
HAL Id: hal-02977156
https://amu.hal.science/hal-02977156

Submitted on 17 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Understanding the power of Max-SAT resolution
through UP-resilience

Mohamed Sami Cherif, Djamal Habet, André Abramé

To cite this version:
Mohamed Sami Cherif, Djamal Habet, André Abramé. Understanding the power of
Max-SAT resolution through UP-resilience. Artificial Intelligence, 2020, 289, pp.103397.
�10.1016/j.artint.2020.103397�. �hal-02977156�

https://amu.hal.science/hal-02977156
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Understanding the Power of Max-SAT Resolution
Through UP-Resilience?,??

Mohamed Sami Cherifa, Djamal Habeta, André Abraméb

aAix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
bLogike, France

Abstract

A typical Branch and Bound algorithm for Max-SAT computes the lower bound

by estimating the number of disjoint Inconsistent Subsets (IS) of the formula.

The IS detection is ensured by Simulated Unit Propagation (SUP). Then, the

inference rule for Max-SAT, Max-SAT resolution, is applied to ensure that the

detected IS is counted only once. Learning Max-SAT resolution transformations

can be detrimental to the algorithm performance, so they are usually selectively

learned if they match certain patterns. In this paper, we study the impact of the

transformations by Max-SAT resolution on the SUP mechanism, indispensable

for IS detection. We introduce the notion of UP-resilience of a transformation

which quantifies this impact and provides, from a theoretical point of view,

an explanation to the empirical efficiency of the learning schemes developed in

the last ten years. We also focus on recently introduced patterns called Unit

Clause Subsets (UCSs). We characterize the transformations of certain UCSs

using UP-resilience and we explain how our result can help extend the current

patterns. Finally, we present empirical observations that support the relevance

of the UP-resilience property and further consolidate our theoretical results.

Keywords: Branch and Bound, Max-SAT resolution, Simulated Unit

Propagation, UP-resilience, Pattern

?This paper is based on work published in [1] and [2].
??This work has been partially funded by the French National Research Agency, reference

ANR-16-C40-0028.
Email addresses: mohamedsami.cherif@lis-lab.fr (Mohamed Sami Cherif),

djamal.habet@lis-lab.fr (Djamal Habet), andre.abrame@logike.fr (André Abramé)

Preprint submitted to Journal of Artificial Intelligence July 23, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0004370220301478
Manuscript_5d251fe01bfafc5717edaec3095e93eb

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0004370220301478

1. Introduction

The maximum satisfiability (Max-SAT) problem is an optimization exten-

sion of the satisfiability (SAT) problem. For a given formula in Conjunctive

Normal Form (CNF), it consists in finding an assignment of the variables which

maximizes the number of satisfied clauses. Complete methods for this prob-

lem include SAT based approaches (e.g. RC2 [3], MAXHS [4], OPEN-WBO

[5], EVA [6], WPM1 [7]) and Branch and Bound (BnB) algorithms (e.g. AH-

MAXSAT [8], MiniMaxSAT [9], AKMAXSAT [10], MAXSATZ [11, 12]) among

others. The former which iteratively call SAT solvers are particularly efficient

on industrial instances while the latter are competitive on random and crafted

instances.

BnB based approaches construct a search tree and compute, at each node,

the Lower Bound (LB) by counting the disjoint Inconsistent Subsets (ISs) of the

formula using Simulated Unit Propagation (SUP) [13]. When an IS is found,

it is either temporarily deleted or transformed by Max-SAT resolution, the in-

ference rule for Max-SAT [14, 15], to ensure that it will be counted only once.

However, learning Max-SAT resolution transformations, i.e., memorizing them

in the current subtree (including the current node), may affect negatively the

quality of the lower bound estimation [1, 12, 16]. Therefore, state of the art

solvers learn transformations selectively mainly in the form of patterns [12].

Recently, new patterns called Unit Clause Subsets (UCSs) were introduced

and empirically studied in [16]. The most significant feature of these patterns

is producing unit clauses after the transformation by Max-SAT resolution. The

propagation of these clauses may lead to the detection of more ISs. The empiri-

cal study of these patterns lead to the first observations on the relation between

Max-SAT resolution transformations and the efficiency of the SUP mechanism

which is indispensable for the lower bound estimation.

In this paper, we formally state these observations by introducing a new

property called UP-resilience. More specifically, we study the impact of the

2

Max-SAT resolution transformations on the SUP mechanism. We show that in

some cases the information which can be used by SUP in the original formula

are, after transformation, fragmented in several clauses. In such situation, SUP

may be less efficient in the transformed formula than in the original one. We

introduce the notion of UP-resilience to characterize the transformations which

are not affected by fragmentation and more generally to measure the impact of

the transformations on the SUP mechanism. We show that according to this

criterion, the most used learning scheme based on patterns does not affect SUP.

This contributes to explain from a theoretical point of view the empirical results

obtained in the last ten years on the development of inference rules [12]. Also,

in the context of a new approach to extend the current learning mechanisms, we

conduct a theoretical study on particular UCS patterns and, more specifically,

their relation with UP-resilience: we prove that binary UCSs are UP-resilient

and we generalize this result on UCSs where only one clause of any size is

involved in the conflict. Furthermore, we explain how our results can help extend

the current patterns by showing that the current mechanisms in BnB solvers

can’t ensure UP-resilience for these patterns. Finally, we present empirical

observations that also support the relevance of the UP-resilience property.

This paper brings together, highlights and extends results presented in previ-

ous conference publications [1, 2]. In particular, the notion of UP-resilience was

first introduced and used to quantify the impact of Max-SAT resolution trans-

formations on the SUP mechanism in [1]. Moreover, binary UCSs and UCSs

patterns where only one clause of any size is involved in the conflict were proven

to be UP-resilient in [2]. In this paper, we extend those results by showing

that application orders can have a direct impact not only on the UP-resilience

of certain literals appearing in the detected IS but also on the UP-resilience

of the whole Max-SAT resolution transformation of the IS. Furthermore, we

provide a proof for the UP-resilience of one of the major patterns, which does

not correspond to a UCS, thus reinforcing our observations on the relevance of

this property. We also provide more detailed experiments and new empirical

results on partial instances. Finally, this paper includes a thorough background

3

on Branch and Bound algorithms for Max-SAT and on the use of Max-SAT

resolution in this context.

This paper is organized as follows. In Section 2, we give basic definitions

and notations and we present a brief overview of BnB solvers for Max-SAT.

In Section 3, we describe the fragmentation phenomenon as a motivation to

our work. We introduce the notion of UP-resilience in Section 4 and we show

how it highlights the impact of Max-SAT resolution transformations on the

SUP mechanism. In Section 5, we conduct a theoretical study on particular

UCS patterns and, more specifically, their relation with UP-resilience and we

show the limits of the current mechanisms. In Section 6, we present empirical

evidence on the relevance of UP-resilience. Finally, we conclude and we give

some prospective points for future work in Section 7.

2. Preliminaries

2.1. Definitions and Notations

Let X be a set of propositional variables. A literal l is a variable x ∈ X or its

negation x and a clause is disjunction of literals, represented as a set of literals.

A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses and

can be represented as a set of clauses. An assignment I : X −→ {true, false}

maps each variable to a Boolean value and is represented as a set of literals. For

a given literal l, var(l) denotes the variable appearing in l. A clause c is satisfied

by an assignment I if at least one of its literals is satisfied, i.e., ∃l ∈ c such that

l ∈ I. The empty clause � is always falsified. For a unit assignment I = {l},

we denote by Φ|I the formula obtained by reducing Φ by I, i.e, Φ|I = {c ∈

Φ | {l, l} ∩ c = ∅} ∪ {c \ {l} | c ∈ Φ, l ∈ c}. This notation can be extended to

any assignment I = {l1, l2, . . . , lk} as follows: Φ|I = (. . . ((Φ|{l1})|{l2}) . . . |{lk}).

An Inconsistent Subset (IS) of a formula Φ is an unsatisfiable set of clauses

ψ ⊆ Φ. Solving the Max-SAT problem consists in finding an assignment which

maximizes the number of satisfied clauses for a given CNF formula. There exists

other variants of Max-SAT (weighted, partial and weighted partial Max-SAT)

4

which are not considered in this paper. Nevertheless, the presented results can

be easily extended to these variants.

2.2. Branch and Bound Solvers for Max-SAT

2.2.1. Outline

Branch and Bound (BnB) algorithms for Max-SAT explore the search space

by constructing a binary search tree while maintaining two values: the Upper

Bound (UB) and the Lower Bound (LB) which correspond respectively to the

best computed solution so far and to the estimation of the best accessible so-

lution. In each node of the search tree, the current assignment is extended, if

possible, using rules such as Pure Literals (PL) and Dominating Unit Clause

(DUC) [17]. Then, the value of LB is computed and compared to UB. If it is

greater, finding a better solution in the current sub-tree is not possible and,

thus, the algorithm backtracks. If a complete assignment is reached, the UB

value is updated and a backtrack is performed. Else, an unassigned variable is

chosen using a branching heuristic [8, 9, 10, 11]. These steps are repeated until

the whole search space is explored. As the efficiency of BnB algorithms depends

on the quality of LB, it is important to note that state of the art BnB Max-SAT

solvers use powerful mechanisms to compute a more accurate LB estimation

enabling more cuts in the search tree and, thus, faster solving.

2.2.2. LB Estimation

The LB estimation is one of the most critical components of a BnB Max-

SAT algorithm. Indeed, computing lower bounds with better quality entails

more cuts in the search tree and, thus, faster solving. However, as these compu-

tations are done frequently during the search, the time devoted to them is closely

correlated to the speed of the solver and, therefore, its efficiency. So, it is impor-

tant to strike a balance between the computation time for LB and its quality. A

simple estimation for LB is the number of the falsified clauses of the formula Φ

by the current assignment I. Formally, LB = falsified_clauses(Φ|I) = |{c ∈ Φ |

c|I = �}|. As this simple estimation is often quite far from the best accessible

5

solution, BnB Max-SAT solvers refine it by calculating the number of disjoint

Inconsistent Subsets (ISs) in the simplified formula Φ|I , where I is the current

assignment, using Simulated Unit Propagation (SUP) [13].

SUP replicates the Unit Propagation (UP) mechanism, used in SAT solvers

and which consists in iteratively satisfying the literals appearing in unit clauses

until a conflict is found (an empty clause), to detect ISs. However, UP is not

a valid inference rule for Max-SAT, i.e., it does not necessarily maintain the

number of falsified clauses for each assignment. Thus, the variable assignments

made by UP are not added to the current assignment after the LB estimation.

More specifically, these variable assignments are stored in a separate tempo-

rary assignment extension. That is why we say that BnB Max-SAT algorithms

simulate UP and we refer to this mechanism as Simulated Unit Propagation.

The propagation steps generated by SUP can be represented by an implication

graph [18] defined as follows in the context of BnB solvers for Max-SAT:

Definition 1 (Implication Graph of an IS). Let ψ be an IS of a CNF formula Φ

and I an assignment. We suppose that exactly one clause is falsified by I (SUP

stopped when the first empty clause is generated). An implication graph of ψ is

a directed acyclic graph G = (V,A) defined as follows:

• V = {l ∈ I} ∪ {�c | c ∈ ψ and |c| = 1} ∪ {�}

• A = {(l, l′, c) | l, l′ ∈ I and c ∈ ψ is reduced by l and propagates l′}
⋃

{(�c, l, c) | l ∈ I and c = {l} ∈ ψ}
⋃

{(l,�, c) | l ∈ I and c ∈ ψ is falsified by I and l ∈ ψ}

The directed edges are labeled by clauses and the nodes � are omitted in G.

Notation. For an implication graph G and a literal l ∈ V (possibly �), we

denote :

• predG(l) (resp. succG(l)) the predecessors (resp. successors) of l in G

• neighG(l) = predG(l) ∪ succG(l)

• srcG(l) the clause that lead to the propagation of the literal l in G

6

The index G will be omitted if there is no confusion.

When an IS is detected, it must be counted only once in the LB estimation.

To this end, detected ISs are treated using two methods: they are either tem-

porarily deleted or transformed by Max-SAT resolution. The deletion of ISs has

several advantages: it is less time-consuming and it doesn’t increase the size

of the formula. However, it produces a formula that is not equivalent to the

original and, thus, that may contain less ISs. Therefore, this method applies

local changes on the formula that are only preserved during the LB estimation

in the current node. In the next section we explain the second method which

transforms ISs using Max-SAT resolution.

2.2.3. Max-SAT resolution Transformation

The most used method to treat ISs, outlined in Algorithm 1, is based on

the Max-SAT resolution inference rule defined below. A Max-SAT resolution

transformation requires an implication graph describing the sequence of prop-

agations leading to the detection of the IS. The transformation is usually done

in the reverse order of propagation. The treatment performed by Max-SAT

resolution(Φ, c1, c2, var(l)) (line 6 in Algorithm 1) consists in deleting the clauses

c1 and c2 and adding the compensation clauses and the resolvent clause cr (also

returned after the transformation) to the formula as described in the Max-SAT

resolution rule defined as follows:.

Definition 2 (Max-SAT resolution [14, 15]). The inference rule for Max-

SAT, max- resolution, is defined as follows:

c = {x, y1, ..., ys}, c′ = {x, z1, ..., zt}
cr = {y1, ..., ys, z1, ..., zt}, cc1, ..., cct, cct+1, ..., cct+s

where the compensation clauses are defined as follows:

7

cc1 = {x, y1, ..., ys, z1}

cc2 = {x, y1, ..., ys, z1, z2}

. . .

cct = {x, y1, ..., ys, z1, ..., zt−1, zt}

cct+1 = {x, z1, ..., zt, y1}

cct+2 = {x, z1, ..., zt, y1, y2}

. . .

cct+s = {x, z1, ..., zt, y1, ..., y2, ys}

Remark. Unlike the SAT inference rule, Max-SAT resolution replaces the premises

in the rule by its conclusions. In addition, it produces an equivalent formula,

i.e., it preserves the number of unsatisfied clauses for any assignment. The

results established in this paper can be easily extended to weighted Max-SAT for-

mulas (hard clauses can be included with infinite weights in the case of partial

formulas) using the weighted version of Max-SAT resolution introduced in [14].

Furthermore, as Max-SAT resolution is also a sound and complete inference

rule for Min-SAT [19], our results remain valid in the context of B&B Min-Sat

solvers.

Definition 3 (Max-SAT resolution transformation of an IS). Let ψ be an IS of

a CNF formula Φ and S = 〈x1, ..., xk〉 be a sequence of variables appearing in ψ.

The Max-SAT resolution transformation of ψ with respect to S, denoted Θ(ψ, S),

is the set of clauses obtained from ψ after the application of Max-SAT resolution

steps in accordance to the sequence S, i.e., Θ(ψ, S) = θ(θ...(θ(ψ, x1), x2)..., xk)

where θ(ψ, x) denotes the application of the Max-SAT resolution step on two

clauses c and c′ such that x ∈ c and x ∈ c′.

Remark. A transformation Θ(ψ, S) is not unique in general as the application

of Max-SAT resolution steps with respect to a given variable sequence S is not

deterministic and, thus, Θ(ψ, S) represents any of the possible outcomes after

the transformation of ψ with respect to S. However, if S represents the reverse

propagation order, the transformation with respect to S becomes deterministic

and Θ(ψ, S) becomes unique.

8

Algorithm 1: Max-SAT resolution Transformation of an IS
Input: a CNF formula Φ, an implication graph G of an IS of Φ

Output: the transformed formula

1 begin

2 c1 ← srcG(�);

3 while c1 6= � do

4 l← the last propagated literal in G;

5 c2 ← srcG(l);

6 cr ← max_resolution(Φ, c1, c2, var(l));

7 c1 ← cr;

8 end

9 return Φ

10 end

Example 1. We consider the IS ψ = {{x1}, {x2}, {x3}, {x3, x4}, {x1, x2, x4}}

detected by the sequence of unit propagations represented in the form of an im-

plication graph on the left in Figure 1. The Max-SAT resolution transformation

of ψ with respect to the variable sequence S = 〈x4, x3, x2, x1〉 (in the reverse

order of propagation) is given on the right in Figure 1.

It is important to note that, unlike the deletion method, the changes are

maintained in the sub-tree and, thus, the detected IS is computed and counted

only once. This is possible since Max-SAT resolution produces an equivalent

formula and this entails an incremental calculation of LB while reducing redun-

dancy in the detection of ISs. Nevertheless, this method has several shortcom-

ings: it is time-consuming and it may increase the size of the formula by adding

the compensation clauses obtained after each Max-SAT resolution step. We

explain in the next section how state of the art solvers overcome these limits.

9

x1

x2

x4

x3

�

{x1} {x
1 , x

2 , x
4}

{x2} {x1, x2
, x4}

{x3}

{x3, x4}

{x3
, x4
}

{x1, x2, x4} {x3, x4}

{x1, x2, x3} {x3}

{x1, x2} {x2}

{x1} {x1}

�

{x1, x2, x3, x4}

{x1, x3, x4}

{x1, x2, x3, x4}

{x1, x3}

{x1, x2, x3}

{x1, x2}

x4

x3

x2

x1

Figure 1: Implication graph corresponding to a propagation sequence of ψ and its transfor-

mation by Max-SAT resolution, where compensation clauses for each step are represented in

boxes

2.2.4. Learning Schemes

One of the major challenges for BnB solvers for Max-SAT is to perform effi-

cient Max-SAT resolution transformations of ISs. There are two main learning

schemes. The first scheme learns a transformation only if all the intermediary

resolvents are smaller than four [9] whereas the second learns transformations

matching particular patterns. These patterns are mainly described by inference

rules that can be deduced from Max-SAT resolution. They can be specific cases

of Max-SAT resolution or a combination of several Max-SAT resolution steps.

We give below three major patterns used in state of the art solvers:

{l1, l2}, {l1, l2}
(P1)

{l1}

{l1, l2}, {l1, l3}, {l2, l3}
(P2)

{l1}, {l1, l2, l3}, {l1, l2, l3}

{l1}, {l1, l2}, {l2, l3}, ..., {lk, lk+1}, {lk+1}
(P3)

�, {l1, l2}, {l2, l3}, ..., {lk, lk+1}

P1 is a particular case of Rule 1 in [12] while P2 is related to Rule 5 and P3

10

corresponds to Rule 4. In their weighted form, the pattern (P1) corresponds to

a particular case of chain resolution rule [20] whereas patterns (P2) and (P3)

are specific cases of the cycle resolution rule [20]. A pattern can cover an IS

entirely as in pattern (P3), or partially as in patterns (P1) and (P2). These

patterns present several advantages: they can be easily identified and they don’t

increase the number of clauses in the formula. Furthermore, patterns (P1) and

(P2) produce a unit resolvent clause which enables the solver to detect more

ISs using SUP.

Recently, new patterns called Unit Clause Subsets (UCS) [16], were intro-

duced and empirically studied in order to extend the learning mechanisms in

BnB Max-SAT solvers. Hereafter, we give the formal definition of these patterns

and we explain how they can be easily detected using the implication graph of

an IS.

Definition 4 (Unit Clause Subset). Let Φ be a CNF formula and k a natural

number. A k-Unit Clause Subset where k ≥ 2, denoted k-UCS, is a set of clauses

{c1, ..., ck} ⊆ Φ such that there exists a sequence of Max-SAT resolution steps

on c1, ..., ck that produces a unit clause reslovent. In particular, if ∀i ∈ {1, ..., k}

we have |ci| = 2, it is a binary k-UCS, denoted kb-UCS.

Example 2. The patterns (P1) and (P2) which are learned in state of the art

BnB solvers, correspond respectively to a 2b-UCS and a 3b-UCS.

Definition 5 (First Unique Implication Point [21]). Let G be an implication

graph. A Unique Implication Point (UIP) is any node in G such that any path

from the literals propagated by unit clauses to the conflict node must pass through

it. The First UIP (FUIP) is the UIP closest to the conflict node.

UCS patterns have a high apparition frequency (in more than 57% of the

detected ISs [16]). Furthermore, certain k-UCS patterns are easily detectable

by analyzing the implication graph of the obtained IS. Indeed, as outlined in

Example 3, the clauses which are between the conflict and the FUIP produce

a unit resolvent clause if they are transformed by Max-SAT resolution in the

reverse propagation order.

11

Example 3. We consider the IS ψ = {{x1}, {x2}, {x1, x2, x3}, {x3, x4}, {x3, x5},

{x4, x5}} detected by the sequence of unit propagations represented in the form

of the implication graph G on the left in Figure 2. Clearly, the node x3 is the

FUIP of G. The Max-SAT resolution transformation of ψ with respect to the

variable sequence S = 〈x5, x4, x3〉 (representing the reverse order of propaga-

tion until the FUIP is encountered) is given on the right in Figure 2. This

transformation produces the unit resolvent {x3}. Therefore, the set of clauses

ψ′ = {{x3, x4}, {x3, x5}, {x4, x5}} ⊂ ψ is a 3-UCS. More specifically, since all

the clauses in ψ′ are binary, it is a 3b-UCS.

x1

x2

x3

x4

x5

�

{x1} {x
1 , x

2 , x
3}

{x2} {x1,
x2,

x3}

{x3
, x4
}

{x
3 , x

5}

{x
4 , x

5 }

{x4
, x5
}

{x4, x5} {x3, x5}

{x3, x4} {x3, x4}

{x3}

{x3, x4, x5}

{x3, x4, x5}
x5

x4

Figure 2: Implication graph corresponding to a propagation sequence of ψ and its transfor-

mation by Max-SAT resolution, where compensation clauses for each step are represented in

boxes

3. Motivation

Two reasons are generally invoked to explain the efficiency of the learning

schemes: they limit the growing of the formula size and produce small compen-

sation clauses which are more likely to be used by SUP. However, experimental

analysis shows that increasing learning slightly may deteriorate significantly the

performance of the solver [16]. The reasons cited above cannot explain this be-

havior. Furthermore, the empirical study conducted in [16] shows a correlation

between the decrease of the number of propagations, the decrease of the number

of detected ISs and the increase of the number of decisions. More specifically,

Max-SAT resolution transformations may result in a “fragmentation” of the in-

formation contained in the original clauses of the formula. This phenomenon,

12

showcased in Example 4, occurs when clauses are fragmented into two (or more)

clauses after transformation by Max-SAT resolution which may obstruct their

exploitation by the SUP mechanism. In this case, the original information

can only be retrieved by applying Max-SAT resolution between the fragmented

clauses.

Example 4. We consider the IS ψ = {{x1}, {x2}, {x3}, {x3, x4}, {x1, x2, x4}},

introduced in Example 1, detected by the implication graph G in Figure 1 and

whose Max-SAT resolution transformation with respect to the reverse order of

propagation, corresponding to the sequence S = 〈x4, x3, x2, x1〉, is represented on

the right in the same figure. If the unique neighbor of x1 in the implication graph

is set to true in the transformed IS, we obtain Θ(ψ, S)|{x4} = {{x1, x3}, {x1, x3},

{x1, x2}, {x1, x2, x3}, {x1, x2, x3},�}. Clearly, the literal x1 can’t be propagated

in Θ(ψ, S)|{x4}. We can produce the resolvent x1 if we perform a Max-SAT

resolution step between the clauses {x1, x3} and {x1, x3} but the SUP mecha-

nism alone cannot ensure the propagation of this literal in the transformed IS

even with respect to its neighborhood in the implication graph. We say that

the information leading to the propagation of x1 was fragmented into several

compensation clauses.

When such transformations are learned, it may affect the capability of the

SUP mechanism to detect ISs in the lower nodes of the search tree. Thus, the

LB estimation may be less accurate and the solvers may explore more nodes.

4. A New Characterization of Max-SAT resolution Transformations

In this section, we introduce the notion of UP-resilience of a transformation

and we explain how this property quantifies the impact of Max-SAT resolution

on the SUP mechanism and, thus, on the detection of Inconsistent Subsets. We

also prove that the main patterns (P1), (P2) and (P3) used in state-of-the-

art BnB solvers for Max-SAT verify this property. Finally, we show that the

application order of Max-SAT resolution has an impact on the UP-resilience of

a transformation.

13

4.1. UP-Resilience

When fragmentation occurs, the compensation clauses which may propagate

a literal of the constructed implication graph can contain additional literals

which are not in its initial neighborhood. More precisely, the neighborhood of

a literal l in the implication graph contain literals that are in direct interaction

with it and which should enable, once propagated in the detected IS, the prop-

agation of l. However, if after the transformation of the IS, the fragmentation

occurs, new literals that interact directly with l are introduced and may thus

obstruct the propagation of l by SUP even considering all the literals appearing

in its neighborhood in the implication graph. Clearly, the power of SUP is de-

pleted in such cases. Thus, to detect if a transformation is not affected by the

fragmentation phenomenon, we can rely on the capability of SUP to propagate

the literals of the constructed implication graph when their neighborhood liter-

als are set to true. From here on, we will say that a literal l can be propagated

in a formula Φ if the unit clause {l} can be inferred from Φ by unit propagation.

Definition 6 (UP-Resilience in an Implication Graph). Let Φ be a CNF for-

mula, ψ an IS detected by the propagation steps described by the implication

graph G = (V,A) and S a sequence of variables appearing in ψ. We say that

the transformation Θ(ψ, S) is UP-resilient for l ∈ V in G iff � ∈ neigh(l) or

l can be propagated in Θ(ψ, S)|neigh(l). We say that Θ(ψ, S) is UP-resilient for

L ⊆ V in G iff it is UP-resilient ∀l ∈ L in G and that it is UP-resilient in G

iff it is UP-resilient for V in G.

Remark. Note that the neighborhoods which include the special node � are not

valid assignments. All transformations are considered UP-resilient for literals

with such neighborhoods.

Example 5. We consider the IS ψ = {{x1}, {x2}, {x3}, {x3, x4}, {x1, x2, x4}},

introduced in Example 1, detected by the implication graph G in Figure 1. We

showed in Example 4 that the fragmentation phenomenon occurs since the literal

x1 can’t be propagated in Θ(ψ, S)|neigh(x1). Thus, the described transformation

is not UP-resilient in the implication graph G.

14

The previous definition of UP-resilience depends on the neighborhoods of

the literals in the implication graph. However, the same IS can be detected

by several sequences of propagation steps which can be described by distinct

implication graphs.

Example 6. We consider the IS ψ = {{x1}, {x2}, {x3}, {x3, x4}, {x1, x2, x4}},

introduced in Example 1. In addition to the implication graph presented in

the original example represented on the left in Figure 3, another sequence of

propagations, corresponding to the implication graph represented on the right in

the same figure, can lead to the detection of the IS ψ. The propagation sequences

corresponding to the same implication graph are considered as equivalent.

x1

x2

x4

x3

�

{x1} {x
1 , x

2 , x
4}

{x2} {x1, x2
, x4}

{x3}

{x3, x4}

{x3
, x4
}

x1

x2

x3 x4

�

{x1} {x1 , x2 , x4}
{x2} {x1, x2, x4}

{x3} {x3, x4}
{x1

, x2
, x4
}

Figure 3: Implication graphs corresponding to the possible propagation sequences of ψ

In the previous definition, the UP-resilience of a transformation may there-

fore vary depending on how the IS has been detected since it depends on the

constructed implication graph. To overcome this limitation, we propose to con-

sider all the possible ways (i.e. sequences of propagation steps) to detect the

IS. To this end, we introduce the set of the possible neighborhoods of a literal

appearing in an IS.

Definition 7 (Possible Neighborhoods). Let Φ be a CNF formula and ψ an

IS of Φ. For a literal l appearing in ψ, we define its possible neighborhoods as

pneigh(l) = {neighG(l)|G = (V,A) implication graph of ψ s.t. l ∈ V }. We

extend this definition on any set of literals L appearing in ψ as pneigh(L) =

{
⋃

l∈L neighG(l)|G = (V,A) implication graph of ψ s.t. L ⊆ V }.

15

Next, we can give a general definition of UP-resilience which does not depend

anymore on the propagation steps which have led to the IS discovery.

Definition 8 (UP-Resilience). Let Φ be a CNF formula, ψ an IS of Φ and

S a sequence of variables appearing in ψ. The transformation Θ(ψ, S) is UP-

resilient for a literal l appearing in ψ iff ∀N ∈ pneigh(l): � ∈ N or l can be

propagated in Θ(ψ, S)|N . We say that Θ(ψ, S) is UP-resilient if it is UP-resilient

for all the literals appearing in ψ.

Example 7. We consider the IS ψ = {{x1}, {x2}, {x3}, {x3, x4}, {x1, x2, x4}},

introduced in Example 1, whose distinct implication graphs corresponding to the

possible propagation sequences are represented in Figure 3. We have pneigh(x1) =

{{x4}, {�}}. And, as explained in Example 1, for N = {x4} , the literal x1

can’t be propagated in Θ(ψ, S)|N = {{x1, x3}, {x1, x3}, {x1, x2}, {x1, x2, x3},

{x1, x2, x3},�}. Therefore, the transformation is not UP-resilient for x1 and,

consequently, it is not UP-resilient.

Similarly, we can further quantify the impact of a Max-SAT resolution trans-

formation of an IS ψ on SUP by considering its percentage of UP-resilience, i.e,

the percentage of couples (l, N) s.t. � ∈ N or l can be propagated in Θ(ψ, S)|N .

Finally, notice that in the case of (weighted) partial formulas, the presence of

hard clauses may have a direct impact on the UP-resilience of the detected ISs.

Indeed, as hard clauses are maintained after the application of weighted Max-

SAT resolution, a literal propagated by a hard clause can always be propagated

with respect to its neighborhood in the corresponding implication graph after

the transformation of the IS.

4.2. Impact on IS Detection

One of the most interesting properties of UP-resilient transformations is the

capability to retrieve the propagations which are not necessary anymore to an

IS. We have seen that if a transformation is UP-resilient for a literal l, then l

can be propagated in the transformed formula when the literals of each possible

neighborhood, not containing the empty clause, are set to true. We now show

16

that this property can be extended to sets of literals, i.e., if a transformation

is UP-resilient for a set of literals L, then the literals of L can be propagated

in the transformed formula with respect to the possible neighborhoods of L,

not containing the empty clause. This is stated more formally in the following

property:

Property 1. Let Φ be a CNF formula, ψ an IS of Φ and S a sequence of

variables appearing in ψ. For any set of literals L appearing in ψ, if the trans-

formation Θ(ψ, S) is UP-resilient for L then ∀N ∈ pneigh(L) : � ∈ N or

∀l ∈ L, l can be propagated in Θ(ψ, S)|N\{l}.

Proof. We prove this property by induction on |L| = n:

• If n = 1, then L = {l} and the property is verified.

• Suppose the property is true for every set of size n. Let L be of size n+ 1

and l a literal in L. We set L′ = L \ {l} and let N ∈ pneigh(L). Clearly,

N = N1 ∪ N2 where N1 ∈ pneigh(L′) and N2 ∈ pneigh(l). Moreover,

since |L′| = n, we know by induction that ∀N ∈ pneigh(L′) : � ∈ N or

every literal l′ in L′ can be propagated in Θ(ψ, S)|N\{l′}. In particular,

� ∈ N1 or every literal l′ in L′ can be propagated in Θ(ψ, S)|N1\{l′}.

Also, The transformation Θ(ψ, S) is UP-resilient for L and particularly

for l and thus, we have ∀N ∈ pneigh(l) : � ∈ N or l can be propagated in

Θ(ψ, S)|N . In particular, � ∈ N2 or l can be propagated in Θ(ψ, S)|N2
.

Thus, We have the following cases:

– If � ∈ N1 or � ∈ N2 then � ∈ N

– Else, every literal l′ in L′ and l can be propagated respectively in

Θ(ψ, S)|N1\{l′} and Θ(ψ, S)|N2 . Therefore, the clauses that ensure

the propagation of every literal l′ in L′ in Θ(ψ, S)|N1\{l′} also ensure

their propagation in Θ(ψ, S)|(N1∪N2)\{l′} and, similarly, the clauses

that ensure the propagation of l in Θ(ψ, S)|N2 also ensure its propa-

gation in Θ(ψ, S)|(N1∪N2)\{l}.

17

We deduce that ∀N ∈ pneigh(L) : � ∈ N or every literal l in L can be

propagated in Θ(ψ, S)|N\{l}.

�

When a subset ψ′ of an IS ψ is not necessary anymore (for instance when ψ

is not minimal), this property ensures that SUP can perform the same propa-

gations in the transformed formula as in the original clauses of ψ′. More specif-

ically, the UP-resilience of a set of literals L with respect to its neighborhood

neigh(L) is maintained individually on every literal in L.

4.3. UP-Resilience of Main Patterns

Empirical results have shown that the existing learning schemes are efficient,

but until now there was no theoretical explanation to these experimental facts.

Hereafter, we show that the main patterns (P1), (P2) and (P3) used in state

of the BnB solvers for Max-SAT are UP-resilient which contributes to explain

theoretically the efficiency of these patterns.

Proposition 1. Let Φ be a CNF formula, ψ an IS and ψ′ ⊂ ψ such that ψ′

matches the premises of pattern (P1). Then, the Max-SAT resolution transfor-

mation described in (P1) is UP-resilient.

Proof. ψ′ = {{l1, l2}, {l1, l2}}. Therefore, there are two possible propagation se-

quences whose implication graphs are represented in Figure 4. Since all possible

neighborhoods of literals l1, l2 and l2 contain the empty clause, the transfor-

mation of ψ′ as in (P1) with respect to the only possible variable sequence

S = < var(l2) > is UP-resilient.

l1

l2

�

{l1, l2} {l1, l2}

{l1, l2}
l1

l2

�

{l1, l2} {l1, l2}

{l1, l2}

Figure 4: Implication graphs corresponding to the possible propagation sequences for an IS

containing the premises of pattern (P1) �

18

Proposition 2. Let Φ be a CNF formula, ψ an IS and ψ′ ⊂ ψ such that ψ′

matches the premises of pattern (P2). Then, the Max-SAT resolution transfor-

mation described in (P2) is UP-resilient.

Proof. ψ′ = {{l1, l2}, {l1, l3}, {l2, l3}}. Therefore, there are two possible propa-

gation sequences whose implication graphs are represented in Figure 5. There

are two Max-SAT resolution application orders S1 = < var(l2), var(l3) > and

S2 = < var(l3), var(l2) > that produce the same transformation described by

pattern (P2). Since all possible neighborhoods of l2 and l2 contain the empty

clause, the transformation of ψ by Max-SAT resolution is UP-resilient for l2

and l2. We have pneigh(l1) = {{l3,�} ∪ pred(l1), {l2, l3} ∪ pred(l1)}, where

pred(l1)) denotes the predecessors of l1, and clearly the clause c = {l1, l2, l3}

propagates l1 when the literals l2, l3 in its second neighborhood are set to true.

Also, pneigh(l3) = {{l1,�}, {l1, l2}} and similarly the clause c′ = {l1, l2, l3}

propagates l3 when the literals in its neighborhood {l1, l2} are set to true.

l1

l3 l2

�

{l1, l3}
{l2, l3}

{l1, l2}

{l1, l2}
l1

l3

l2

�

{l1,
l3}

{l1 , l2}

{l2 , l3}

{l2,
l3}

Figure 5: Implication graphs corresponding to the possible propagation sequences for an IS

containing the premises of pattern (P2) �

Proposition 3. Let Φ be a CNF formula, ψ an IS that matches the premises of

pattern (P3). Then, the Max-SAT resolution transformation described in (P3)

is UP-resilient.

Proof. ψ = {{l1}, {l1, l2}, {l2, l3}, ..., {lk, lk+1}, {lk+1}}. Therefore, there are

k possible propagation sequences whose implication graphs are represented in

Figure 6. In each graph a different clause of ψ, containing the literal li where

1 < i < k+1 is falsified. When i = 1 (resp. i = k+1), the unit clause {li} (resp.

{lk+1}) is falsified. We have pneigh(li) = {{li−1, li+1}, {li−1,�}} for 1 < i < k

and, clearly, the clause {li, li+1}, obtained after the transformation, ensures

19

the propagation of the literal li with respect to its neighborhood {li−1, li+1}.

Also, for literals l1 and lk+1, we have respectively pneigh(l1) = {{l2}, {�}} and

pneigh(lk+1) = {{lk,�}} and, clearly, the clause {l1, l2} ensures the propagation

of the literal l1 with respect to its neighborhood {l2}. The same arguments

ensure UP-resilience for literals li for 1 ≤ i ≤ k+ 1. It is important to note that

this proof on the UP-resilience of ISs matching the premises of pattern (P3)

is clearly valid for every Max-SAT resolution application order consistent with

(P3).

l1

lk+1

...

...

li−1

li

�

{l1}

{lk+1}

{l1, l2}

{lk, lk+1}

{li−2, li−1}

{li, li+1}

{li−1 , li}

{l i−
1
, l i
}

Figure 6: Implication graphs corresponding to the possible propagation sequences for an IS

matching the premise of pattern (P3)
�

4.4. UP-Resilience and Max-SAT resolution Application Orders

An important factor that has a direct impact on the UP-resilience property is

the Max-SAT resolution application order. Two orders are used in BnB solvers

for Max-SAT:

• The Reverse Propagation Order (RPO): applies Max-SAT resolution steps

in the reverse order of propagation and is used in most state of the art

solvers.

• The Smallest Intermediary Resolvent (SIR)[22] applies the Max-SAT reso-

lution steps according to the size of the resolvents between clauses, favoring

the smallest ones.

In Example 8, we show that application orders can have a direct impact not

only on the UP-resilience of certain literals appearing in the detected IS, but

also on the UP-resilience of the Max-SAT resolution transformation of the IS.

20

Furthermore, we empirically evaluate the impact of the current orders of ap-

plication of Max-SAT resolution on the UP-resilience of the transformation in

Section 6.

Example 8. We consider the IS ψ = {{x1}, {x2}, {x3}, {x3, x4}, {x1, x2, x4}},

introduced in Example 1, whose distinct implication graphs corresponding to the

possible propagation sequences are represented in Figure 3. In Example 7, we

showed that the transformation of ψ with respect to PRO is not UP-resilient

since, in particular, it is not UP-resilient for literal x1. Now, we consider the

Max-SAT resolution transformation of ψ with respect to the variable sequence

S = 〈x3, x4, x1, x2〉 corresponding to SIR which is given in Figure 7. We have

Θ(ψ, S) = {{x1, x2}, {x1, x4}, {x3, x4}, {x1, x2, x4},�}. The empty clause ap-

pears in the possible neighborhoods of the literals x4 and x4. The propagation

of the literal x3 with respect to its possible neighborhood {x4}, not containing

the empty clause, is ensured by the clause {x3, x4}. Furthermore, the propaga-

tion of literals x1 and x2 with respect to their possible neighborhood {x4}, not

containing the empty clause, is ensured by the clauses {x1, x4} and {x1, x2, x4}.

Therefore, the transformation Θ(ψ, S) is UP-resilient.

In the next section, we characterize the Max-SAT resolution transformations

of UCS patterns by UP-resilience. In particular, we introduce new Max-SAT

resolution application orders that ensure the UP-resilience of UCS patterns and

we also show that the current orders can’t ensure UP-resilience for these pat-

terns.

21

{x3} {x3, x4}

{x4} {x1, x2, x4}

{x1, x2} {x1}

{x2} {x2}

�

{x3, x4}

{x1, x4}

{x1, x2, x4}

{x1, x2}

x3

x4

x1

x2

Figure 7: Implication graph corresponding to the Max-SAT resolution transformation of ψ

with respect to SIR

5. On the UP-Resilience of UCSs

In this section, we prove that binary k-UCSs are UP-resilient by providing

two different orders that ensure the UP-resilience of their transformation by

Max-SAT resolution. We also show that unlike the given orders, the current

used mechanisms can’t ensure UP-resilience for these patterns which provides

an explanation to the empirical results in [16] and shows that our results can

help extend the current used patterns in state of the art solvers. Furthermore,

we generalize our result on the resilience of kb-UCSs to k-UCSs where all clauses

are binary except one of any size that is involved in the conflict.

5.1. Implication Graphs of UCS Patterns

In this section, we establish a characterization of implication graphs of the

studied k-UCSs. More specifically, we study the portion of the graph repre-

senting the propagation sequence of the detected k-UCS which is delimited by

the FIUP and the empty clause. This characterization is established by the

following lemma:

22

Lemma 1. Let k ≥ 2 and ψ be a k-UCS whose clauses are binary except for the

conflict clause of size s ≥ 2, recognized by the FUIP l in an implication graph

G of an IS such that |succ(l)| = s. Then, there exists exactly s disjoint paths

from l to � in G.

Proof. Since l is a UIP, all the paths from the literals propagated by unit clauses

to the conflict node in G pass through it. We have |succ(l)| = s. Therefore,

there are at least s different paths from l to � in G. Let p1,...,ps be those paths.

Suppose we have a different path ps+1 from l to �. We have two possible cases:

• |pred(�)| 6= s. This is absurd since the conflict clause is of size s and thus

|pred(�)| = s.

• Else, since |pred(�)| = s, there exists l′ 6= l ∈ ps+1 and i ∈ {1, ..., s} such

that l′ ∈ pi and |pred(l′)| > 1. This is absurd since all clauses of ψ except

the conflict clause are binary.

We deduce that there are exactly s different paths from l to � in G. The same

argument of the second case ensures that these paths are disjoint.
�

As explained in Section 2.2.4, when a UCS is detected, we know that the

reverse propagation order ensures the production of a unit resolvent clause after

the transformation. However, in general, this is not necessarily true for all ap-

plication orders. Since this is the main feature of UCS patterns, we must ensure

that the introduced orders produce a unit resolvent clause. It is important to

note that the condition on the successors of the FUIP in Lemma 1 ensures the

production of such clause for all possible orders. In the next section, we prove

the UP-resilience of binary k-UCSs. To this end, we show in the next proposi-

tion that the condition on the FUIP successors in Lemma 1 is always verified

for binary k-UCSs. Later, when we generalize our result, we only consider the

graphs described by Lemma 1, i.e., which verify the condition on the successors

of the FUIP.

23

Proposition 4. Let k ≥ 2 and ψ be a kb-UCS recognized by the FUIP l in an

implication graph G of an IS. Then, |succ(l)| = 2.

Proof. Suppose that |succ(l)| 6= 2. We have two possible cases:

• if |succ(l)| > 2 then, since |succ(�)| = 2, there exists a literal with two

predecessors. This is absurd since all the clauses are binary.

• if |succ(l)| = 1 then l is not the FUIP which is absurd.
�

5.2. On the UP-Resilience of Binary UCSs

In Section 4.3, we proved the UP-resilience of the main patterns. The next

corollary is an immediate consequence of this result:

Corollary 1. For k ∈ {2, 3}, kb-UCSs are UP-resilient.

Proof. 2b-UCSs and 3b-UCSs are all of the respective forms ψ2b = {{l1, l2}, {l1, l2}}

and ψ3b = {{l1, l2}, {l1, l3}, {l2, l3}} which correspond to the premises of pat-

terns (P1) and (P2). Thus, we obtain the wanted result using Propositions 1

and 2. �

In this section, we want to generalize the result of Corollary 1 to all bi-

nary k-UCSs. To this end, we introduce new orders of application of Max-SAT

resolution using the characterization established in Lemma 1. We prove the

resilience of kb-UCSs with respect to these orders and we explain theoretically

the inefficiency of the current orders for these patterns.

Definition 9 (Path Resolvent Order). Let p1 = 〈l, lp1

1 , ..., l
p1
n1
,�〉(n1 ≥ 0)

and p2 = 〈l, lp2

1 , ..., l
p2
n2
,�〉(n2 ≥ 0) denote two disjoint paths from l to �.

The Path Resolvent Order (PRO) of p1 and p2 is defined as PRO(p1, p2) =

〈var(lp1

1), ..., var(lp1
n1

), var(lp2

1), ..., var(lp2
n2

)〉.

Theorem 1. For any k ≥ 2, the transformation of kb-UCSs with respect to

PRO is UP-resilient.

24

Proof. Let k ≥ 2 and ψ be a kb-UCS recognized by the FUIP l in the implication

graph G of an IS. By Lemma 1 and Proposition 4, we know that there are

2 disjoint paths from l to � in G. Let p1 = 〈l, lp1

1 , ..., l
p1
n1
,�〈(n1 ≥ 0) and

p2 = 〈l, lp2

1 , ..., l
p2
n2
,�〉(n2 ≥ 0) denote these paths in G where n1 + n2 = k − 1.

And, suppose w.l.o.g that lp1
n1

= l′ is the conflict literal, i.e., the last propagated

literal. We have two possible propagation sequences whose implication graphs

are G and G′ represented in Figure 8.

l

lp1

1

lp2

1

...

...

lp1
n1

= l′

lp2
n2

�G l

lp1

1

lp2

1

...

...

lp1

n1−1

lp2
n2 l′

�G′

Figure 8: Implication graphs corresponding to the possible propagation sequences for kb-UCSs.

We prove that the Max-SAT resolution transformation relatively to the order

O = PRO(p1, p2) is UP-resilient:

• The clause propagating l is not deleted after the transformation by Max-

SAT resolution relatively to the order O so it clearly propagates l if its

predecessors are set to true and thus the transformation by Max-SAT

resolution relatively to the order O is UP-resilient for l. This argument

also applies for the literals that were involved in the propagation of l.

• All possible neighborhoods of literals lp1
n1

= l′ and l′ contain the empty

clause. Therefore, the transformation by Max-SAT resolution relatively

to the order O is UP-resilient for l′ and l′.

• For i ∈ {1, 2}, we set lpi

0 = l. Every literal lpi

j such that 1 ≤ j < ni admits

exactly one neighborhood neigh(lp1

j) = {lpi

j−1, l
pi

j+1} that doesn’t contain

the empty clause. Similarly, for lp2
n2
, we have neigh(lp2

n2
) = {lpi

n2−1, l
′}. The

Max-SAT resolution step on var(lp1

j)(1 ≤ j < ni) is of the form:

{l, lpi

j }, {l
pi

j , l
pi

j+1}

{l, lpi

j+1}, {l, l
pi

j , l
pi

j+1}, {l, l
pi

j , l
pi

j+1}

25

The clause c = {l, lpi

j , l
pi

j+1} clearly ensures the propagation of literal lpi

j+1

if lpi

j ∈ neigh(lpi

j+1) is set to true since l is propagated by the unit resol-

vent clause {l}. Also, for j = 1, the clause c′ = {l, lp1

1 , l
p1

2 } ensures the

propagation of lp1

1 if l, lp1

2 ∈ neigh(lp1

1) are set to true. Thus, We deduce

that the transformation is UP-resilient for lpi

j where 1 ≤ j ≤ ni (j 6= n1).

We conclude that the transformation of ψ by Max-SAT resolution relatively to

the order O is UP-resilient.
�

Definition 10 (Path Resolvent Circular Order). Let p1 = 〈l, lp1

1 , ..., l
p1
n1
,�〉

(n1 ≥ 0) and p2 = 〈l, lp2

1 , ..., l
p2
n2
,�〉(n2 ≥ 0) denote two disjoint paths from l

to �. The Path Resolvent Circular Order (PRCO) of p1 and p2 is defined as

PRCO(p1, p2) = 〈var(lp1

1), ..., var(lp1
n1

), var(lp2
n2

), ..., var(lp2

1)〉.

Theorem 2. For any k ≥ 2, the transformation of kb-UCSs with respect to

PRCO is UP-resilient.

Proof. Let k ≥ 2 and ψ be a kb-UCS recognized by the FUIP l in the implication

graph G of an IS. By Lemma 1 and Proposition 4, let p1 = 〈l, lp1

1 , ..., l
p1
n1
,�〉(n1 ≥

0) and p2 = 〈l, lp2

1 , ..., l
p2
n2
,�〉(n2 ≥ 0) denote the two disjoint paths from l to �

in G where n1 + n2 = k − 1. And, suppose w.l.o.g that lp1
n1

= l′ is the conflict

literal. We have two possible propagation sequences whose implication graphs

are G and G′ represented in Figure 8. We prove that the Max-SAT resolution

transformation relatively to the order O = PRCO(p1, p2) is UP-resilient:

• The same arguments in the proof of Theorem 1 ensure the UP-resilience

of the transformation respectively to O for lp1

j (1 ≤ j ≤ n1) and l′ as well

as l and all the literals involved in its propagation.

• Every literal lp2

j such that 1 ≤ j ≤ n2 admits exactly one neighborhood

neigh(lp2

j) = {lp2

j−1, l
p2

j+1} that doesn’t contain the empty clause (we set

lp2

0 = l and lp2

n2+1 = l′). The Max-SAT resolution step on var(lp2

j) (j 6= 1)

is of the form:

26

{l, lp2

j }, {l
p2

j , l
p2

j−1}

{l, lp2

j−1}, {l, l
p2

j , l
p2

j−1}, {l, l
p2

j , l
p2

j−1}

The clause c = {l, lp2

j , l
p2

j−1} clearly ensures the propagation of literal lp2

j

when lp2

j−1 ∈ neigh(lp2

j) is set to true since l is propagated by the unit

resolvent clause {l}. Also, the clause c′ = {l, lp2

2 , l
p2

1 }, generated by the

Max-SAT resolution step on var(lp2

2), clearly ensures the propagation of

lp2

1 when its neighbors l, lp2

2 ∈ neigh(lp2

1) are set to true. Thus, the trans-

formation is UP-resilient for lp2

j where 1 ≤ j ≤ n2.

We conclude that the transformation by Max-SAT resolution relatively to the

order O is UP-resilient.
�

There is a major difference between the orders we introduced. Indeed, PRCO

ensures a linear input resolution transformation, i.e., at each intermediary Max-

SAT resolution step we use the resolvent obtained in the previous step and a

clause from the detected kb-UCS. This is not always the case for PRO. The

following result is an immediate consequence of either Theorem 1 or 2.

Corollary 2. For any k ≥ 2, kb-UCSs are UP-resilient.

Empirical results show that 2b-UCSs and 3b-UCSs, which correspond re-

spectively to the patterns (P1) and (P2) have a positive impact on the perfor-

mance of BnB solvers for Max-SAT [16, 11]. The result in corollary 1 obtained

through properties 1 and 2 prove that 2b-UCSs and 3b-UCSs are UP-resilient

for any given order of application of Max-SAT resolution which explains why

learning them has a positive impact regardless of the chosen order. This is not

the case for kb-UCSs when k > 3. Empirical studies on the AHMAXSAT solver

in [16] show that learning 4b-UCSs and 5b-UCSs has a major negative impact

on its performance. This can be explained by the inadequacy of the Max-SAT

resolution application orders used in state of the art BnB solvers for kb-UCSs

when k > 3. More specifically, the SIR heuristic becomes practically unusable

since all the intermediary resolvents have the same size (binary) as shown in the

27

proofs of Theorems 1 and 2, whereas the Reverse Propagation Order doesn’t

always ensure the UP-resilience of the transformation as shown in the following

example on a 4b-UCS which can be easily extended to any kb-UCS for k > 4.

Example 9. We consider the IS ψ = {{l}, {l, l1}, {l, l2}, {l1, l3}, {l2, l3}} de-

tected by one of the possible implication graphs represented on the left in Figure

9 after the respective propagation of literals l1, l2 and l3 (or l3). Clearly, the

subset ψ′ = {{l, l1}, {l, l2}, {l1, l3}, {l2, l3}} ⊂ ψ is a 4b-UCS recognized by the

FUIP l. The Max-SAT resolution transformation of ψ′ with respect to RPO

which corresponds to the variable sequence S = 〈var(l3), var(l2), var(l1)〉 is rep-

resented on the right in Figure 9.

l l1 l3

l2

�
{l} {l, l1} {l1, l3}

{l, l2} {l2,
l3}

{l2, l3}

l l2 l3

l1

�
{l}

{l, l2} {l2, l3}

{l, l1
} {l1 , l3}

{l1, l3}

{l2, l3} {l1, l3}

{l1, l2} {l, l2}

{l, l1} {l, l1}

{l}

{l1, l2, l3}

{l1, l2, l3}

{l, l1, l2}

{l, l1, l2}

var(l3)

var(l2)

var(l1)

Figure 9: Implication graphs corresponding to the possible propagation sequences of ψ in

Example 9 and the application of Max-SAT resolution steps relatively to RPO

The literal l1 has one neighborhood neigh(l1) = {l, l3} that doesn’t contain the

empty clause. Clearly, the literal l1 can’t be propagated in Θ(ψ, S)|neigh(l1) =

{{l1, l2}, {l1, l2}}. Similarly, the fragmentation phenomenon also occurs for l2

and we conclude that the transformation of ψ′ relatively to RPO is not UP-

resilient.

5.3. Generalization to UCSs

In this section, we generalize our result to k-UCSs where all clauses are bi-

nary except one of any size that is involved in the conflict when the implication

28

graph corresponds to the characterization established in Lemma 1. A clause

involved in the conflict is either the falsified clause or contains the conflict lit-

eral, i.e., the last propagated literal. Unfortunately, although PRCO has the

advantage of ensuring a linear input transformation, we couldn’t generalize it to

obtain the wanted result. Nevertheless, we managed to prove our result using a

generalization of PRO to a multitude of paths.

Definition 11 (Multiple Path Resolvent Order). Let s ≥ 2 and p1 =

〈l, lp1

1 , ..., l
p1
n1
,�〉, ..., ps = 〈l, lp2

1 , ..., l
ps
ns
,�〉 denote s disjoint paths from l to �.

The Multiple Path Resolvent Order (MPRO) of p1, ..., ps is defined inductively

on s as follows:

- If s = 2, MPRO(p1, p2) = PRO(p1, p2)

- Else MPRO(p1, ..., ps) = PRO(〈l,MPRO(p1, ..., ps−1),�〉, ps).

Theorem 3. Let k ≥ 2 and ψ be a k-UCS whose clauses are binary except

for the conflict clause c of size |c| = s ≥ 3, recognized by the FUIP l in the

implication graph G of an IS such that |succ(l)| = s. The transformation of ψ

with respect to MPRO is UP-resilient.

Proof. We suppose w.l.o.g that c = {l1, ..., ls}. By Lemma 1, there are exactly s

disjoint paths p1 = 〈l, lp1

1 , ..., l
p1
n1
,�〉, ..., ps = 〈l, lps

1 , ..., l
ps
ns
,�〉 from l to � in the

implication graph G, represented in Figure 10, such that
∑s

i=1 ni = k − 1 and

lpi
ni

= li for i ∈ {1, ..., s}. Other than G, there are exactly
(
s−1
s

)
= s possible

implication graphs all similar to the graph G′ represented in Figure 10.

l

lp2

1

lp1

1

...

lps

1

...

...

lp1
n1

= l1

lp2
n2

= l2

...

lps
ns

= ls

�
c

c

c l

lp2

1

lp1

1

...

l
ps−1

1

lps

1

...

...

lp1
n1

= l1

lp2
n2

= l2

...

...

l
ps−1
ns−1 = ls−1

ls

lps

ns−1

�
c

c

c

Figure 10: Implication graphs corresponding to the possible propagation sequences for k-UCSs

with binary clauses except for the conflict clause

29

We prove that the Max-SAT resolution transformation relatively to the order

O = MPRO(p1, ..., ps) is UP-resilient:

• The same arguments in the proof of Theorem 1 ensure the UP-resilience of

the transformation respectively to O for lpi

j where 1 ≤ i ≤ s and 1 ≤ j < ni

as well as l and all the literals involved in its propagation. Furthermore,

all the neighborhoods of literals l1, ..., ls contain the empty clause.

• For i ∈ {1, ..., s}, ∀N ∈ pneigh(lpi
ni

) (ni > 1) s.t � /∈ N , we have lpi

ni−1 ∈ N

(exists since ni > 1). Clearly, the clause c = {l, lpi

ni−1, l
pi
ni
} obtained by the

application of Max-SAT resolution on var(lpi

ni−1) ensures the propagation

of lpi
ni

in any of these neighborhoods when lpi

ni−1 is set to true since l is

propagated by the unit resolvent clause {l}. We deduce that the trans-

formation relatively to the order O is UP-resilient for lpi
ni

where 1 ≤ i ≤ s

and ni > 1.

• We still need to prove the UP-resilience of the transformation for literals

lpi
ni

= li when ni = 1, with respect to their possible neighborhoods {l, lj}

for j ∈ {1, .., s} \ {i} not containing the empty clause. For this end, we

prove by induction on |c| ≥ 3 that the compensation clauses produced by

the Max-SAT resolution steps on var(l1), ..., var(ls) ensure the propaga-

tion of each literal li if we consider the neighborhoods as mentioned above.

For simplification, in the first Max-SAT resolution step, we replace c by

the clause c′ = {l, l1, ..., ls}. This doesn’t affect our result since we only

omit a single clause containing the literal l:

– If |c| = 3, c = {l1, l2, l3}. The Max-SAT resolution steps are rep-

resented on the left in Figure 11 and we can easily check that the

compensation clauses ensure the propagation of the literals li, for

1 ≤ i ≤ 3, if we consider the neighborhoods mentioned above.

– Suppose the property is true for any clause of size s ≥ 3. Let

c = {l1, ..., ls+1} of size s + 1. The first Max-SAT resolution step

is represented on the right in Figure 11. The resolvent clause is

30

{l, l2, ..., ls+1} and if we consider c′ = {l2, ..., ls+1} of size s we ensure

by induction the propagation of any literal li where 2 ≤ i ≤ s+1 with

respect to the neighborhoods {l, lj} for j ∈ {2, .., s+ 1} \ {i}. Thus,

each compensation clause cck = {l, l1, l2, ..., lk, lk+1} for k ∈ {1, ..., s}

ensures the propagation of literal l1 with respect to the neighbor-

hood {l, lk+1} since by induction the propagation of literals l2, ..., lk

is ensured in the same neighborhood. Now, we prove by induction

on k ∈ {1, ..., s} that the clause cck ensures the propagation of lk+1

with respect to the neighborhood {l, l1}:

∗ If k = 1, cc1 = {l, l1, l2} clearly ensures the propagation of l2

with respect to the neighborhood {l, l1}.

∗ Suppose for 1 ≤ k′ < k ≤ s, cck′ ensures the propagation of lk′+1

with respect to the neighborhood {l, l1}. cck = {l, l1, l2, ..., lk, lk+1}

clearly ensures the propagation of literal lk+1 with respect to

the neighborhood {l, l1} since by induction the propagation of

l2, ..., lk is ensured in the same neighborhood by the clauses

cc1, ..., cck−1.

We conclude that the transformation by Max-SAT resolution relatively to the

order O is UP-resilient.

{l, l1, l2, l3} {l, l1}

{l, l2, l3} {l, l2}

{l, l3} {l, l3}

{l}

{l, l1, l2}

{l, l1, l2, l3}

{l, l2, l3}

var(l1)

var(l2)

var(l3)

{l, l1, ..., ls+1} {l, l1}

{l, l2, ..., ls+1} {l, l2}

cc1 = {l, l1, l2}
...

ccs = {l, l1, l2, ..., ls, ls+1}

...

var(l1)

Figure 11: Application of Max-SAT resolution steps on the variables of the non binary clause

c by induction on its size
�

31

Corollary 3. Let k ≥ 2 and ψ be a k-UCS whose clauses are binary except for

a single clause c of size |c| = s ≥ 3 involved in the conflict, recognized by the

FUIP l in the implication graph G of an IS such that succ(l) = s. There exists

a UP-resilient transformation of ψ.

Proof. If c is the conflict clause then we obtain the result by Theorem 3. Else,

c contains the conflict literal and the detected implication graph G has the

same form as the second graph represented in Figure 10. Clearly, there is a

propagation sequence where c is falsified, i.e., corresponding to an implication

graph G′ similar to the first graph represented in Figure 10. Thus, we deduce

the UP-resilience of the transformation with respect to MPRO through the same

arguments in the proof of Theorem 3.
�

The SIR order is defined relatively to the size of the intermediary resolvents.

Thus, it may theoretically simulate any order when the sizes of the resolvents

are the same or many different orders when many resolvents share the same

size which is the case of the studied UCSs. That’s why this heuristic remains

practically unusable even in the generalized case. Furthermore, RPO doesn’t

necessarily ensure the UP-resilience of k-UCSs described in the previous corol-

lary. We finish this section by an example that highlights this fact. This example

where the non binary clause is tertiary can be easily extended to any size s > 3.

Example 10. We consider the IS ψ = {{l}, {l, l1}, {l, l2}, {l, l3}, {l1, l4}, {l2, l3,

l4}} (we name the tertiary clause c) detected by the first implication graph

represented on the left in Figure 12 after the respective propagation of literals

l1, l2, l3 and l4. In the second graph on the left in the same figure, we repre-

sent another possible propagation sequence which outlines the possible neigh-

borhood of l4, neigh(l4) = {l1, l3} not containing the empty clause. Clearly,

the subset ψ′ = ψ \ {{l}} is a 5-UCS recognized by the FUIP l such that c

participates in the conflict and |succ(l)| = |c| = 3. The Max-SAT resolution

transformation of ψ′ with respect to RPO which corresponds to the variable

sequence S = 〈var(l4), var(l3), var(l2), var(l1)〉 is represented on the right in

32

Figure 12. Clearly, the literal l4 can’t be propagated in Θ(ψ, S)|neigh(l4) =

{{l}, {l, l2}, {l2, l4}, {l2, l4}}. We conclude that the transformation of ψ′ rel-

atively to RPO is not UP-resilient.

l l1 l4

l2

l3

�
{l} {l, l1} {l1, l4}

{l, l2}

{l, l3 }

c

c

c

l l1 l4

l2

l3

�

{l} {l, l1} {l1, l4}
{l, l2}

{l, l3}

c

{l,l3 }

c

{l1, l4} {l2, l3, l4}

{l1, l2, l3} {l, l3}

{l, l1, l2} {l, l2}

{l, l1} {l, l1}

{l}

{l1, l2, l3, l4}

{l1, l2, l4}

{l1, l2, l3, l4}

{l, l1, l2, l3}

{l, l1, l3}

{l, l1, l2, l3}

{l, l1, l2}

var(l4)

var(l3)

var(l2)

var(l1)

Figure 12: Implication graphs corresponding to the possible propagation sequences of ψ in

Example 10 and the application of Max-SAT resolution steps relatively to RPO

6. Empirical Study on the Relevance of UP-Resilience

In this section, we present an experimental study whose aim is to provide

empirical evidence on the relevance of UP-resilience. We also study the impact

of the order factor and, more specifically, the current orders used in state of the

art BnB solvers on the UP-resilience of Max-SAT resolution transformations.

We have implemented a simple procedure to compute the percentage of UP-

resilience of the transformations. We generate all the possible neighborhoods

of the literals and then we check if each literal can be propagated when each

of its neighborhoods is satisfied. This naive implementation is time-consuming

and increases the solving time of 25% in average. Its purpose is to evaluate

the transformation of ISs as well as the learning mechanisms, not to be com-

petitive. The implementation is performed in the solver ahmaxsat [8], which

was ranked first in several categories during the 2014, 2015 and 2016 Max-

33

SAT Evaluations1. Tests are performed on unweighted and weighted, random

and crafted instances of previous Max-SAT Evaluations. Instances are divided

into three categories: unweighted Max-SAT (denoted ms), partial Max-SAT

(denoted pms) and weighted partial Max-SAT (denoted wpms). BnB Max-SAT

solvers are not competitive on industrial instances, which is why they were omit-

ted. We have made 143856 separate runs of the solver which, in our opinion, is

sufficient to show the impact of the studied components on the solver behavior.

All the experiments are performed on machines equipped with Intel Xeon 2.4

Ghz processors and 24 Gb of RAM and running under a GNU/Linux operating

system. The cutoff time is fixed to 1800 seconds per instance.

6.1. Learning Schemes and UP-Resilience

In the first set of experiments, we evaluate the impact of different learning

schemes on the behavior of BnB Max-SAT solvers. We consider the following

variants:

• ahmaxsatIRS : uses the learning scheme of MiniMAXSAT [9]. A transfor-

mation is learned if all the intermediary resolvents contain less than four

literals.

• ahmaxsatPAT : learns the transformations when the ISs match the three

main patterns presented in Section 2.2.4.

• ahmaxsatPAT+: learns the transformations when the ISs match the main

patterns or the extended set of patterns including UCSs, presented in

Section 2.2.4.

• ahmaxsatUPR: learns only UP-resilient transformations of ISs.

Table 1 shows the obtained results. For each variant, the columns S(T), D

and L represent respectively the number of solved instances with the average

solving time, the average number of decisions and the percentage of learned

1https://maxsat-evaluations.github.io/2019/history.html

34

transformations. Columns marked with a star consider only the instances solved

by all solver variants.

We first observe that the IRS learning scheme behaves very differently from

PAT and PAT+. It learns in average 73,9% of the transformations while PAT

and PAT+ learn less than 25% of them. However, The average percentage of

UP-resilience of the transformations (not represented in the table) learned by the

IRS learning scheme is relatively low (79%) compared to PAT and PAT+ (resp.

100% and 98%). Furthermore, the solver explores more than three times (resp.

four times) more nodes of the search tree with the IRS learning scheme than with

PAT (resp. PAT+). This is clearly due to the fact that SUP detects less ISs with

the IRS learning scheme and, thus, provides a worse estimation of LB compared

to PAT and PAT+ which leads to less cuts in the search tree. Consequently,

ahmaxsatIRS solves much less instances (at least 367 less instances than the

other variants) with a higher average solving time for shared instances (at least

138 seconds more than the other variants). From these results, we can conclude

that the IRS learning scheme, as it is implemented in ahmaxsatIRS , does not

control efficiently the impact of the transformations on the SUP mechanism.

Secondly, the comparison of the PAT and PAT+ learning schemes shows a

slight increase of the percentage of learned transformations while keeping a high

percentage of UP-resilience (resp. 100% and 98%). Consequently, the average

number of decisions as well as the average solving time are slightly reduced.

It is also interesting to observe that the percentage of transformations learned

with the PAT+ learning scheme is lower than the one obtained with the UPR

learning scheme. This clearly shows that the current patterns do not allow the

detection of all UP-resilient transformations. This is also coherent with our

theoretical study in Section 5. Finally, the UPR learning scheme outperforms

all the other schemes (1407 instances solved in 58.27 seconds on average) when

we don’t consider the computation time required for checking the UP-resilience

of the transformations which provides empirical evidence on the relevance of

this property.

In
st

a
n
ce

cl
a
ss

es
#

a
h
m

a
x
sa

tI
R

S
a
h
m

a
x
sa

tP
A

T
a
h
m

a
x
sa

tP
A

T
+

a
h
m

a
x
sa

tU
P

R

S
(T

*
)

D
*

L
*

S
(T

*
)

D
*

L
*

S
(T

*
)

D
*

L
*

S
(T

*
)

D
*

L
*

ms

crafted

b
ip

a
rt

it
e

1
0
0

1
(1

6
7
8
,2

)
2
4
7
6
5
2
9

7
6
,3

%
1
0
0
(2

5
,8

2
)

7
1
1
1

6
,3

%
1
0
0
(2

4
,3

2
)

7
1
5
9

6
,2

%
1
0
0
(2

3
,4

7
)

6
8
7
3

6
,3

%

m
a
x
cu

t
6
7

5
5
(1

0
0
,1

4
)

5
4
2
0
6
0

9
0
,3

%
5
6
(7

8
,5

6
)

2
4
4
4
9
5

2
8
,5

%
5
6
(5

0
,0

7
)

1
7
3
3
6
1

3
6
,3

%
5
6
(4

5
,5

7
)

1
6
2
7
8
2

4
1
,5

%

se
t-

co
v
er

in
g

1
0

0
(-

)
-

-
0
(-

)
-

-
0
(-

)
-

-
0
(-

)
-

-

random

h
ig

h
g
ir

th
8
2

3
(1

3
7
6
,8

9
)

5
8
2
1
5
0
6

7
2
,3

%
6
(1

1
5
4
,6

5
)

4
0
1
5
4
9
3

2
7
,1

%
6
(1

1
4
6
,4

1
)

4
1
1
6
3
4
6

2
8
,2

%
6
(1

1
4
0
,2

1
)

4
1
2
0
3
1
5

3
1
,1

%

m
a
x
2
sa

t
1
0
0

1
6
(7

3
2
,3

6
)

1
3
8
4
5
4
4

7
6
,7

%
1
0
0
(8

,3
7
)

3
3
2
1

1
1
,9

%
1
0
0
(7

,9
)

3
3
6
3

1
3
,1

%
1
0
0
(7

,7
3
)

3
1
5
0

1
2
,3

%

m
a
x
3
sa

t
1
0
0

6
6
(5

4
3
,8

7
)

1
9
2
8
8
9
4

8
5
,9

%
9
8
(1

3
9
,0

6
)

1
4
7
0
0
0

1
3
,2

%
1
0
0
(1

1
1
,2

1
)

1
3
4
8
4
6

1
7
,5

%
1
0
0
(1

1
4
,3

1
)

1
3
4
6
4
4

1
6
,9

%

m
in

2
sa

t
9
6

8
7
(1

0
9
,9

2
)

1
9
1
8
2
2

7
6
,1

%
9
6
(1

,2
1
)

4
1
4

1
7
,0

%
9
6
(1

,1
3
)

4
1
0

1
7
,0

%
9
6
(1

,2
)

4
1
5

1
6
,9

%

pms

crafted

fr
b

2
5

5
(1

6
5
,6

3
)

6
3
9
3
9
5

8
6
,4

%
5
(4

3
0
,6

5
)

1
3
6
4
4
6
5

3
9
,9

%
5
(1

8
1
,5

8
)

5
8
5
9
4
9

4
9
,4

%
5
(1

5
6
,5

9
)

5
2
1
2
6
3

5
2
,3

%

jo
b
-s

h
o
p

3
0
(-

)
-

-
0
(-

)
-

-
0
(-

)
-

-
0
(-

)
-

-

m
a
x
cl

iq
u
e

1
5
8

1
3
2
(2

4
,5

8
)

4
3
7
6
9

9
4
,4

%
1
3
3
(2

5
,9

3
)

2
4
5
0
6

6
1
,5

%
1
3
2
(2

8
,6

9
)

1
9
3
8
2

6
6
,9

%
1
3
4
(1

7
,9

7
)

1
7
4
8
6

6
7
,3

%

m
a
x
o
n
e

1
4
0

1
0
7
(2

6
,4

5
)

1
5
7
2
3
0

7
3
,3

%
1
0
7
(3

8
,6

)
1
4
8
0
7
0

1
2
,6

%
1
0
7
(3

8
,1

9
)

1
3
3
7
4
7

1
2
,8

%
1
0
7
(2

3
,7

5
)

1
2
0
2
5
0

2
7
,3

%

m
in

-e
n
c/

k
b
tr

ee
4
2

1
5
(5

2
9
,7

3
)

5
3
3
0
1
4

5
3
,2

%
3
0
(1

2
8
,3

5
)

4
9
4
2
5

3
,8

%
3
0
(1

4
2
,4

1
)

5
2
9
2
0

4
,0

%
3
2
(1

0
9
,8

8
)

4
6
9
1
6

7
,3

%

p
se

u
d
o
/
m

ip
li
b

4
2
(0

,0
8
)

2
5
2
8

9
4
,9

%
2
(0

,0
3
)

2
6
8

2
5
,4

%
2
(0

,0
3
)

2
8
8

3
1
,1

%
2
(0

,0
4
)

4
6
5

3
9
,5

%

re
v
er

si
4
4

7
(9

3
,3

)
4
6
1
9

2
9
,2

%
7
(9

5
,7

3
)

4
2
1
0

1
2
,4

%
7
(9

9
,5

7
)

4
0
6
7

1
4
,3

%
7
(8

7
,0

2
)

4
0
5
3

1
7
,3

%

sc
h
ed

u
li
n
g

5
0
(-

)
-

-
0
(-

)
-

-
0
(-

)
-

-
0
(-

)
-

-

random

m
in

2
sa

t
6
0

2
4
(4

4
1
,4

2
)

1
1
2
5
5
7

6
3
,7

%
5
6
(1

3
,0

6
)

1
2
4
1

5
,4

%
5
5
(1

4
,9

4
)

1
2
4
1

5
,4

%
5
6
(1

3
,2

)
1
2
4
7

5
,4

%

m
in

3
sa

t
6
0

2
1
(6

7
0
,7

9
)

7
1
0
5
0
7

7
2
,7

%
5
8
(5

1
,8

7
)

1
6
9
5
9

1
3
,6

%
5
8
(5

2
,0

7
)

1
5
4
5
3

1
3
,6

%
5
8
(4

7
,9

7
)

1
5
4
5
5

1
4
,0

%

p
m

a
x
2
sa

t
6
0

5
9
(1

2
6
,1

8
)

1
0
1
4
6
3

6
9
,7

%
6
0
(4

,1
6
)

9
8
7

1
8
,5

%
6
0
(4

,1
3
)

9
6
2

2
0
,4

%
6
0
(4

,1
5
)

9
7
5

1
9
,7

%

p
m

a
x
3
sa

t/
h
i

3
0

2
9
(2

9
1
,0

9
)

9
5
8
4
2
7

7
9
,3

%
3
0
(7

2
,1

4
)

7
4
0
4
6

1
1
,6

%
3
0
(6

7
,6

4
)

6
9
9
7
1

1
3
,9

%
3
0
(6

8
,6

8
)

7
2
8
0
9

1
3
,8

%

wpms

crafted

a
u
ct

io
n

4
0

3
9
(2

1
6
,7

)
2
9
6
9
7
3

8
2
,4

%
4
0
(1

4
5
,5

6
)

4
7
8
3
8
9

3
5
,2

%
4
0
(1

6
6
,7

9
)

3
1
6
1
1
9

4
2
,1

%
4
0
(1

4
2
,7

1
)

2
7
1
8
3
8

5
8
,9

%

C
S
G

1
0

1
(7

1
0
,2

7
)

8
5
2
7
4

9
9
,7

%
4
(7

7
3
,0

4
)

8
4
8
6
0

2
5
,4

%
4
(8

5
9
,0

4
)

8
4
8
6
0

2
5
,4

%
4
(5

7
8
,7

4
)

8
2
2
4
8

3
2
,4

%

fr
b

3
4

1
4
(5

5
,5

9
)

2
3
1
6
7
2

8
9
,7

%
1
4
(1

4
5
,8

8
)

4
9
2
2
7
6

4
4
,3

%
1
4
(1

0
1
,8

1
)

2
1
2
3
6
9

5
3
,0

%
1
4
(6

1
,6

9
)

1
8
8
9
9
8

5
5
,8

%

m
in

-e
n
c

7
4

5
1
(1

3
6
,2

7
)

2
0
3
1
7

2
9
,7

%
5
4
(9

9
,2

)
1
9
5
9
1

6
,1

%
5
4
(1

0
9
,7

8
)

1
8
6
1
5

6
,2

%
5
4
(8

9
,2

1
)

6
3
5
2
9

1
3
,8

%

p
se

u
d
o
/
m

ip
li
b

1
2

1
(4

,9
7
)

4
3

-
3
(1

,4
7
)

3
7

-
3
(1

,4
7
)

3
7

-
3
(1

,2
6
)

3
5

-

ra
m

se
y

1
5

4
(1

4
5
,7

7
)

1
6
4
1
8
4

8
1
,3

%
4
(6

5
,9

2
)

1
5
8
5
2
9

5
3
,2

%
4
(6

9
,4

2
)

1
5
7
5
5
9

5
4
,6

%
4
(6

5
,6

2
)

1
6
2
9
8
2

5
6
,9

%

ra
n
d
o
m

-n
et

3
2

2
(6

2
7
,3

7
)

1
0
1
8
3
7
7

7
4
,2

%
1
(1

6
8
6
,6

4
)

1
2
5
3
9
9
0

3
,4

%
3
(3

7
4
,2

)
3
3
5
1
6
1

9
,1

%
3
(6

5
6
,2

3
)

1
3
5
4
9
9
3

2
5
,1

%

se
t-

co
v
er

in
g

4
5

1
0
(9

7
6
,4

9
)

4
6
9
5

9
,7

%
1
0
(9

5
4
,5

4
)

3
6
5
5

4
,2

%
1
0
(1

0
1
3
,3

1
)

3
6
5
5

4
,2

%
1
0
(9

3
6
,0

4
)

3
6
5
5

4
,2

%

w
m

a
x
cu

t
4
8

4
2
(5

2
,4

)
4
2
5
7
9

8
8
,5

%
4
6
(1

0
3
,4

2
)

5
8
0
3
9

2
3
,2

%
4
6
(5

6
,4

7
)

2
9
3
8
7

3
6
,7

%
4
6
(4

4
,1

6
)

2
5
8
0
9

4
2
,3

%

random

w
m

a
x
2
sa

t
1
2
0

8
1
(4

9
2
,5

1
)

9
7
3
2
2

6
3
,0

%
1
2
0
(2

4
,8

2
)

1
9
0
2

9
,0

%
1
2
0
(2

3
,8

9
)

1
7
3
6

1
0
,5

%
1
2
0
(2

3
,6

1
)

1
8
1
6

9
,4

%

w
m

a
x
3
sa

t
4
0

3
9
(2

5
3
,3

1
)

1
5
1
5
4
2

8
1
,7

%
4
0
(1

4
6
,3

9
)

3
8
3
0
6

7
,7

%
4
0
(1

3
1
,5

1
)

3
4
2
3
7

1
1
,7

%
4
0
(1

2
8
,5

1
)

3
4
6
3
5

1
2
,0

%

w
p
m

a
x
2
sa

t
9
0

9
0
(6

3
,3

5
)

4
0
2
3

6
0
,0

%
9
0
(7

,1
7
)

5
7
5

1
6
,7

%
9
0
(7

,2
3
)

5
7
5

1
8
,1

%
9
0
(6

,7
)

5
7
7

1
7
,8

%

w
p
m

a
x
3
sa

t/
h
i

3
0

3
0
(2

3
7
,8

3
)

1
1
0
7
7
7

6
4
,8

%
3
0
(1

2
5
,0

9
)

3
1
5
9
1

5
,2

%
3
0
(1

2
3
,2

3
)

3
0
4
5
1

6
,4

%
3
0
(1

2
1
,3

4
)

3
0
9
0
6

7
,2

%

T
o
ta

l/
A
v
er

a
g
e

1
7
7
6

1
0
3
3
(2

1
0
,6

9
)

3
2
7
8
6
4

7
3
,9

%
1
4
0
0
(7

2
,5

1
)

9
5
2
2
2

2
1
,5

%
1
4
0
2
(6

5
,9

4
)

7
2
6
8
3

2
4
,5

%
1
4
0
7
(5

8
,2

7
)

7
1
2
7
9

2
7
,6

%

Table 1: Impact of learning schemes on the efficiency of BnB Max-Sat solvers

36

6.2. Orders and UP-Resilience

In the second set of experiments, we evaluate the impact of the current orders

of application of Max-SAT resolution on the UP-resilience of the transformation.

We compare two variants:

• ahmaxsatRPO: applies the Max-SAT resolution steps in reverse propaga-

tion order (RPO)

• ahmaxsatSIR: uses the Smallest Intermediary Resolvent (SIR) heuristic

described in [22].

The results are presented in Table 2 where UPR* refers to the average per-

centage of UP-resilience of the Max-SAT resolution transformations of the de-

tected ISs for instances solved by both variants. We observe that the average

percentage of UP-resilience is significantly higher with the SIR heuristic (64.8%

compared to 57.1% for RPO). Consequently, less decisions are necessary to solve

the instances (102,088 compared to 123,028 on average for RPO) and the solving

time is reduced (by 27 seconds on average). This shows the importance of the

Max-SAT resolution application order factor which has a direct impact on the

UP-resilience of the transformations and, thus, on the solver performance. In

our theoretical study in Section 5, we also provide an explanation for the seem-

ingly low average percentage of UP-resilience (less than 65% for both orders)

by showing that they don’t necessarily ensure UP-resilience of certain patterns.

6.3. Impact of UP-Resilience

In the last set of experiments, we have implemented a new learning scheme

based on the minimum percentage of UP-resilience allowed in the learned trans-

formations of ISs (%UPRIS) and UCSs (noted %UPRUCS). We have tested this

new learning scheme with %UPRIS and %UPRUCS ranging respectively from 0

to 100 and from 40 to 100. Results are presented in Fig. 13. We observe that the

best performance is achieved with %UPRIS and %UPRUCS ranging from 60%

to 100%. On these ranges of values, the average percentage of UP-resilience of

the learned transformations is always higher than 90%. With values lower than

37

Instance classes #
ahmaxsatSIR ahmaxsatRPO

S(T*) D* UPR* S(T*) D* UPR*

m
s

cr
a
ft

ed bipartite 100 100(117,58) 34915 45,2% 100(136,44) 40608 41,6%

maxcut 67 56(55,82) 171380 79,4% 56(64,55) 208687 73,1%

set-covering 10 0(-) - - 0(-) - -

ra
n
d
o
m

highgirth 82 6(1017,82) 3745740 68,8% 2(1349,10) 4198100 57,9%

max2sat 100 100(115,48) 45444 54,4% 100(157,59) 60277 48,3%

max3sat 100 100(290,07) 328030 64,2% 99(347,74) 408764 54,5%

min2sat 96 96(3,27) 1046 55,3% 96(3,93) 1188 51,6%

p
m

s

cr
a
ft

ed

frb 25 5(181,58) 585949 84,5% 5(184,82) 609626 79,7%

job-shop 3 0(-) - - 0(-) - -

maxclique 158 132(29,21) 19493 85,9% 133(26,15) 18686 83,0%

maxone 140 107(38,19) 133747 86,1% 107(43,45) 131269 75,3%

min-enc/kbtree 42 30(191,23) 57989 70,7% 20(661,99) 164731 58,8%

pseudo/miplib 4 2(0,03) 288 83,8% 2(0,03) 271 77,9%

reversi 44 7(2,12) 56 59,8% 5(6,78) 69 45,8%

scheduling 5 0(-) - - 0(-) - -

ra
n
d
o
m

min2sat 60 55(115,72) 6200 40,9% 50(171,87) 9245 33,2%

min3sat 60 58(324,52) 85114 52,7% 57(407,59) 107054 44,1%

pmax2sat 60 60(4,42) 1021 61,4% 60(6,09) 1349 53,8%

pmax3sat/hi 30 30(83,47) 84944 58,9% 30(100,55) 99455 47,7%

w
p
m

s cr
a
ft

ed

auction 40 40(169,35) 310021 92,4% 40(204,42) 300832 80,2%

CSG 10 4(589,24) 54813 76,1% 4(547,29) 54569 50,1%

frb 34 14(101,81) 212369 85,2% 14(74,36) 220618 81,3%

min-enc 74 53(54,73) 18863 68,1% 50(151,67) 8055 51,3%

pseudo/miplib 12 2(0,08) 52 70,6% 2(1,16) 52 37,7%

ramsey 15 4(69,42) 157559 82,9% 4(74,05) 160686 76,9%

random-net 32 3(499,20) 391871 92,1% 2(915,15) 823476 77,0%

set-covering 45 10(-) - - 0(-) - -

wmaxcut 48 42(56,47) 29387 79,9% 46(60,52) 34640 73,0%

ra
n
d
o
m

wmax2sat 120 120(61,64) 3993 53,5% 120(80,77) 4794 47,5%

wmax3sat 40 40(142,42) 36836 61,9% 40(175,07) 46786 50,4%

wpmax2sat 90 89(7,31) 579 59,2% 90(10,59) 643 51,6%

wpmax3sat/hi 30 30(123,23) 30451 54,3% 30(162,61) 37451 40,0%

Total/Average 1776 1395(97,02) 80036 64,8% 1364(128,36) 93175 57,1%

Table 2: Impact of current Max-SAT resolution application orders on the UP-resilience of

transformations

38

60%, the average number of decisions increases importantly and so does the av-

erage solving time. These results show that UP-resilience quantifies accurately

the impact of the transformations on the efficiency of SUP and provide further

incentive for our study in Section 5.

 0
 20

 40
 60

 80
 100

%UPRIS
 40

 50
 60

 70
 80

 90
 100%UPRUCS

so
lv

in
g
 t

im
e

(s
ec

.)

 100

 150

 200

 250

(a) Average solving time

 0

 20

 40

 60

 80

 100

%UPR
IS

 40
 50

 60
 70

 80
 90

 100%UPR
UCS

d
e
c
is

io
n
s
 n

u
m

b
e
r

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

(b) Average number of decisions

Figure 13: Impact of the minimum percentage of UP-resilience allowed for learning the trans-

formations of ISs and UCSs

7. Conclusion and Future Work

We have introduced in this paper the notion of UP-resilience which quantifies

the impact of Max-SAT resolution transformations on the SUP mechanism. We

have shown that, according to the UP-resilience criterion, the main patterns do

not have a negative impact on SUP. It contributes to explain theoretically the

efficiency of the most used learning scheme which was proved only empirically

until now. We also proved that kb-UCSs are UP-resilient with respect to two

different orders PRO and PRCO. Then, we generalized this result to k-UCSs

where all clauses are binary except one of any size involved in the conflict.

We showed that unlike our orders, the current mechanisms don’t necessarily

ensure UP-resilience for these patterns. Thus, our orders can help extend the

current patterns used in state of the art BnB solvers. Finally, we presented

an experimental study providing empirical evidence on the relevance of UP-

resilience.

To our best knowledge, this is the first work in which UP-resilience is used

39

to characterize the transformations by Max-SAT resolution in order to decide

the relevance of their application. Indeed, this can be a starting point of a

new approach to extend Max-SAT resolution patterns. In our case, we chose

UCS patterns because they present several advantages: the introduction of unit

clauses as well as the high frequency of their apparition. We also showed the

limits of the current orders of application of Max-SAT resolution. In fact, this is

the first work in which the proposed orders are introduced relatively to the struc-

ture of the implication graphs representing the possible propagation sequences

of an IS.

The prospects of our research include the extension of our studies to k-UCSs

in general. It also opens new perspectives for finding orders of application of

Max-SAT resolution that ensure UP-resilience or maximize its percentage by

thoroughly studying the implication graphs corresponding to the propagation

sequences of certain ISs. Another interesting prospect is extending our work

on more sophisticated mechanisms that are used to detect disjoint ISs such as

Generalized Unit Propagation (GUP) [23] which combines SUP whith Failed

Literals (FL) [24]. For instance, if the reason of unsatisfiablity of the detected

IS after applying GUP can be represented in the form of an implication graph,

our results would be applicable to GUP.

Finally, BnB solvers perform poorly on structured instances such as indus-

trial ones. In our opinion, this is mainly due to their inability to consider the

structural properties of these instances in the exploration of the search space.

An extended learning mechanism as described in our work may allow to guide

the exploration of the search tree by using the learned information as it is done

in modern SAT solvers. Thus, the UP-resilience property presented in this

paper may be a significant step towards the improvement of BnB Max-SAT

solvers performance on industrial instances. Also, increasing knowledge about

Max-SAT resolution can be useful for SAT-based solvers, which are mainly effi-

cient on industrial instances, as some solvers, such as EVA [6], already exploit

Max-SAT resolution to transform cores returned by SAT solvers.

40

References

[1] A. Abramé, D. Habet, On the resiliency of unit propagation to max-

resolution, in: Q. Yang, M. Wooldridge (Eds.), Proceedings of the 24th In-

ternational Joint Conference on Artificial Intelligence (IJCAI 2015), AAAI

Press, 2015, pp. 268–274.

[2] M. S. Cherif, D. Habet, Towards the characterization of max-resolution

transformations of ucss by up-resilience, in: T. Schiex, S. de Givry (Eds.),

Principles and Practice of Constraint Programming, Springer International

Publishing, Cham, 2019, pp. 91–107.

[3] A. M. Alexey Ignatiev, J. Marques-Silva, RC2: an efficient maxsat solver,

MaxSAT Evaluation 2018. JSAT 11. (2019) 53–64.

[4] J. Davies, F. Bacchus, Solving maxsat by solving a sequence of simpler

sat instances, in: J. Lee (Ed.), International conference on principles and

practice of constraint programming, Springer, 2011, pp. 225–239.

[5] R. Martins, V. Manquinho, I. Lynce, Open-wbo: A modular maxsat solver„

in: C. Sinz, U. Egly (Eds.), Theory and Applications of Satisfiability Test-

ing – SAT 2014, Springer International Publishing, Cham, 2014, pp. 438–

445.

[6] N. Narodytska, F. Bacchus, Maximum satisfiability using core-guided

maxsat resolution, in: Proceedings of the Twenty-Eighth Conference on

Artificial Intelligence (AAAI-14), AAAI Press, 2014, pp. 2717–2723.

[7] C. Ansótegui, M. L. Bonet, J. Levy, Solving (weighted) partial maxsat

through satisfiability testing, in: O. Kullmann (Ed.), Theory and Appli-

cations of Satisfiability Testing - SAT 2009, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2009, pp. 427–440.

[8] A. Abramé, D. Habet, ahmaxsat: Description and Evaluation of a Branch

and Bound Max-SAT Solver, Journal on Satisfiability, Boolean Modeling

and Computation 9 (2015) 89–128.

41

[9] F. Heras, J. Larrosa, A. Oliveras, MiniMaxSAT: An efficient weighted max-

sat solver, Journal of Artificial Intelligence Research 31 (2008) 1–32.

[10] A. Küegel, Improved exact solver for the weighted max-sat problem, in:

D. L. Berre (Ed.), POS-10. Pragmatics of SAT, Vol. 8 of EPiC Series in

Computing, EasyChair, 2012, pp. 15–27.

[11] C. M. Li, F. Manyà, N. O. Mohamedou, J. Planes, Resolution-based lower

bounds in maxsat, Constraints 15 (2010) 456–484.

[12] C. M. Li, F. Manyà, J. Planes, New inference rules for max-sat, Journal of

Artificial Intelligence Research 30 (2007) 321–359.

[13] C. M. Li, F. Manyà, J. Planes, Exploiting unit propagation to compute

lower bounds in branch and bound max-sat solvers, in: P. van Beek (Ed.),

Principles and Practice of Constraint Programming - CP 2005, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 403–414.

[14] M. L. Bonet, J. Levy, F. Manyà, Resolution for max-sat, Artificial Intelli-

gence 171 (8) (2007) 606–618.

[15] F. Heras, J. Larrosa, New inference rules for efficient Max-SAT solving, in:

A. Cohn (Ed.), Proceedings of the 21st National Conference on Artificial

Intelligence (AAAI 2006), AAAI Press, 2006, pp. 68–73.

[16] A. Abramé, D. Habet, On the extension of learning for Max-SAT, in:

U. Endriss, J. Leite (Eds.), Proceedings of the 7th European Starting AI

Researcher Symposium (STAIRS 2014), Vol. 241 of Frontiers in Artificial

Intelligence and Applications, IOS Press, 2014, pp. 1–10.

[17] R. Niedermeier, P. Rossmanith, New upper bounds for maximum satisfia-

bility, Journal of Algorithms 36 (1) (2000) 63–88. doi:https://doi.org/

10.1006/jagm.2000.1075.

[18] J. P. Marques-Silva, K. A. Sakallah, Grasp: A search algorithm for propo-

sitional satisfiability, Computers, IEEE Transactions on 48 (1999) 506–521.

42

[19] C. M. Li, F. Manyà, An exact inference scheme for minsat, in: IJCAI, 2015,

pp. 1959–1965.

[20] J. Larrosa, F. Heras, S. De Givry, A logical approach to efficient Max-SAT

solving, Artificial Intelligence 172 (2-3) (2008) 204–233.

[21] L. Zhang, C. F. Madigan, M. H. Moskewicz, S. Malik, Efficient conflict

driven learning in a boolean satisfiability solver, in: Proceedings of the 2001

IEEE/ACM International Conference on Computer-Aided Design, ICCAD

01, IEEE Press, 2001, pp. 279–285.

[22] A. Abramé, D. Habet, Efficient application of max-sat resolution on incon-

sistent subsets, in: B. O’Sullivan (Ed.), Principles and Practice of Con-

straint Programming, Springer International Publishing, Cham, 2014, pp.

92–107.

[23] A. Kuegel, Improved exact solver for the weighted max-sat problem, in:

D. L. Berre (Ed.), POS-10. Pragmatics of SAT, Vol. 8 of EPiC Series in

Computing, EasyChair, 2012, pp. 15–27. doi:10.29007/38lm.

[24] C.-M. Li, F. Manyà, J. Planes, Detecting Disjoint Inconsistent Subformulas

for Computing Lower Bounds for Max-SAT, in: Proceedings of the 21st

National Conference on Artificial Intelligence (AAAI-06), Vol. 1, AAAI

Press, 2006, pp. 86–91, event-place: Boston, Massachusetts.

43

