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Hierarchical sparse coding (HSC) is a powerful model to efficiently rep-
resent multidimensional, structured data such as images. The simplest
solution to solve this computationally hard problem is to decompose it
into independent layer-wise subproblems. However, neuroscientific evi-
dence would suggest interconnecting these subproblems as in predictive
coding (PC) theory, which adds top-down connections between consecu-
tive layers. In this study, we introduce a new model, 2-layer sparse predic-
tive coding (2L-SPC), to assess the impact of this interlayer feedback con-
nection. In particular, the 2L-SPC is compared with a hierarchical Lasso
(Hi-La) network made out of a sequence of independent Lasso layers. The
2L-SPC and a 2-layer Hi-La networks are trained on four different
databases and with different sparsity parameters on each layer. First,
we show that the overall prediction error generated by 2L-SPC is lower
thanks to the feedback mechanism as it transfers prediction error be-
tween layers. Second, we demonstrate that the inference stage of the
2L-SPC is faster to converge and generates a refined representation in
the second layer compared to the Hi-La model. Third, we show that the
2L-SPC top-down connection accelerates the learning process of the HSC
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problem. Finally, the analysis of the emerging dictionaries shows that the
2L-SPC features are more generic and present a larger spatial extension.

1 Introduction

Sparse coding (SC) has proven to be one of the most successful methods
to find an efficient representation for sensory signals such as natural im-
ages. It holds the idea that signals (e.g., images) can be encoded as a linear
combination of a few features from a bigger set of features (Elad, 2010).
The set of features (also called atoms) is called the dictionary, and SC is
thus an inverse problem that is of prominent importance to the machine
learning community as it is complex to solve when this dictionary is un-
known and as the dimensionality of the signals increases. The pursuit of
optimal coding is usually decomposed into two complementary subprob-
lems: inference (coding) and dictionary learning. Inference involves finding
an accurate sparse representation of the input data considering the dictio-
naries are fixed; it could be performed using algorithms like ISTAand FISTA
(Beck & Teboulle, 2009), Matching Pursuit (Mallat & Zhang, 1993), Coordi-
nate Descent (Li & Osher, 2009), or ADMM (Heide, Heidrich, & Wetzstein,
2015). Once the representation is inferred, one can learn the atoms from the
data using methods like gradient descent (Kreutz-Delgado et al., 2003; Ru-
binstein, Bruckstein, & Elad, 2010; Sulam, Papyan, Romano, & Elad, 2018)
or online dictionary learning (Mairal, Bach, Ponce, & Sapiro, 2009). Conse-
quently, SC offers an unsupervised framework to learn simultaneously the
dictionary and the corresponding input representation. SC has been applied
with success to image restoration (Mairal, Bach, Ponce, Sapiro, & Zisser-
man, 2009), feature extraction (Szlam, Kavukcuoglu, & LeCun, 2010), and
classification (Perrinet & Bednar, 2015; Yang, Zhang, Yang, & Zhang, 2011).

Interestingly, SC is also a field of interest for computational neuroscience.
Olshausen & Field (1997) first demonstrated that adding a sparse prior to a
shallow neural network was sufficient to account for the emergence of neu-
rons whose receptive fields (RFs) are spatially localized, bandpass and ori-
ented filters, analogous to those found in the primary visual cortex (V1) of
mammals (Hubel & Wiesel, 1962). Because most SC algorithms are limited
to single-layer networks, this method cannot easily be extended to model
the hierarchical structure of the cortical areas constituting the visual path-
ways. Still, some solutions have been proposed to tackle this problem of hi-
erarchical sparse coding (HSC) as a global optimization problem (Aberdam,
Sulam, & Elad, 2019; Makhzani & Frey, 2013, 2015; Sulam, Aberdam, Beck,
& Elad, 2019; Sulam et al., 2018; Zeiler, Taylor, & Fergus, 2011). However,
these methods are looking for optimal solutions of HSC without bearing in
mind their plausibility in terms of neuronal implementation. Consequently,
the quest for an efficient HSC formulation that is compatible with such a
neural implementation remains open.
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Rao and Ballard (1999) introduced the predictive coding (PC) framework
to model the effect of the interaction of two cortical areas in the visual cortex.
PC intends to solve the inverse problem of vision by combining bottom-up
(feedforward) and top-down (feedback) activities. In PC, feedback connec-
tions carry a prediction of the neural activity of the afferent lower cortical
area, while the feedforward connection carries a prediction error to the next
higher cortical area. In such a framework, the activity of the neural popula-
tion is updated to minimize the unexpected component of the neural signal
(Friston, 2010). PC has been applied to supervised object recognition (Wen
et al., 2018; Han et al., 2018; Spratling, 2017) and unsupervised prediction of
future video frames (Lotter, Kreiman, & Cox, 2016). Interestingly, it is flex-
ible enough to allow the introduction of a sparse prior within each layer.
Therefore, one might consider PC as a bio-plausible formulation of the HSC
problem.

Interestingly, when recast into an HSC problem, SC and PC could be
used to model different types of computation in the brain. On the one hand,
SC might be considered as an intralayer computational mechanism that ex-
acerbates competition between neurons by selecting only the strongly ac-
tivated ones. This mechanism, called explaining away, could be used to
model intracortical recurrent connectivity. On the other hand, PC is de-
scribing the flow of information between consecutive layers and could be
used to model intercortical feedback connections. To the best of our knowl-
edge, no study has revealed the advantages of interconnecting SC layers
using the PC principle. What is the effect of the top-down connection of
PC? What are the consequences in terms of computations and convergence?
What are the qualitative differences concerning the learned atoms and
representations?

The objective of this study is to experimentally answer these ques-
tions and show that the PC framework could be successfully used for im-
proving the solutions to HSC problems in a 2-layer network. The letter is
organized as follows. We start our study by defining the two mathemati-
cal formulations to solve the HSC problem: the hierarchical Lasso (Hi-La),
which consists of stacking two independent Lasso subproblems, and the
2-layer sparse predictive coding (2L-SPC), which leverages PC into a deep
and sparse network of bidirectionally connected layers. To experimentally
compare both models, we train the 2L-SPC and Hi-La networks on four
databases. First, we vary the sparsity of each layer and compare the overall
prediction error for the two models, analyzing it layer-by-layer to under-
stand their respective roles. Second, we analyze the number of inference
iterations needed for the state variables of each network to reach their sta-
bility. Third, we study the evolution of the representations generated by the
Hi-La and the 2L-SPC during their inference process. Fourth, we compare
the convergence of both models during the dictionary learning stage. Fi-
nally, we discuss the differences between the features that both networks
learned in light of their activation probability and their spatial extension.
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2 Methods

In the following mathematical description, italic letters (e.g., α) are used as
symbols for scalars, bold lowercase letters (e.g., x) for column vectors, and
bold uppercase letters (e.g., D) for matrices, and ∇xL denotes the gradient
of a function L with respect to x.

2.1 Background. The core objective of a hierarchical sparse coding
(HSC) model with L-layers is to infer for each input image x(k) (with k ≤ N
and N is the number of images in the batch) the internal state variables
{γ (k)

i }L
i=1 and to learn the dictionaries {Di}L

i=1 that fit the constrained genera-
tive model formulated by equation 2.1:

⎧
⎪⎪⎪⎪⎨
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. (2.1)

The term ε
(k)
i is historically called “prediction error,” but it is actually quan-

tifying the local reconstruction error between DT
i γ

(k)
i and γ

(k)
i−1. The vector

γ
(k)
i could be viewed as the projection of γ

(k)
i−1 in the basis described by the

atoms composing Di. The sparsity of the internal state variables, specified
by the �0 pseudo-norm, is constrained at layer i by the scalar αi. In practice,
we use four-dimensional tensors to represent both vectors and matrices.
The input x(k) is a tensor of size [1, cx,wx, hx], where cx is the number of
channels of the image (i.e., 1 for grayscale images, and 3 for colored ones),
and wx and hx are, respectively, the width and height of the image. In the
mathematical description above, we can flatten x(k) as a vector of dimen-
sion [cx × wx × hx]. Furthermore, we impose a 2-dimensional convolutional
structure to the parameters {Di}L

i=1. If one describes the dictionary as a 4-
dimensional tensor of size [nd, cd,wd, hd], one can derive Di as a matrix of
nd local features (size: cd × wd × hd) that cover every possible location of the
input x(k) (Sulam et al., 2018). In other words, Di is a Toeplitz matrix. For the
sake of concision in our mathematical descriptions, we use matrix/vector
multiplication in place of convolution as it is mathematically strictly equiv-
alent. Notice that in equation 2.1, we have constrained the latent variables
to be positive only (i.e., γ

(k)
i > 0). This constraint is not a priori imposed

by HSC problems but nonnegative SC is known to keep the same expres-
siveness as standard SC (Papyan, Romano, & Elad, 2017) and allows us to
strengthen the link with both convolutional neural networks (CNNs; see
section 2.5) and neuroscience. Indeed, replaced in a biological context, the
element of γ i could be interpreted as firing rates, and Di could be viewed
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as the synaptic weights between two neural populations at layers i − 1
and i.

2.2 From Hierarchical Lasso .... One possibility for solving equation 2.1
while keeping the locality of the processing required by a plausible neural
implementation is to minimize a loss independently for each layer. First, we
transform the constrained problem to a regularization one, such that the loss
function is equal to the addition of the squared �2-norm of the prediction
error with a sparsity penalty. To guarantee a convex cost, we relax the �0

sparsity into a �1-penalty such that, finally, this defines a loss function for
each layer in the form of a standard Lasso problem (see equation 2.2), that
could be minimized using proximal gradient-based methods:

F
(
Di, γ

(k)
i

) = G
(
Di, γ

(k)
i

) + λi‖γ (k)
i ‖1 with

G
(
Di, γ

(k)
i

) = 1
2
‖γ (k)

i−1 − DT
i γ

(k)
i ‖2

2. (2.2)

In particular, we use the iterative shrinkage thresholding algorithm (ISTA)
to minimize F with respect to γ

(k)
i (see equation 2.3) as it is proven to be

computationally efficient (Beck & Teboulle, 2009). In practice, we use an
accelerated version of the ISTAalgorithm called FISTA. We will operate over
steps t until a criterion is met and at every step, from the first layer (i = 0) to
the last (i = L). In equation 2.3, we have removed image indexation to keep
the notation concise:

γt+1
i = Tηci λi

(
γt

i − ηci∇γt
i
G
)

= Tηci λi

(
γt

i + ηci Di(γt+1
i−1 − DT

i γt
i )

)
. (2.3)

In equation 2.3, Tα (·) denotes the nonnegative soft-thresholding operator
(see equation 2.4), ηci is the time constant of the inference process, and γt

i is
the state variable γ i at step t:

Tα (x) =
{

x − α if x ≥ α

0 if x ≤ α
. (2.4)

Interestingly, one can interpret equation 2.3 as one loop of a recurrent layer
that we will call the Lasso layer (Gregor & LeCun, 2010). Following equa-
tion 2.3, DT

i is a decoding dictionary that back-projects γ i into the space of
the (i − 1)th layer. This back-projection is used to elicit an error with re-
spect to γ i−1, and that will be encoded by Di to update the state variables
γ i. Finally, Lasso layers can be stacked together to form a hierarchical Lasso
(Hi-La) network (see Figure 1 without the left blue arrow). In our convolu-
tional case and for the proximal operator corresponding to the Lasso, it was
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Figure 1: Inference update scheme for the 2L-SPC network. x is the input image,
and λi tunes the sparseness level of γ i. The encoding and decoding dictionaries
are denoted Di and DT

i , respectively. The sparse maps (γ i) are updated through
a bidirectional dynamical process (plain and empty arrows). This recursive pro-
cess alone describes the Hi-La network. If we add the top-down influence, the
interlayer feedback connection (blue arrow), it then becomes a 2L-SPC network.

proven that FISTA has the advantage of converging faster than other sparse
coding algorithms such as coordinate descent (Chalasani, Principe, & Ra-
makrishnan, 2013). The inference of the overall Hi-La network consists in
updating recursively all the sparse maps γ i until they reach a stable point.

2.3 ... to Hierarchical Predictive Coding. Another alternative for solv-
ing equation 2.1 is to use the predictive coding (PC) theory. Unlike the Lasso
loss function, PC is not only minimizing the bottom-up prediction error; it
also adds a top-down prediction error that takes into consideration the in-
fluence of the upper layer on the current layer (see equation 2.5). In other
words, finding the γ i that minimizes L involves finding a trade-off between
a representation that best predicts the lower-level activity and another one
that is best predicted by the upper layer:

L
(
Di, γ

(k)
i

) = G
(
Di, γ

(k)
i

) + 1
2
‖γ (k)

i − DT
i+1γ

(k)
i+1‖2

2 + λi‖γ (k)
i ‖1. (2.5)

For consistency, we also use the ISTA algorithm to minimize L with respect
to γ i. A similar update scheme follows in equation 2.6 (without image in-
dexation for concision):

γt+1
i = Tηci λi

(
γt

i − ηci∇γt
i
L

)

= Tηci λi

(
γt

i + ηci Di(γt+1
i−1 − DT

i γt
i ) − ηci (γ

t
i − DT

i+1γ
t
i+1)

)
. (2.6)
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Figure 1 shows how we can interpret this update scheme as a recurrent
loop. This recurrent layer, called the sparse predictive coding (SPC) layer,
forms the building block of the 2-layer sparse predictive coding (2L-SPC)
network (see algorithm 2 in the appendix for the detailed implementation
of the 2L-SPC inference). The only difference from the Hi-La architecture
is that the 2L-SPC includes this top-down, feedback interlayer connection
to materialize the influence coming from upper layers (see the blue arrow
in Figure 1). Equations 2.3 and 2.6 explain the link between the encoding
and the decoding dictionary: the decoding dictionary (DT

i ) is the transpose
of the encoding dictionary (Di) because of the derivation of the convolu-
tion DT

i γt
i with regard to γt

i . Note that other approaches exist for which the
decoding and encoding dictionaries are decoupled (Han et al., 2018; Wen
et al., 2018). We do not consider them here.

2.4 Coding Stopping Criterion and Unsupervised Learning. For both
networks, the inference process is finalized once the relative variation of
γt

i with respect to γt−1
i is below a threshold denoted Tstab. In practice, the

number of iterations needed to reach the stopping criterion is between 30
and 200 (see Figure 4 for details). Once the convergence is achieved, we up-
date the dictionaries using gradient descent (see algorithm 1). Sulam et al.
(2018) demonstrated that this alternation of inference and learning offers a
reasonable guarantee for convergence. The learning of both Hi-La and 2L-
SPC involves minimizing the problem over batches of the training data set
as defined in equation 2.7. Note that the learning occurs during the training
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phase only and the inference process is the same during both training and
testing phases:

min
{Di}

(
1
N

N∑

k=1

L∑

i=1

F (Di, γ
(k)
i )

)

. (2.7)

For both models, dictionaries are randomly initialized using the standard
normal distribution (mean 0 and variance 1), and all sparse maps are initial-
ized to zero at the beginning of the inference process. After every dictionary
update, we regularize it by �2-normalizing each column of the dictionary
(i.e., we normalize according to the dimension nd as defined in section 2.1).
Interestingly, although the inference update scheme is different for the two
models, the dictionary learning loss is the same in both cases since the top-
down prediction error term in L does not depend on Di (see equation 2.7).
This loss is then a good evaluation point to assess the impact of both the 2L-
SPC and Hi-La inference processes on the layer prediction error εi. We used
PyTorch 1.0 to implement, train, and test all the models described above.
The code of the two models and the simulations of this letter are available
at www.github.com/VictorBoutin/SPC_2L/.

2.5 Link between the Hi-La, the 2L-SPC, and CNNs. Papyan et al.
(2017) exhibited the link between CNNs and the nonnegative convolutional
HSC problem. In this section, we show that this relationship could be ex-
tended to both Hi-La and 2L-SPC if we consider the first time step of their
update scheme (see equations 2.3 and 2.6 for Hi-La and 2L-SPC, respec-
tively). At t = 1, since all latent variables have been initialized at 0, the feed-
back term of the 2L-SPC is removed, and the updates of both networks are
reducible to the same feedforward process (see equation 2.8) with an acti-
vation function being the soft-thresholding operator:

γt=1
i =

{
Tηci λi

(
ηci Dix

) = ηciTλi

(
Dix

)
if i = 1

Tηci λi

(
ηci Diγ

t=1
i−1 ) = ηciTλi

(
Diγ

t=1
i−1

)
if i ∈ [[2; L]]

. (2.8)

The soft-thresholding operator could be viewed as a biased rectified linear
unit (ReLU) in which every entry of the bias vector is the same (i.e., the
entries are all equal to λi). Note that the ReLu is the most popular activation
function used for CNNs. Therefore, the first flows of information of both the
Hi-La and the 2L-SPC are equivalent to feedforward CNNs. In the following
inference iterations, both models are refining the latent variables γ i to make
them fit the inverse problem defined in equation 2.1.
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3 Experimental Settings: Data Sets and Parameters

We use four databases to train and test both networks.

STL-10. The STL-10 database (Coates, Ng, & Lee, 2011) has 100,000 col-
ored images of size 96 × 96 pixels (px) representing 10 classes of ob-
jects (e.g., airplane, bird). STL-10 presents a high diversity of object
viewpoints and backgrounds. This set is partitioned into a training
set composed of 90,000 images and a testing set of 10,000 images.

CFD. The Chicago Face Database (CFD) (Ma, Correll, & Wittenbrink,
2015) consists of 1804 high-resolution (2444 × 1718 px), color, stan-
dardized photographs of male and female faces of varying ethnic-
ity between the ages of 18 and 40 years. We resized the pictures to
170 × 120 px to keep the computational time reasonable. The CFD
database is partitioned into batches of 10 images. This data set is split
into a training set composed of 721 images and a testing set of 486
images.

MNIST. MNIST (LeCun, 1998) is composed of 28 × 28 px, 70,000
grayscale images representing handwritten digits. We decomposed
this data set into batches of 32 images, split into a training set com-
posed of 60,000 digits and a testing set of 10,000 digits.

AT&T. The AT&T database (AT&T, 1994) has 400 grayscale images of
size 92 × 112 pixels (px) representing faces of 40 distinct persons with
different lighting conditions, facial expressions, and details. This set is
partitioned into batches of 20 images. The training set is composed of
330 images (33 subjects), and the testing set is composed of 70 images
(7 subjects).

All of these databases are preprocessed using local contrast normaliza-
tion (LCN) first and then whitening (see Figure 17 for sample examples on
all databases). LCN is inspired by neuroscience and consists of a local sub-
tractive and divisive normalization (Jarrett, Kavukcuoglu, & LeCun, 2009).
In addition, we use whitening to reduce dependency between pixels (Ol-
shausen & Field, 1997).

To draw a fair comparison between the 2L-SPC and Hi-La models, we
train both models using the same set of hyperparameters. We summarize
these parameters in Table 1 for the STL-10, MNIST, and CFD databases and
in section A.3 for the ATT database. Note that the parameter ηci is omitted
in the table because it is computed as the inverse of the largest eigenvalue of
DT

i Di (Beck & Teboulle, 2009). To learn the dictionary Di, we use stochastic
gradient descent on the training set only, with a learning rate ηLi and a mo-
mentum equal to 0.9. In this study, we consider only 2-layered networks,
and we vary the sparsity parameters of each layer (λ1 and λ2) to assess their
effect on both the 2L-SPC and the Hi-La networks.
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Table 1: Network Architectures, Training, and Simulation Hyperparameters.

Databases

STL-10 CFD MNIST

Network D1 size [64, 1, 8, 8] (2) [64, 3, 9, 9] (3) [32, 1, 5, 5] (2)
parameters D2 size [128, 64, 8, 8] (1) [128, 64, 9, 9] (1) [64, 32, 5, 5] (1)

Tstab 1e-4 5e-3 5e-4
Training Number 10 250 100

parameters of epochs
ηL1 1e-4 1e-4 5e-2
ηL2 5e-3 5e-3 1e-3

Simulation λ1 range [0.2 : 0.6 :: 0.1, 1.6] [0.3 : 0.7 :: 0.1, 1.8] [0.1 : 0.3 :: 0.05, 0.3]
parameters λ2 range [0.4, 1.4 : 1.8 :: 0.1] [0.5, 1 : 1.8 :: 0.2] [0.2, 0.2 : 0.4 :: 0.05]

Note: The sizes of the convolutional kernels are shown in the format: [# features, # chan-
nels, width, height] (stride). To describe the range of explored parameters during simula-
tions, we use the format [0.3 : 0.7 :: 0.1, 0.5], which means that we vary λ1 from 0.3 to 0.7
by step of 0.1 while λ2 is fixed to 0.5.

4 Results

For cross-validation, we ran all the simulations presented in this section
seven times, each time with a different random seed for the initialization
of the dictionary. We define the central tendency of our curves by the me-
dian of the runs and its variation by the median absolute deviation (MAD)
(Pham-Gia & Hung, 2001). We prefer this measure to the classical mean ±
standard deviation because a few measures did not exhibit a normal distri-
bution. All presented curves are obtained on the testing set.

4.1 2L-SPC Converges to a Lower Prediction Error. As a first analysis,
we report the cost F (Di, γ i) (see equation 2.2) for each layer and for both
networks. To refine our analysis, we decompose for each layer this cost into
a quadratic cost (i.e., the �2 term in F , that is, G) and a sparsity cost (i.e.,
the �1 term in F), and we monitor these quantities when varying the first-
and second-layer sparse penalties (see Figure 2). For scaling reasons and
because the error bars are small, we cannot display them on Figure 2; we
thus include them in Figure 8. For all the simulations shown in Figure 2, we
observe that the total cost (i.e., F (D1, γ1) + F (D2, γ2)) is lower for the 2L-
SPC than for the Hi-La model. As expected, in both models, the total cost
increases when we increase λ1 or λ2.

For all databases, Figure 2 shows that the feedback connection of the 2L-
SPC tends to increase the first-layer quadratic cost. For example, when λ1

is increased, the average variation of the first-layer quadratic cost of the
2L-SPC compared to the one of the Hi-La is +126% for STL-10, +110%
for CFD, +100% for MNIST, and +73% for AT&T. On the contrary, the
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Figure 2: Evolution of the cost, evaluated on the testing set, for both 2L-SPC and
Hi-La networks and trained on STL-10, CFD and MNIST databases. We vary the
first layer sparsity in the (a) top three graphs and the second layer sparsity in the
(b) bottom three graphs. For each layer, the cost is decomposed into a quadratic
cost (i.e., �2 term) represented with solid bars and a sparsity cost (i.e., �1 term)
represented with hashed bars. First-layer cost is represented with darker colors
and second-layer cost with lighter colors.

second-layer quadratic cost is strongly decreasing when the feedback con-
nection is activated. In particular, when λ1 is increased, the average varia-
tion of the second-layer quadratic cost of the 2L-SPC compared to the one of
the Hi-La is −57% for STL-10, −58% for CFD, −61% for MNIST, and −44%
for AT&T. These observations are holding when the second-layer sparse
penalty is increased. This is expected: while the Hi-La first layer is fully spe-
cialized in minimizing the quadratic cost with the lower level, the 2L-SPC
finds a trade-off between lower, and higher-level quadratic cost.

In addition, when λ1 is increased, the Hi-La first-layer quadratic cost is
increasing faster (+337% for STL-10, +152% for CFD, +214% for MNIST,
and +260% for AT&T) than the 2L-SPC first-layer quadratic cost (+117%
for STL-10, +83% for CFD, +148% for MNIST, and +147% for AT&T). This
phenomenon is amplified if we consider the evolution of the first-layer spar-
sity cost when increasing λ1. The first-layer sparsity cost of the Hi-La ex-
hibits a stronger increase (+108% for STL-10, +99% for CFD, +150% for
MNIST, and +60% for AT&T) than the one of the 2L-SPC (+92% for STL-
10, +94% for CFD, +112% for MNIST, and +47% for AT&T). This suggests
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Figure 3: Heat maps of the total cost when varying layers’ sparsity for 2L-SPC
(i) and Hi-La (ii) on the CFD database. (iii) The heat map of the relative dif-
ference between the Hi-La and the 2L-SPC total cost when varying the layers’
sparsity.

that the extra penalty induced by the increase of λ1 is better mitigated by the
2L-SPC.

When λ2 is increased, the quadratic cost of the first layer of the Hi-La
model is almost stable (1% for STL-10, 0% for CFD, +2% for MNIST, and
0% for AT&T), whereas the 2L-SPC first layer �2 cost is increasing (+6% for
STL-10, +16% for CFD, +20% for MNIST, and +8% for AT&T). The expla-
nation here is straightforward: while the first layer of the 2L-SPC includes
the influence of the upper layer, the Hi-La does not have such a mechanism.
It suggests that the feedback connection of the 2L-SPC transfers a part of the
extra penalty coming from the increase of λ2 in the first-layer quadratic cost.

Figures 3i and 3ii show the mapping of the total cost when we vary the
sparsity of each layer for the 2L-SPC and Hi-La, respectively. These heat
maps confirm what has been observed in Figure 2 and they extend it to a
larger range of sparsity values: both models are more sensitive to a variation
of λ1 than to a change in λ2. Figure 3iii is a heat map of the relative difference
between the 2L-SPC and the Hi-La total cost. It shows that the minimum
relative difference between 2L-SPC and Hi-La (10.6%) is reached when λ1

is maximal and λ2 is minimal, and the maximum relative difference (19.9%)
is reached when both λ1 and λ2 are minimal. It suggests that the previously
observed mitigation mechanism originated by the feedback connection is
more efficient when the sparsity of the first layer is lower.

All these observations point in the same direction: the 2L-SPC frame-
work mitigates the total cost with a better distribution of the cost among
layers. This mechanism is even more pronounced when the sparsity of the
first layer is lower. Surprisingly, while the feedback connection of the 2L-
SPC imposes more constraints on the state variables, it also happens to gen-
erate less total cost.

4.2 2L-SPC Has a Faster Inference Process. One may wonder if this
better convergence is not achieved at the cost of a slower inference pro-
cess. To address this concern, we report for both models the number of
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Figure 4: Evolution of the number of iterations needed to reach stability crite-
rion for both 2L-SPC and Hi-La networks on the testing sets of STL-10, CFD,
and MNIST databases. We vary the sparsity in the (a) first layer in the top three
graphs and sparsity in the (b) second layer in the bottom three graphs. Shaded
areas correspond to the mean absolute deviation on seven runs.

iterations the inference process needs to converge toward a stable state on
the testing set. Figure 4 shows the evolution of this quantity, for STL-10,
CFD, and MNIST databases (see section A.5 for the AT&T database), when
varying both layers’ sparsity. For all the simulations, results demonstrate
that the 2L-SPC needs less iteration than the Hi-La model to converge to-
ward a stable state. We also observe that data dispersion is in general more
pronounced for the Hi-La model. In addition to converging to lower cost,
the 2L-SPC is also decreasing the number of iterations in the inference pro-
cess to converge toward a stable state.

4.3 2L-SPC Refines the Second Layer. We now study the evolution of
the quadratic term of the prediction error during the inference process. As
a representative example, we report these errors for both layers and both
models when they are trained on the STL-10 database with λ1 = 0.4 and
λ2 = 1.4 (see Figure 5a). We distinguish three states, denoted A, B, and C,
corresponding to the inference at iterations 1, 7, and 20, respectively. At state
A, the inference process has just started, and the first-layer prediction error
is very high in contrast to the second-layer prediction error. Around state B
and for both models, all layers’ prediction errors are getting closer to each
other. At state C, even if the inference process has not yet fully converged,
the evolution of the layer’s prediction errors gets smoother until a final error
is reached (at iteration 155 for the Hi-La and 75 for the 2L-SPC).
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Figure 5: Evolution of the prediction error (�2-term) during the first inference
iterations of the Hi-La and 2L-SPC when trained on the STL-10 database (a). The
letters A, B, and C correspond to the states of latent variables at iterations 1, 7,
and 20, respectively. We illustrate these states for both models and both layers by
back-projecting the latent variables into the input space (first and middle rows
of panel b). We also plot the difference of prediction error (see equation 4.1) in
states A, B, and C (last row of panel b). Blue indicates that the 2L-SPC has a
lower prediction error than the Hi-La, and inversely for red.

We now back-project all the latent variables into the input space to assess
qualitatively how both models and layers are representing the input image
(see Figure 12 for more details on the back-projection mechanism). These
back-projections are shown in the two first lines of Figure 5b. We observe
that the reconstructions of the first-layer latent variables are highly similar
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for both the Hi-La and the 2L-SPC models. Note also that the quantitative
difference between the first-layer prediction error of the Hi-La and the 2L-
SPC at state C is not perceptible in the corresponding reconstructions. In
state A, both models’ first layers have already perceived all the details of
the input. It suggests that feedforward networks are sufficient to provide
accurate first-layer reconstruction (see section 2.5). In contrast, both mod-
els’ second-layer reconstructions are very rough in state A and get refined
along the inference process. In states B and C, we observe that the 2L-SPC
second-layer reconstructions exhibit more details that the corresponding
Hi-La reconstructions. In particular the 2L-SPC tends to better outline the
contours of the object.

Next we compute the difference of prediction errors between the Hi-La
and the 2L-SPC:

δL1 = (
x − DT

1H
γ1H

)2 − (
x − DT

1S
γ1S

)2

δL2 = (
DT

1H
(γ1H − DT

2H
γ2H )

)2 − (
DT

1S
(γ1S − DT

2S
γ2S )

)2
. (4.1)

In this equation, δL1 denotes the difference of the first-layer prediction error
between both models, and δL2 is the difference of the back-projected pre-
diction errors in input space. Variables indexed by the letters H and S are
the Hi-La and the 2L-SPC variables, respectively. Figure 5b shows the first-
and second-layer differences of prediction error for the different states A,
B, and C. In these images, we choose a color scale such that blue points out
the areas where the 2L-SPC has a lower prediction error than the Hi-La, and
inversely for red. In state A, we observe that the 2L-SPC presents a lower
prediction error than the Hi-La inside the represented object (a bird in the
example in Figure 5b). Note that at the first inference step, both Hi-La and
2L-SPC have the same inference process (see section 2.5). Therefore, this dif-
ference in prediction error in state A is exclusively coming from the learning
of their respective dictionaries. In particular, the 2L-SPC dictionaries tend
to better represent finer textures (such as wood or the feathers of the bird
example shown in Figure 5b). On the other hand, the first layer of the Hi-La
is better at reconstructing the input when the inference process is in state B
or C. This last observation is in line with the curves presented in Figure 5a.
Concerning the second-layer prediction error, we observe that the Hi-La is
better performing than the 2L-SPC when it comes to filling in the details
of the object in state B. Nevertheless, the more the inference process is ad-
vanced, the more the 2L-SPC gets better at filling in the object (see state C,
layer 2 in the third row of Figure 5b). Finally, when the inference process
has converged, the 2L-SPC tends to better represent contrasted contours as
the beak or the breast.

These observations suggest that the 2L-SPC is beneficial for the second
layer to better represent both fine textural details and contrasted contours.
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Figure 6: Evolution of the total cost during the training evaluated on the STL-
10, CFD, and MNIST testing sets. Shaded areas correspond to mean absolute
deviation on seven runs. All graphs have a logarithmic scale on both the x- and
y-axis.

4.4 2L-SPC Learns Faster. Figure 6 shows the evolution of the total
cost during the dictionary learning stage and evaluated on the testing set
(see section 5 for the AT&T database). For all databases, the 2L-SPC model
reaches its minimal total cost before the Hi-La model. The convergence rate
of both models is comparable, but the 2L-SPC has a much lower cost in the
very first epochs. The interlayer feedback connection of the 2L-SPC pushes
the network toward lower prediction errors from the very beginning of the
learning.

4.5 2L-SPC Features are Larger and More Generic. Another way to
grasp the impact of the interlayer feedback connection is to visualize its
effect on the dictionaries. To generate a human-readable visualization of
the learned dictionaries, we back-project them into the image space using
a cascade of transposed convolutions (see Figure 12). Using the analogy
with neuroscience, these back-projections are called receptive fields (RFs).
Figure 7 shows some of the RFs for the two layers and the second-layer acti-
vation probability histogram for both models when they are trained on the
CFD database. In general, first-layer RFs are oriented Gabor-like filters, and
second-layer RFs are more specific and represent more abstract concepts
(e.g., curvatures, eyes, mouth, nose). In some extreme cases, RFs in the sec-
ond layer of the Hi-La seem to overfit some specific faces and do not encom-
pass all generality in the concept of a face. The red-framed RFs highlight one
of these typical cases: the corresponding activation probabilities are 0.25%
and 0.92% for Hi-La and 2L-SPC, respectively. This overfitting of features is
supported by the lowest activation probability of the second layer’s atoms
of the Hi-La compared to the one of the 2L-SPC (0.16% versus 0.30%). This
phenomenon is even more striking when we sort all the features by acti-
vation probabilities in descending order (see Figure 14). We filter out the
highest activation probability (corresponding to the low-frequency filters
highlighted by the black squares) of both Hi-La and 2L-SPC for scaling
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Figure 7: Hi-La and 2L-SPC RFs obtained on the CFD database (with λ1 = 0.3,
λ2 = 1.8) and their associated second-layer activation probability histogram.
The first- and second-layer RFs are 9 × 9 px and 33 × 33, px respectively. For the
first-layer RFs, we randomly selected 12 of 64 atoms. For the second-layer RFs,
we sampled 32 of 128 atoms and ranked them by their activation probability
in descending order. For readability, we removed the most activated filter (RF
framed in black) in 2L-SPC and the Hi-La second-layer activation histogram.
The activation probabilities of the RFs framed in red are shown as a red bar in
the corresponding histogram.

reasons. All the filters are displayed in Figures 13 through 16 for STL-10,
CFD, MNIST, and AT&T RFs, respectively. The atoms’ activation probabil-
ity confirms the qualitative analysis of the RFs: the features learned by that
the 2L-SPC learned are more generic and informative as they describe a
wider range of images.

We also observe that the second-layer RFs present longer curvatures and
oriented lines in the 2L-SPC than in the Hi-La model. We quantitatively con-
firm this statement by computing the mean surface coverage (MSC) of the
first- and second-layer features (see Table 2). To perform such an analysis,
we first filter out the low-frequency and face-specific features (e.g., eyes,
nose) to keep only the oriented lines and the curvatures. Next, we normalize
dictionaries for both models to make sure that the maximum pixel’s inten-
sity is equal to one. We next binarize each atom using the standard deviation
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Table 2: Mean Surface Coverage for the First- and Second-Layer Features Ob-
tained on Four Databases.

Mean Surface Coverage

Layer 1 Layer 2

Database Hi-La 2L-SPC Variation Hi-La 2L-SPC Variation

CFD 8.4% 9.4% +12% 3.2% 4.8% +50%
STL-10 7.9% 9.5% +20% 2.5% 3.9% +56%
MNIST 12.1% 14.6% +21% 3.8% 5.8% +52%
AT&T 11.1% 12.3% +11% 3.0% 4.3% +43%

as a threshold. Consequently, the only remaining pixels are those presenting
a pixel’s intensity higher than the standard deviation of the atom. Finally,
we compute the MSC by summing the number of active pixels and dividing
it by the total surface of the RF. For the four databases, both the first- and
the second-layer dictionaries of the 2L-SPC are covering a larger space in
the RFs (see Table 2). In particular, the first-layer dictionary of the 2L-SPC
has an extra MSC varying from +11% to +21% compared to the one of the
Hi-La. The increase of spatial extension is even more pronounced in the case
of the second-layer features. The 2L-SPC second-layer atom have an extra
MSC ranging from +43% to +56% compared to those of the Hi-La.

The analysis of the features reveals that the second-layer features of the
2L-SPC are more frequently activated than those of the Hi-La. The 2L-SPC
second-layer atoms are then more generic as they encode for more diverse
situations. In addition, these features are presenting a larger spatial exten-
sion and then include more contextual information compared to those of
the Hi-La. Interestingly, these results might serve as an explanation for the
lower global residual error observed in Figure 2.

5 Conclusion

What are the computational advantages of interlayer feedback connections
in hierarchical sparse coding algorithms? We answered this question by
comparing the hierarchical lasso (Hi-La) and the 2-Layer sparse predic-
tive coding (2L-SPC) models. Both are identical in every respect, except
that the 2L-SPC adds interlayer feedback connections. These extra connec-
tions force the internal state variables of the 2L-SPC to converge toward a
trade-off between an accurate prediction passed by the lower layer and a
better predictability by the upper layer. Experimentally, we demonstrated
for these 2-layered networks on four different databases that the interlayer
feedback connection (1) mitigates the overall prediction error by distribut-
ing it among layers, (2) accelerates the convergence toward a stable internal
state, and (3) allows the second layer to refine its representation of the input,
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(4) accelerates the learning process, and (5) enables the learned features to
be more generic and spatially extended.

The 2L-SPC is novel in its way to consider hierarchical sparse coding
(HSC) as a combination of local SC subproblems linked with the PC the-
ory. This is a crucial difference with CNNs that are trained by backprop-
agating gradients from a global loss. To the best of our knowledge, the
2L-SPC model is the first one that leverages local sparse coding into a
hierarchical and unsupervised algorithm. The ML-CSC from Sulam et al.
(2018) is equivalent to a one-layer sparse coding algorithm (Aberdam et al.,
2019), and the ML-ISTA from Sulam et al. (2019) is trained using super-
vised learning. However, deconvolutional networks (Zeiler & Fergus, 2012;
Zeiler et al., 2011) are not leveraging local sparse coding as each layer aims
at reconstructing the input image. Interestingly, other approaches based on
hierarchical probabilistic inference have successfully generated sparse de-
composition of images even though these models are not explicitly solving
HSC problems (Lee, Grosse, Ranganath, & Ng, 2009).

Therefore, the 2L-SPC is a proof of concept demonstrating the beneficial
impact of feedback connection in HSC models. Further work needs to be
conducted to generalize our results to deeper networks. In particular, one
needs to find an efficient normalization mechanism, compatible with recur-
rent networks, to mitigate the strong, vanishing activity phenomenon we
have observed with deeper latent variables. Neuroscience might bring an
elegant solution to this problem through divisive normalization. Another
crucial extension of the work presented here would consist in including a
channel-wise activation function (e.g., one sparsity parameter per atoms) in
which the optimal biases would be assessed in the inference process. Such
an improvement would allow the network to adapt the sparsity of the layers
with the specificity of the input image. For example, highly textural images
would result in a very high sparsity for oriented line features and a low
sparsity for textural features.

If one succeeds in applying all of these improvement to such a sparse pre-
dictive coding framework, such networks should exhibit promising results
to model the brain and tackle practical applications like image inpainting,
denoising, and image super-resolution.
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Appendix

A.1 2L-SPC Pseudo-Code.

Note: Tα (·) denotes the element-wise, non-negative soft-thresholding operator.
A fortiori, T0(·) is a rectified linear unit operator. # comments are comments.
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A.2 Evolution of the Global Prediction Error with Error Bar.

Figure 8: Evolution of the total cost evaluated on the testing set for both 2L-
SPC and Hi-La networks. We vary the first-layer sparsity in the top row and the
second-layer sparsity in the bottom row. Experiments have been conducted on
STL-10, CFD, and MNIST databases. Shaded areas correspond to mean absolute
deviation on seven runs. Sometimes the dispersion is so small that it looks as if
there is no shade.

A.3 2L-SPC Parameters on ATT.

Table 3: Network Architecture, Training, and Simulation Parameters on the
AT&T Database.

ATT Database

Network parameters D1 size [64, 1, 9, 9] (3)
D2 size [128, 64, 9, 9] (1)
Tstab 5e-4

Training parameters Number of epochs 1000
ηL1 1e-4
ηL2 5e-3

Simulation parameters λ1 range [0.3 : 0.7 :: 0.1, 1]
λ2 range [0.5, 0.6 : 1.6 :: 0.2]

Notes: The sizes of the convolutional kernels are shown in the for-
mat: [# features, # channels, width, height] (stride). To describe the
range of explored parameters during simulations, we use the format
[0.3 : 0.7 :: 0.1, 0.5],which means that we vary λ1 from 0.3 to 0.7 by
steps of 0.1 while λ2 is fixed to 0.5.
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A.4 Prediction Error Distribution on AT&T.

Figure 9: Evolution of the costs, evaluated on the testing set, for both 2L-SPC
and Hi-La networks trained on the AT&T database. We vary the first-layer spar-
sity (a) and the second-layer sparsity (b). For each layer, the cost is decomposed
into a quadratic cost (i.e., �2 term) represented with solid bars and a sparsity
cost (i.e., �1 term) represented with hashed bars. First-layer costs are represented
with darker colors and second-layer costs with lighter colors.

A.5 Number of Iterations of the Inference on AT&T.

Figure 10: Evolution of the number of iterations needed to reach a stability cri-
terion for both 2L-SPC and Hi-La networks on the AT&T testing set. We vary
first-layer sparsity (a) and second-layer sparsity (b). Shaded areas correspond
to mean absolute deviation on seven runs. Sometimes the dispersion is so small
that it looks like there is no shade.
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A.6 Evolution of Prediction Error during Training.

Figure 11: Evolution of the total cost during the training for the ATT testing set.
Shaded areas correspond to mean absolute deviation on seven runs. The graph
has a logarithmic scale in both the x- and y-axis.

A.7 Illustration of the Back-Projection Mechanism.

Figure 12: Generation of the second-layer effective dictionary. The result of this
back-projection is called effective dictionary and could be assimilated to the no-
tion of preferred stimulus in neuroscience. In a general case, the effective dictio-
nary at layer i is computed as follow: Deff,T

i = DT
0 ..DT

i−1DT
i (Sulam et al., 2018).
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A.8 Full Map of RFs for 2L-SPC and Hi-La on STL10.

Figure 13: 2L-SPC (a,c) and Hi-La (b,d) effective dictionaries obtained on the
STL-10 database, with sparsity parameter: (λ1 = 0.5, λ2 = 1). All other parame-
ters are those described in Table 1. Atoms are sorted by activation probabilities
in descending order. First-layer effective dictionaries have a size of 8 × 8 px (a,b)
and second-layer RFs have a size of 22 × 22 (c,d) px, respectively.
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A.9 Full Map of RFs for 2L-SPC and Hi-La on CFD.

Figure 14: 2L-SPC (a,c) and Hi-La (b,d) effective dictionaries obtained on the
CFD database, with sparsity parameter: (λ1 = 0.3, λ2 = 1.8). All other parame-
ters are those described in Table 1. Atoms are sorted by activation probabilities
in descending order. First-layer effective dictionaries have a size of 9 × 9 px (a,b)
and second-layer RFs have a size of 33 × 33 (c,d) px, respectively.
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A.10 Full Map of RFs for 2L-SPC and Hi-La on MNIST.

Figure 15: 2L-SPC (a,c) and Hi-La (b,d) effective dictionaries obtained on the
MNIST database, with sparsity parameter: (λ1 = 0.2, λ2 = 0.3). Atoms are sorted
by activation probabilities in descending order. All other parameters are those
described in Table 1 for the MNIST database. The visualization shown here is
the projection of the dictionaries into the input space. First-layer effective dic-
tionaries have a size of 5 × 5 px (a,b) and second-layer RFs have a size of 14 × 14
(c,d) px, respectively.
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A.11 Full Map of RFs for 2L-SPC and Hi-La on AT&T.

Figure 16: 2L-SPC (a,c) and Hi-La (b,d) effective dictionaries obtained on the
AT&T database, with sparsity parameter: (λ1 = 0.5, λ2 = 1). All other parame-
ters are those described in Table 3. Atoms are sorted by activation probabilities
in descending order. First-layer effective dictionaries have a size of 9 × 9 px (a,b)
and second-layer RFs have a size of 26 × 26 (c,d) px, respectively.
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A.12 Preprocessed Samples.

Figure 17: Preprocessed samples from STL-10 (a), AT&T (b), CFD (c), and
MNIST (d) databases. All of these databases are preprocessed using local-
contrast normalization (LCN) and whitening.
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