reach the stopping criteria
but with this kind of stochastic algorithm it remains obviously
advantageous to opt for a parallel strategy.

Figure 3. Comparison of the emission and excitation spectra estimated with
the different variants of the algorithm superimposed with the ground truth
spectra.

VI. CONCLUSION & PERSPECTIVES

The parallel strategy for the CEP algorithm used to solve the
CP decomposition problem is less time consuming than the

standard version of the CEP algorithm (about 3,6 times) while
the same accuracy can be reached. However, we have shown
that the number thread of new candidates must be carefully
chosen. In [8], a locally optimal step size strategy has been
developed on a random variable to reduce the rejection rate in
the original version of the CEP algorithm. Our aim will be now
to use both this parallel strategy and the locally optimal step
size strategy. New candidates will be created by calculating
and applying this “optimal step size” for different variables
picked in parallel. Finally, many other parallel strategies could
be considered, among which are the application of all the
accepted moves on the previous candidate, or the use of the
second best move in the previous iteration at the local search
stage in the parallel region to avoid the loss of important
acceptances.
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