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Abstract

Climate change seriously threatens biodiversity, particularly in mountain ecosystems. However, studies on climate
change effects rarely consider endemic species and their niche properties. Using species distribution models, we assessed
the impact of climate change on the endemic flora of the richest centre of endemism in the Alps: the South-Western
Alps. We projected the potential distributions of 100 taxa under both an optimistic (RCP2.6) and a pessimistic (RCP8.5)
climate scenario, analysing the relationships between range dynamics and several predictors (dispersal abilities, vegeta-
tion belts, niche marginality, niche breadth, altitudinal range and present range). The negative impact ranged from weak
to severe according to the scenario, but the extinction risk was low. The dispersal abilities of species strongly affected
these range dynamics. Colline and subalpine species were the most threatened and the relationship between range
dynamics and predictors varied among vegetation belts. Our results suggest that the rough topography of the SW
Alps will probably buffer the climate change effects on endemics, especially if climate will remain within the limits
already experienced by species during the Holocene. The presence of the Mediterranean-mountain flora, less affected by
climate change than the alpine one, may explain the lower number of species threatened by extinction in the SW Alps
than in other European mountains. These results suggest that the relationship between plants’ sensitivity to climate
change, and both niche properties and vegetation belts, depends on the difference between the current climate in which
species grow and the future climate, and not just on their niche breadth.

Keywords Biodiversity hotspot - Ecological niche - Endemic species - Global warming - Species distribution model - Vegetation
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Introduction

It is widely accepted that global warming is inducing one of
the greatest threats to biodiversity (Thomas et al. 2004;
Bellard et al. 2012; Cahill et al. 2012; Moritz and Agudo
2013; Sax et al. 2013). In particular, mountain ecosystems
are important centres of biodiversity where species and eco-
systems at risk persist (Nogués-Bravo et al. 2007; Hoorn et al.
2018) and are particularly exposed to climate change effects,
even if their vulnerability is highly variable among mountain
systems (Engler et al. 2011). In Europe, the strongest effects of
climate change are projected in Southern European mountain
systems, where the increase of temperature will be associated
with a decrease of precipitation (Thuiller et al. 2005a; Engler
et al. 2011; Pauli et al. 2012) and a severe reduction or disap-
pearance of permanent snow and ice (Huss et al. 2017).
Studies aiming to provide an overview of the effect of
climate change on mountain species have mainly addressed
widely distributed taxa while the few available overview stud-
ies focusing on endemic species have taken into account an
array of different endemics and not mainly mountain ones
(e.g. Thuiller et al. 2006; Loarie et al. 2008; Casazza et al.
2014). Studies investigating the mountain endemics have fo-
cused on a small number of species (e.g. Cotto et al. 2017) or
on ecologically specialized taxa (e.g. Dirnbock et al. 2011).
Therefore, we still lack a general understanding of the effect of
future climate change on mountain endemic species.
Endemic mountain plants are expected to be more suscep-
tible to habitat modification induced by climate change
(Dirnbock et al. 2011; Dullinger et al. 2012) because they
are thought to have a narrow ecological niche, occurring in
narrow areas and in specific habitats (Essl et al. 2009). The
poor dispersal ability of most of these species affected their
current distribution not enabling them to keep pace with past
climate change (Essl et al. 2011) and it will probably prevent
them to keep up with future ones (Malcolm et al. 2002; Engler
et al. 2009; Ozinga et al. 2009). For these reasons, estimating
the future distribution range of endemic mountain plants is
currently a primary task to support the development of proac-
tive strategies to mitigate the negative impacts of climate
change on biodiversity by conservation biologists and
decision-makers (Pereira et al. 2010; Parmesan et al. 2011).
The South Western Alps (hereafter SW Alps), located at
the interface of the Mediterranean Basin and the Alps, are one
of the most relevant biogeographical areas in Europe because
of the high number of endemic taxa. In fact, the SW Alps are
the richest centre of endemism in the Alps (Aeschimann et al.
2011) and one of the most important biodiversity hotspots of
the Mediterranean Basin (Médail and Quézel 1997). The high
biodiversity of this area is primarily the result of the close
proximity of the Mediterranean and Alpine climates, the high
habitat heterogeneity and the complex biogeographical histo-
ry (Casazza et al. 2005, 2008; Fauquette et al. 2018).

Unfortunately, the SW Alps are also one of the European
mountain systems that likely will be more prone to climate
change (Engler et al. 2011).

In this study, we used species distribution models (SDMs;
Guisan and Zimmermann 2000) to analyse the potential ef-
fects of climate change on 100 plants endemic or sub-endemic
to the SW Alps under different climate change scenarios, con-
sidering their dispersal abilities. We analysed the potential
range changes and the risk of species extinction taking into
account the vegetation belts where the species grow.
Moreover, as the ecological characteristics of species can af-
fect their sensitivity to climate change (Thuiller et al. 2005b),
we explored the relationships between potential range loss and
niche properties (i.e. niche marginality, niche breadth, altitu-
dinal range and current potential range).

Methods
Study area and taxa

The study area includes the SW Alps (Marazzi 2005) and sur-
rounding areas for a total of about 160,000 km?
(Online Resource 1), in order to cover the entire distributional
range of sub-endemic taxa (i.e. taxa in which at least the 75% of
the populations occur in the SW Alps). In the last two centuries,
many floristic surveys investigated the study area, providing an
extensive documentation about the distribution of endemic spe-
cies. The occurrence dataset was obtained from regional data-
bases, herbaria, literature and personal observation made by the
authors or expert botanists (Online Resource 2). We did not take
into account those taxa having nomenclatural problems, showing
uncertainties or lacks in distributional data, or occurring in pecu-
liar and azonal habitats like dripping and springs (for a detailed
description of the selection procedure, see Online Resource 2).
To mitigate pseudo-replication of occurrences and to harmonize
the occurrence dataset to the climatic layers (see below), we
retained for each species only one occurrence per grid cell of
about 1 x 1 km spatial resolution. Furthermore, we excluded taxa
having an area of occupancy lower than 25 km?, in order to
assure that species occur in at least 25 grid cells, which is the
minimum sample size suggested by van Proosdij et al. (2016) for
widespread species (Online Resource 2). Overall, we selected 68
endemic and 32 sub-endemic taxa, representing 56% and 80% of
the endemic and sub-endemic flora of the SW Alps, respectively.
The final data set consisted of 34,069 occurrences, ranging from
27 to 1805 occurrences per species (Online Resource 2).

To analyse the potential impact of climate change per veg-
etation belt, the study area was subdivided into three main
vegetation belts (i.e. colline, montane and subalpine), accord-
ing to Engler et al. (2011). Each species was assigned to the
vegetation belt with the highest frequency of occurrences
(Online Resource 2).



Environmental layers

We downloaded the monthly values of precipitation, maximum
and minimum temperature for both current (i.e. 1979-2013) and
future (i.e. 2061-2080; hereafter 2070) time slices at about 1 x
1 km spatial resolution from CHELSA v.1.2 dataset (Karger
et al. 2017a, 2017b; www.chelsa-climate.org). For the future
climate, we chose two representative concentration pathways
(RCPs) representing optimistic and pessimistic possible future
emission trajectories and coded according to a possible range
of radiative forcing values in the year 2100 relative to preindus-
trial values (+ 2.6 and + 8.5 W/m?, hereafter optimistic and pes-
simistic scenarios, respectively; Intergovernmental Panel on
Climate Change, 2014). We used RCP projections from five
general circulation models (GCMs), which represent physical
processes in the atmosphere, ocean, cryosphere and land surface.
According to Sanderson et al. (2015), we selected five non-
interdependent GCMs: CESm1-CAMS, FIO-ESM, IPSL-
CM5A-MR, MIROCS and MPI-ESM-MR. We calculated nine-
teen bioclimatic variables (Online Resource 3) for both current
and future time slices using the “dismo” package (Hijmans et al.

2017) implemented in R (R Core team 2017). Following the
approach of Hamann et al. (2015) and Maiorano et al. (2012),
we used the first two axes of a principal component analysis
(PCA) as environmental variables for species distribution model-
ling to assure the model’s transferability (i.e. the predictive
success of SDMs calibrated in one spatiotemporal range and
projected onto another one; Petitpierre et al. 2017). The PCA
was calculated on the bioclimatic variables for current and for
each future scenario (i.e. all the combinations of RCPs and
GCMs) pooled together; then the values of the first two axes of
the PCA of each climate were separated to obtain one data set for
the current and five data sets for each of future scenarios (Fig. 1).
The PCA was performed using the R package “ade4” (Dray and
Dufour 2007).

Species distribution models

To account for model-based uncertainties in the modelling
process (Aratjo and New 2007; Petchey et al. 2015), five
widely used SDM techniques implemented in the R pack-
age BIOMOD?2 v 3.3.7 (Thuiller et al. 2009) were used (Fig.

Fig. 1 Environmental layers and
model settings. Representative
concentration pathways (RCPs)
and general circulation models
(GCMs) were obtained from
CHELSA v.1.2 dataset (Karger
et al. 2017a, 2017b; www.chelsa-
climate.org). Model techniques:
CTA, classification tree analysis;
GBM, generalised boosted
models; GLM, generalized linear
models; MARS, multivariate
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1). These modelling techniques belong to three different
model classes, i.e. two machine learning methods (general-
ised boosted models—GBM, Ridgeway 1999, and random
forest—RF, Breiman 2001), two regression methods (gen-
eralized linear models—GLM, McCullagh and Nelder
1989, and multivariate adaptive regression splines—
MARS, Friedman 1991) and one classification method
(classification tree analysis—CTA, Breiman et al. 1984).
According to Barbet-Massin et al. (2012), ten replicate sets
of pseudo-absences were generated for each taxon. For each
pseudo-absence set, a split-sample cross-validation was re-
peated 10 times, using a random subset (30%) of the initial
data set (Fig. 1). Model performance was evaluated using
two different measures implemented in BIOMOD?2: the ar-
ea under the curve of a ROC plot (Hanley and McNeil 1982)
and the true skill statistic (Allouche et al. 2006). The area
under the curve of a ROC plot is obtained plotting the pro-
portion of true positives against the proportion of false pos-
itives and it is equivalent to the probability that the model
will rank a presence site higher than an absence site. True
skill statistic is the success rate of prediction both for pres-
ence and absence sites. Both measures are less affected by
prevalence and are considered highly effective measures for
the performance of ordinal score models (Liu et al. 2005;
Allouche et al. 2006). Projections from different model
techniques and environmental datasets were averaged to
implement an ensemble forecasting approach (Marmion
et al. 2009), obtaining 5 current and 50 future projections
(Fig. 1). To assess uncertainty in the model projections, we
calculated the standard deviation among projections per
grid cells for each modelling technique. Then we calculated
the average standard deviation for each species and climate.
Finally, we converted the continuous suitability maps into
binary projections of species presence and absence (Fig. 1)
using three different thresholds, implemented in the R pack-
age “PresenceAbsence” (Freeman and Moisen 2008). We
used three different thresholds, which perform equally or
better than others (Liu et al. 2005; Cao et al. 2013), because
the choice of threshold may affect projection bias. Species
were then considered occurring in a cell if at least 50% of
models projected its occurrence there (i.e. a majority con-
sensus rule).

Spatial indices for distribution under future climates
and dispersal scenario

The percentage of projected future range change (RC) was
estimated using the formula RC =100 x (RG-RL)/PR, where
range gain (RG) is the number of grid cells projected to be not
suitable under current climate but suitable under future cli-
mate, range loss (RL) is the number of grid cells projected to
be suitable under current climate but unsuitable under future
climate and present range (PR) is the number of grid cells

projected to be suitable under the current climate. A positive
RC value indicates an expected increase in range size, while a
negative value indicates an expected decrease in range
size. Species with a percentage of RC ranging from —
80 to — 100 were considered at high risk of extinction.
To avoid that climatically suitable areas where species
currently do not occur might affect the analyses, the
calculation of PR was restricted to grid cells which
are no more than 5 km away from species occurrences.

The dispersal ability of species plays a key role in
projecting the effects of climate change on species distribu-
tion, because it affects their capability to track the geograph-
ical shift in suitable environments (Malcolm et al. 2002). For
this reason, we assigned each species to a dispersal category,
according to the classification of Vittoz and Engler (2007),
which is based on dispersal vector and plant traits and does
not take into account rare and stochastic long-distance dispers-
al events. To obtain the maximum distance that each species
could reach in the investigated time interval, the upper limit of
the distance within which 99% of seeds of each species are
dispersed was multiplied for 55 years (Online Resource
2). Then, for both scenarios, the spatial indices were
calculated in a buffer zone calibrated on the dispersal
ability of the species around the grid cells that were
used to calculate PR values.

Predictors of range loss and change

The relationship between predictors of range dynamics and
both RL and RC was evaluated by using a multiple linear
regression model. Models were built by considering vege-
tation belts and the interactions between the single predic-
tors and the vegetation belts as main effects. As predictors,
we considered niche properties like niche marginality and
breadth (sensu Dolédec et al. 2000), altitudinal range and
PR (i.e. the number of currently suitable cells). Moreover,
we used dispersal distance as a predictor of RC. Niche
marginality was calculated using the OMI index, which is
the distance between the mean environmental conditions
(in our study the 19 bioclimatic variables) used by the spe-
cies and the mean environmental conditions of the study
area. Niche breadth was calculated using the tolerance in-
dex, which is the variance of habitat conditions used by the
species. The altitudinal range was calculated as the stan-
dard deviation of the altitude of species occurrences and it
could be considered a proxy of niche breadth (Essl et al.
2009).

Results

Model evaluation under current climatic conditions indicat-
ed a good model performance for the majority of modelling



techniques and species (Online Resource 4). Similarly, the
uncertainty in the model projection was mainly low for all
species and it was slightly higher in the pessimistic than in
the optimistic scenario (Online Resources 4). Considering
all species together, we found differences between the two
future scenarios in range loss and change. In particular, the
loss was low and the change was slightly negative (i.e. from
0 to —20% for the majority of species) under the optimistic
scenario, while the loss was high and the change was strong-
ly negative (i.e. from — 60 to —80% for the majority of
species) under the pessimistic scenario (Fig. 2;
Online Resource 5). Therefore, we projected a high extinc-
tion risk (i.e. range change from — 80 to — 100%) for 14% of
species under the pessimistic scenario only. In contrast to
loss and change, the gain was always low under both sce-
narios (i.e. from 0 to 10% for the majority of species), with
the exception of few species (e.g. Prunus brigantina Vill.,
Asplenium jahandiezii (Litard.) Rouy, Ophrys bertolonii
Moretti subsp. saratoi (E.G.Camus) R.Soca, Centaurea
Jjordaniana Godr. & Gren., Helictotrichon setaceum (Vill.)
Henrard) which showed a very high gain (i.e., more than
doubling their range), resulting in an overall positive
change under both scenarios (Fig. 2; Online Resource 5).

We did not detect any difference among the three vegeta-
tion belts in range loss, change and gain under the optimistic
scenario (Fig. 2; Online Resource 5). Conversely, under the
pessimistic scenario, mountain species showed slightly lower
loss and slightly lower negative change than colline and sub-
alpine species, while the gain was not different among vege-
tation belts. In addition, the species with high extinction risk
belong mainly to colline and subalpine belts (i.e. colline =
16%; montane = 3.8%; subalpine = 18.3%).

Under the optimistic scenario, range loss was significant-
ly positively related to niche breadth and significantly neg-
atively related to altitudinal range and current potential
range in colline species (Fig. 3; Online Resource 6). Under
the pessimistic scenario, range loss was significantly nega-
tively related to niche marginality, altitudinal range and
current potential range in colline species, to altitudinal
range in mountain species and to the altitudinal range and
current potential range in subalpine species, while it was
significantly positively related to niche marginality in sub-
alpine species (Fig. 3; Online Resource 6). Under the opti-
mistic scenario, range change was significantly negatively
related to current potential range in colline and mountain
species and significantly positively related to dispersal dis-
tance in colline, mountain and subalpine species (Fig. 4;
Online Resource 6). Under the pessimistic scenario, range
change was significantly negatively related to current po-
tential range in mountain species, significantly positively
related to altitudinal range in mountain species and signifi-
cantly positively related to dispersal distance in colline,
mountain and subalpine species (Fig. 4; Online Resource 6).

Discussion

Future impacts of climate change on the distribution
of endemic plants

In this study on the effect of climate change on 100 endemic
species in the SW Alps, we showed that if the climate change
stays within the limits already experienced by species during the
Holocene (as projected under the optimistic scenario—Guiot and
Cramer 2016; Fauquette et al. 2018), the range loss will be mod-
erate. Moreover, our study showed that plants’ sensitivity to
climate change mainly depends on the difference between the
current climate where species grow and the projected climate.

The negative effect of climate change on the potential dis-
tribution recorded in the majority of species (79% and 93% of
species under an optimistic and pessimistic scenario, respec-
tively; Fig. 2, Online Resource 5) is in line with other studies
on plants endemic to other biogeographical regions (Central-
northern Mediterranean region: Casazza et al. 2014;
California: Loarie et al. 2008; South Africa: Thuiller et al.
2006) and with studies on widely distributed plants of the
main European mountain chains (Thuiller et al. 2005a;
Engler et al. 2011; Pauli et al. 2012). Different from most of
these studies, in most species, we projected a small range gain
that will not mitigate the RL (Fig. 2, Online Resource 5). This
inconsistency may depend on the use of different dispersal
scenarios (unlimited dispersal vs. limited dispersal scenario).
In fact, the unlimited dispersal scenario assumes that a species
can colonize all locations without physiological, environmen-
tal or geographical limitations, probably overestimating the
RG for species whose suitable habitat is projected to increase
(Engler et al. 2009). However, even if our approach attempts
to provide a plausible estimate of the maximum distance that
species can cover until 2070, it does not take into account all
factors affecting dispersion. Most of the SW Alps endemics
have a low dispersal ability (Online Resource 2), primarily
limited by the absence of specialized diaspores for wind or
bird dispersal, and by the short stem height. Therefore, during
the investigated time interval, the majority of the studied spe-
cies (i.e. the 67% of species) probably will be not able to move
from the grid cells where they currently occur (i.e. dispersion
lower than 500 m in 55 years), like in a no-dispersal scenario.
Nevertheless, in accordance with the idea that the intensity of
the climate warming may affect the distance that the species
has to cover to maintain constant climate conditions
(Kuussaari et al. 2009), we detected a higher RG under the
optimistic than under the pessimistic scenario (Fig. 2,
Online Resource 5). Moreover, the high environmental het-
erogeneity in mountain areas like the SW Alps might further
shorten this distance (Engler et al. 2009; Loarie et al. 2009;
Sandel et al. 2011), enabling also species with poor dispersal
ability to keep up with the shift to suitable climatic conditions
under the optimistic scenario.



Fig. 2 Results of range analysis OPTIMISTIC SCENARIO (RCP2.6) PESSIMISTIC SCENARIO (RCP8.5)
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Fig. 3 Results of multiple regression analyses between range loss and
predictors of range dynamics under optimistic (i.e. RCP 2.6) and
pessimistic (i.e. RCP 8.5) scenarios for studied taxa belonging to each
vegetation belt. Squares and dashed lines: colline; circles and dot-dashed

The marked difference we detected between emission sce-
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Online Resource 5) is in line with previous studies (Loarie
et al. 2008; Engler et al. 2011; Casazza et al. 2014). The small
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overall conservation of biodiversity (Thomas et al. 2004). In
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particular, the climate projected under this optimistic scenario
is expected to fall within the climatic variability that species
already experienced during the Holocene (Guiot and Cramer
2016; Fauquette et al. 2018) and therefore, strong range con-
tractions will probably start after the 2070s (Engler et al.
2009). Consequently, the difference in range change we de-
tected between the two scenarios may be partially due to the
difference in the time of onset of climate change effect on
species range, occurring earlier in the pessimistic than in the
optimistic scenario.

Despite the projected changes in the potential range, only
few species under the pessimistic scenario are exposed to high
extinction risk (e.g. Epipactis leptochila (Godfery) Godfery
subsp. provincialis (Aubenas & Robatsch) J.M.Tison,
Gentiana burseri Lapeyr. subsp. actinocalyx Polidori,
Santolina decumbens Mill., Oreochloa seslerioides (All.)
K.Richt—Fig. 2, Online Resource 5). This result suggests
that, although strong changes in distributional patterns of sin-
gle species will occur, the endemic species in SW Alps are
projected to be slightly affected by future climate change,
albeit our approach does not take into account species extinc-
tion resulting from stochastic events. However, the strength of
the climate change may delay or hasten the species extinction
(Kuussaari et al. 2009), suggesting that the projected absence
of extinctions under the optimistic scenario in SW Alps during
the investigated time interval should not be interpreted as an
absence of species extinction threat on a longer term. Due to
the projected low risk of species extinction, the results for the
SW Alps contrast with previous studies on European moun-
tain systems (Engler et al. 2011; Thuiller et al. 2005a). By
using a coarse spatial resolution and truncated niche space,
they probably did not detect local microrefugia, resulting in
an overestimation of the species extinction rate (Randin et al.
2009). In fact, microclimatic heterogeneity may reduce extinc-
tion risk from anthropogenic warming (Sugitt et al. 2018 but
see Trivedi et al. 2008 for a contrary opinion). Otherwise, the
projected low extinction of endemic species is in line with the
expectation that rough topography and microclimatic diversity
will likely buffer the effects of climate change and species
extinction in centres of endemism, as it already took place in
the past (Harrison and Noss 2017). In particular, the high
regional and local environmental heterogeneities of the SW
Alps buffered the effect of past climate changes, both reducing
the species extinctions and promoting the current endemism
richness of the region (Médail and Diadema 2009; Casazza
et al. 2016).

Differences in range change between vegetation belts

The variation in distribution range is higher in endemics oc-
curring at low and high altitude, while species belonging to
montane vegetation belt are less threatened by climate change.
In particular, 16% of colline, 3.8% of mountain and 18.3% of

subalpine species are projected to lose more than 80% of their
suitable habitat under the pessimistic scenario (Fig. 2,
Online Resource 5). In the SW Alps, several mountain species
occur under a climate with large seasonal variations (i.e.
meso-Mediterranean climate, characterized by hot and arid
summer and cold winter), consequently the future climatic
conditions will probably lie within those the species already
experience at least in some periods of the year (Thuiller et al.
2005b; Thuiller et al. 2006; Tielborger et al. 2014). Moreover,
the overall low impact of climate change detected for moun-
tain species is likely favoured by the wide altitudinal range of
the majority of them. In fact, in these species the upward shift
of climate will enable the majority of populations to remain
within the climatic conditions experienced by popula-
tions at the lower altitudes. These features may explain
the low impact of climate change projected for the spe-
cies belonging to this vegetation belt.

Conversely, the high range contraction detected in colline
species contrasts with the general expectation according to
which low elevation species are less sensitive to climate
change because they have more opportunities to shift their
range upward (Lenoir et al. 2008; Benito et al. 2011; Chen
etal. 2011; Engler et al. 2011). Nevertheless, high range con-
traction was previously detected for several colline species
growing in north Mediterranean coasts (Casazza et al. 2014).
The high range contraction detected in colline endemics of the
SW Alps supports the idea that the lower the range limits and
optima were situated historically, the faster they are expected
to shift upwards (Rumpf et al. 2018). In fact, taking into ac-
count their low dispersal ability, several of colline endemics
might not be able to migrate fast enough to keep pace with
climate change.

The highest contraction of distributional range detected in
subalpine species was previously detected in other studies that
suggested a high sensitivity to climate change in high eleva-
tion species (Engler et al. 2011; Gottfried et al. 2012). Overall,
the weaker impact of climate change on the mountain than on
colline and subalpine species is in line with the idea that the
repeated up- and downshifts of the bioclimatic belts
during past climatic fluctuations eliminated the lower
and higher altitude species favouring mainly the persis-
tence of mid-altitude species (Prodon et al. 2002).

The effect of niche properties on range loss and
change

Similarly to vegetation belts where species occur, distribution
range and niche properties are expected to strongly affect
plants response to climate change because they are related to
the degree of ecological specialization of species (Thuiller
et al. 2005a; Thuiller et al. 2005b; Broennimann et al. 2006;
Clavel et al. 2011; Casazza et al. 2014). Our projections are
partially in line with the general expectation that species with



narrow ranges are affected more strongly by climate change
than species with wider ranges because they have narrow
niches (Lawton and May 1995; Gaston 1998; Thuiller et al.
2005b; Essl et al. 2009). In particular, we found that the pres-
ent range and altitudinal range, which measure the spatial
extent of suitable conditions for a species, are negatively re-
lated to RL under the pessimistic scenario (Fig. 3;
Online Resource 6). Moreover, the present range is also neg-
atively associated with RC (Fig. 4; Online Resource 6).
Species with the narrowest distributional ranges are further
threatened by climate change because generally they would
have to strongly shift their distributional range to keep pace
with change, albeit they usually have the lowest dispersal
ability (Schwartz et al. 2006). Conversely, species having a
wide geographic distribution are likely to have also a broad
niche because they occur under a variety of environmental
conditions; consequently, they are expected to be less sensi-
tive to future climate change (Thuiller et al. 2005b; Clavel
etal. 2011). Nevertheless, contrary to this general expectation,
niche breadth was never negatively related to RL and to RC.
Differently, niche marginality was significantly positively as-
sociated with RL in subalpine species and it was significantly
negatively related to RL in colline species (Fig. 3;
Online Resource 6). Because niche marginality is a proxy
for the climatic specialization of a species in relation to the
mean climatic conditions of the region where it occurs, our
results suggest that specialist species growing under warm and
arid conditions (i.e. steno-Mediterranean species in the colline
belt) are projected to lose less range by climate change than
orophytes growing under cold and wet conditions (i.e. subal-
pine species sensu stricto). In fact, in the subalpine belt, the
lowest values of RL were found in species growing under
temperate climate, close to the mean climatic conditions of
the study area (i.e. generalist species with ecological affinities
with mountain species). All these findings suggest that the
relationship between plants’ sensitivity to climate change
and both niche properties and vegetation belts is affected by
the difference between the current climate where species grow
and the projected climate, rather than the simply measure of
climatic tolerance of the species. The strong positive relation-
ship between dispersal abilities and range change detected in
both scenarios (i.e. the higher the dispersion ability, the small-
er the impact of climate change—Fig. 4, Online Resource 6) is
in line with the expectation that the distribution of endemic
plants may be strongly affected by their dispersal limitation
(Essl et al. 2011). Moreover, this result supports the idea that
species with poor dispersal ability are less able to keep pace
with changes in their suitable environments (Malcolm et al.
2002; Jiménez-Alfaro et al. 2016) and therefore more prone to
range reduction (Ozinga et al. 2009). Consequently, assisted
colonization (i.e. the human-facilitated migration) should be
considered to assure survival of endemic species under future
climate (IUCN (International Union for Conservation of

Nature) SSC (Species Survival Commission) 2013).
Eventually, our results suggest that niche properties mainly
affect the likelihood of species to persist in situ (i.e. RL) while
dispersal ability mainly affects the possibility of species to
track the shift in suitable areas (i.e. RC).

Conclusion

Taken together, our results suggest that, in line with the ex-
pectation of biogeographical processes linked to a centre of
endemism (Harrison and Noss 2017), the rough topography
and ecological heterogeneity of the SW Alps will probably
buffer endemic plants against future climate change.
Nevertheless, the strength of the buffering strongly depends
on the capability to maintain climate change within the limits
already experienced by species during the Holocene
(Fauquette et al. 2018). Furthermore, the low number of spe-
cies projected to be at risk of extinction in the next decades in
the SW Alps differs from the general trend detected for the
other European mountain systems (Engler et al. 2011; Thuiller
et al. 2005a). This difference may be because of the presence
of a Mediterranean flora which seems to be less affected by
climate change than the alpine one and the ability of fine-scale
analysis to take into account the local persistence of species,
fundamental for the survival of endemics. Moreover, the re-
sponse of SW Alps endemics to climate change largely de-
pends on the difference between the current climate where
species grow and the future climate. Therefore, to explore
the effects of past climate changes on the distribution of spe-
cies endemic to Mediterranean mountains might allow us to
detect putative future refugia that will be disproportionately
important for conservation purposes, as they will likely be
islands of high climatic stability and low competition increase
for most endemics.
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