
HAL Id: hal-02986707
https://amu.hal.science/hal-02986707

Preprint submitted on 3 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-parametric Variable Selection on Non-linear
Manifolds

Loann David Denis Desboulets

To cite this version:
Loann David Denis Desboulets. Non-parametric Variable Selection on Non-linear Manifolds. 2020.
�hal-02986707�

https://amu.hal.science/hal-02986707
https://hal.archives-ouvertes.fr

Non-parametric Variable Selection on
Non-linear Manifolds

Loann D. DESBOULETS†

† CNRS, EHESS, Centrale Marseille, AMSE, Aix-Marseille University,

5-9 Boulevard Maurice Bourdet 13001 Marseille, France;

loann.DESBOULETS@univ-amu.fr

November 3, 2020

Abstract

In this paper, I investigate a new non-parametric variable selection framework.

To extend the usual non-parametric model, I consider non-linear manifolds which are

more flexible. Non-linear manifolds are represented by function compositions, allowing

more complex dependences in the data. Based on two manifold approximation tech-

niques, k-nearest neighbours and auto-encoder neural networks, I propose two different

procedures to perform non-parametric variable selection. The two methods are com-

plementary, the former being a local estimator, while the latter is a global estimator.

Keywords – Non-parametric, Non-linear Manifolds, Variable Selection, Neural Networks

1

1. Introduction

Non-parametric models are popular modelling techniques, that allows a great flexibility.

When the number of explanatory variables is large, variable selection come in handy. Variable

selection is meant to infer a subset of the most pertinent explanatory variables from the non-

parametric model

yi = m(xi) + εi ∀i ∈ 1, .., n. (1)

Where y is the dependent variable, x is a vector of covariates, ε is a noise term and m

is an unknown function. Selection is useful in reducing the dimension of the estimator

m̂(·), which is a serious issue for high dimensional non-parametric models, known as the

curse of dimensionality. There exists plenty of methods to perform non-parametric variable

selection, see Mehmood et al. (2012); Desboulets (2018) for recent reviews. However, there

might exists more complex correlations, that cannot be modelled directly using functions.

And in equation 1, the unknown model m(·) has to be a function. The Swiss Roll data

of Roweis and Saul (2000) is an instance of such complex correlations. To get a more

general approach, I consider non-linear manifolds which are more flexible than functions.

A manifold is often represented using a function composition. This can represent more

complex relationships than a single function. Also in the manifold equation, there is also

no distinction between explanatory variables and outcome variables. Both are embed into a

single matrix (X1, X2, ..., Xp) ≡ X ∈ Rn×p. This can be useful, in situations where there is a

priori no obvious reason to choose a particular variables as being more dependent than the

others. It can occurs in many areas of Economics, especially in Finance, for example when

regressing some returns on other returns. The manifold M is written as follow

M :={x ∈ Rp|x = f ◦ g(x)}

g : Rp → Rr, f : Rr → Rp, p > r
(2)

The projection function g maps the p-dimensional data onto the lower-dimensional coordi-

nates of the r-manifold. Then, the immersion function f is mapping back to the original

space. The data are assumed to be i.i.d. and stationary. The manifold selection problem

is to find the variables which have the greatest correlations with all the other variables,

expressed in terms of marginal contributions. Obviously, I have to discard the correlation

between a variable and itself. Its projection through the manifold cannot be the identity

function. The ”true” set of these correlated variables is denoted S∗ and defined as follow

1

S∗ := {j : ∃j′ 6= j,
∂Xj′

∂Xj

6= 0} ⇔ {j :
∂(f ◦ g)

∂Xj

6= 1}

|S∗| ≤ p

(3)

The contribution of this paper is to propose two manifold selection operators to infer the

set of ”active variables” S∗, from equation 3. The first is a locally linear estimator, based

on the k-nearest neighbours algorithm named LLMS, for Local Linear Manifold Selection.

The second is a global estimator, based on auto-encoders neural networks (Kramer, 1991),

named DAMS for Diagonal Auto-encoder Manifold Selection. The two approaches rely on

completely different mechanisms but solve almost the same problem. The local estimator

does not rely on continuity everywhere, contrary to the global one. This means f , and or g,

can be only locally continuous. Moreover, the local approach has low computational com-

plexity but might be sensitive to noisy data. The global one is exactly the opposite. These

reasons motivate for having two distinct approaches.

In general, any selection operator relies on a regression estimator, that approximates an as-

sociated model. Thus, selection on manifold has to rely on an estimator that approximates

the manifold. A large literature is devoted to inference of manifold in the data, referred to as

principal manifolds or unsupervised manifold learning. They use non-parametric estimators

such as for instance kernels Hastie and Stuetzle (1989); Schölkopf et al. (1998); Mika et al.

(1999), or neural networks Kohonen (1998); Vincent et al. (2010), and nearest neighbours

Roweis and Saul (2000); Saul and Roweis (2003). A useful introduction to manifold learning

can be found in Gorban and Zinovyev (2011).

Obviously these are regression techniques, they are not doing variable selection per se. They

only estimate the manifold. The literature on manifold selection is quite recent, but vary

across topics. On the one hand, there exists several papers for classification problems and

image recognition (Ding-Cheng et al., 2014; Li et al., 2016; Tang et al., 2019; Doquet and

Sebag, 2020). Typically, they assume the explanatory variables lie on a manifold. This

manifold represents the only source of variability in the data. It summarizes all the infor-

mation contained in the data, and so it reduces the dimension of the estimator, avoiding

de facto the curse of dimensionality. It is a non-parametric equivalent to Principal Com-

ponent Regression (Jolliffe, 1982). Once extracted, using the manifold instead of the raw

data produces a more parsimonious classifier, usually with better performance. The paper

of Ding-Cheng et al. (2014) is actually very close to the first of the two methods I propose

(LLMS). The main difference is they use a score based on reconstruction error to assess the

importance of a variable. They focus on finding which variables is correlated to the binary

2

outcome, which is not what I do here. I try to find which variables are correlated with all

the others, not a single one. On the other hand, there is almost no literature on manifold

selection for regression purposes, i.e. only with continuous data. The only method that is

close to the one I propose, is the Nonparanormal (hereafter NPN) of Lafferty et al. (2012). In

their paper, they assume non-parametric transformations of the variables are distributed as

a multivariate Gaussian. Once the transformations are estimated, the selection is performed

using the Graphical LASSO Friedman et al. (2008). However, their method is restricted to

monotonically increasing transforms. This is a particular kind of manifolds. Hence, their

method is not as flexible as the method I propose here.

The manifold model is a general and flexible statistical model. That is desirable, because as-

suming an inappropriate statistical model might not lead to consistent selection. Intuitively,

if a selection method assumes that the data is normally distributed, while it is not, it is un-

likely the estimated set of correlated variables is the true one. More formally, let us define a

selection operator as S = σ(X, P). This operator depends on a statistical model, described

by a sample X, and a set of parametrized probability distributions P = {Pω : ω ∈ Ω}.
For instance, the famous LASSO (Tibshirani, 1996) is based on a linear statistical model

{Y = Xβ : β ∈ Rp}. For the sake of simplicity, hereafter the notation for the distribution is

shortened to its parameters. The notation for the LASSO is therefore σLASSO(X, β). This

LASSO achieves sparsity by solving minβ ‖Y −Xβ‖2
2 +θ ‖β‖1, where θ is a hyper-parameter

that determines the amount of regularisation. Generally speaking, the Manifold Selection

(MS) estimator is denoted as σMS(X, f ◦ g). So, using simulations, I show there must be

some correspondence between the ”true” data generating process and the assumed statistical

model, otherwise the selected set is not consistent. Only the two methods I propose infer S∗

correctly when the data is distributed on a manifold.

Without further restrictions, the identification of S∗ is not possible. Also, the function com-

position is not unique. The condition on the domains of the functions p > r reduces the

function space for sure, but is not sufficient to obtain uniqueness. To identify S∗, what is

required is the identification of the partial derivatives, not f ◦g itself. Still, if f ◦g is unique,

so are its derivatives. The fundamental problem here, is that it is always possible to find

a function, as complex as needed, that links two variables. More generally, a smooth curve

(r = 1) can pass through every points in the data, provided it is non-linear enough. One

simple and usual solution for non-parametric models, is to impose a regularity condition

on the total variation of f ◦ g. In the literature, a penalty on the second order derivatives

is often used. Indeed, this limits, by definition, the variability of the function. But there

3

exists other ways to prevent from the aforementioned problem. In the case of the global

estimator, based on neural networks, it suffices to have ”not too large” intermediate layers.

If the activation functions are monotonic, each supplementary neurons in the intermediate

layer brings another possible extrema to the fitted function. Limiting the number of neurons

therefore limits the variability. For the local estimator, the solution is the local linear models

themselves, as a linear function has no variability. Notice that this is true as long as the

parameter k is large enough: k ≥ p + 1. Otherwise there no identification of the linear

models.

Another identification problem arises if we consider the variables to be measured with noise,

which is often the case empirically.

M :={x ∈ Rp|x = f ◦ g(x∗) + ε}

g : Rp → Rr, f : Rr → Rp, p > r
(4)

Here each variable is contaminated with a specific error term, therefore the dimension of the

noise is the same as the dimension of the data. Another possibility is for the coordinates of

the manifold to be noisy, but I do not take this one in consideration. In the general case, the

conditions that ensures identification of the manifold are not known. A necessary but not

sufficient condition is that true values of the data are independent from the noise x∗ ⊥ ε,

and the noises are uncorrelated i.e. V[ε] is diagonal. There is no need to impose the same

variance for each noise, nor this variance to be constant over all the distribution of the data.

The rest of the paper is organised as follow. In section 2, I develop the LLMS estimator,

based on the k-nearest neighbours algorithm. Its theoretical properties are studied, and

three different versions are proposed to improve selection. In section 3, I develop the DAMS

estimator, based on neural networks. I study a new network structure to perform selection

and extend it to auto-encoder networks. In section 4, I run simulations to compare exist-

ing methods, LLMS and DAMS. I show that both proposed methods can select variables

consistently.

4

2. Local Linear Approach via k-Nearest Neighbours

2.1. Motivations for a Locally Linear estimator

The very definition of a manifold is that it is locally a Euclidean space, i.e. in a neigh-

bourhood N of a given point x0 defined in a small enough euclidean ball Bx0 of radius

ν.
Bx0 ={X ∈ Rp, ‖X− x0‖2

2 ≤ ν} ⊂ Rp

Nx0 ={x ∈ Bx0 |x = f ◦ g(x)}.
(5)

It is also worth noticing that the union of all the possible neighbourhoods is the entire

manifold

M =
⋃
∀x0

Nx0 . (6)

The data matrix X is a sample from M, and the neighbourhoods are sub-samples of X. In

a neighbourhood of x0, a linear approximation of the manifold is sufficient as the error term

is limited by definition to be a small value: O((X − x0)2) ≈ ‖X− x0‖2
2 ≤ ν. Following a

first order Taylor expansion of the manifold:

f ◦ g(x) = f ◦ g(x0) +∇f◦g(x0)(X− x0) +O((X− x0)2), (7)

the definition of a neighbourhood can be changed to

Nx0 = {x ∈ Bx0|x ≈ f ◦ g(x0) +∇f◦g(x0)(X− x0)}

⇔Nx0 = {x ∈ Bx0|x ≈ µx0 + xβx0}
(8)

Following equations 6 and 8, X is the union of all the neighbourhoods and the function

composition f ◦g is approximated by the union of all the local linear models. So the manifold

selection can be rewritten as follow:

σ(X, f ◦ g) = σ(
⋃
∀x0

Nx0 ,
⋃
∀x0

µx0 + xβx0). (9)

Now, if I assume separability of the selection operators, I can write the manifold selection

as a union of local linear selection:

σ(
⋃
∀x0

Nx0 ,
⋃
∀x0

µx0 + xβx0) =
⋃
∀x0

σ(Nx0 , µx0 + xβx0). (10)

5

To illustrate this local separability assumption, let’s take a practical example. Assume

we have three variables, x, y, z, such that x and y lie on a circle and z is a noise variable. We

can write the associated manifold using a function composition. The projection function g

maps the two dimensional coordinates x and y onto the one-dimensional circle, and keeps z

as is. The immersion function f is basically the inverse of g.

g : R3 → R2

(x, y, z) 7→ (t := atan2(x, y), z).

f : R2 → R3

(t, z) 7→ (sin(t), cos(t), z).

(11)

with
atan2: R2 → R1

(x, y) 7→ atan(y/x)1{x>0}

+ π1{x < 0 & y ≥ 0} − π1{x < 0 & y < 0}

+
π

2
1{x = 0 & y > 0} −

π

2
1{x = 0 & y < 0}

(12)

In matrix form, we have:

X :=(x, y, z),

X =f ◦ g(X).
(13)

The manifold, which is a cylinder, formed by the three variables x, y, z is depicted in Figure

1. The ”true set” of variable S∗ := {j : ∃j′ 6= j,
∂Xj′

∂Xj
6= 0} requires to compute partial

derivatives of each variable w.r.t to all the others. These derivatives are easier to calculate

using the implicit form of the manifold equation. Let’s define the low-coordinates of the

manifold as follow:
t ∼ U [−π, π],

ε ∼ U [−1, 1].
(14)

Then the manifold can be written in implicit form as follow:

x = sin(t),

y = cos(t),

z = ε.

(15)

6

Fig. 1. Example of a non-linear manifold formed with three variables x, y, z

These equations can also be written in terms of the observed variables x, y, z only:

x = sin(cos−1(y)) =
√

(1− y2),

y = cos(sin−1(x)) =
√

(1− x2),

z = ε

(16)

These formulations are equivalent to the formulation in equation 13. Now, we can work out

7

the partial derivatives:

∂x

∂y
= − y√

(1− y2)
=


6= 0 if y 6= {0,−1,+1}

= 0 if y = 0

undefined if y = {−1,+1}

∂y

∂x
= − x√

(1− x2)
=


6= 0 if x 6= {0,−1,+1}

= 0 if x = 0

undefined if x = {−1,+1}
∂x

∂z
=
∂z

∂x
=
∂y

∂z
=
∂z

∂y
= 0

(17)

Or in matrix form:

∂X

∂X
=

 1 − y√
(1−y2)

0

− x√
(1−x2)

1 0

0 0 1

 (18)

The true set of variable is therefore:

⇒ S∗ := {j : ∃j′ 6= j,
∂Xj′

∂Xj

6= 0}

= {1, 2}
(19)

It is worth noticing here, what a selection operator assuming a linear model in the data

would do. The plane that best fit the data in Figure 1, is flat in all variables. The corre-

lation matrix of these data is a diagonal matrix, and so are its eigenvectors. So whatever

the mechanism that drives the selection, e.g. penalty on the parameters, it would not select

anything. This happens because the supports of all three variables are symmetric ([−1,+1]).

However, with a suitable estimate of the partial derivatives, we can define a selection esti-

mator such that σ(X, f ◦ g) = S∗. However, an estimate of the partial derivatives on the

whole support is hard to obtain. We can recover the true set, only using local estimates of

the derivatives. For the sake of simplicity, let us choose 4 points t0 and compute the local

linear selection at these points. The whole process is illustrated in Figure 2.

t0 ∈
{
π

4
,
−π
4
,
3π

4
,
−3π

4

}
x0 = (sin(t0), cos(t0), z(t0))

(20)

8

The local derivatives are obtained by taking the first order Taylor expansion f(t) = f(t0) +

f ′(t0)(t− t0) of the circle and then differentiating w.r.t to the other variables.

• t0 = π
4

x = sin(t) ≈ +
1√
2

+
1√
2

(
t− π

4

)
y = cos(t) ≈ +

1√
2
− 1√

2

(
t− π

4

) (21)

One can see the two approximations have the same coefficients, and only differ by

the leading coefficient sign, therefore the derivatives between x and y are trivial. The

derivatives involving z do not change, the variable z is not present in the approxima-

tions formulas.
∂x

∂y
= −1,

∂y

∂x
= −1,

∂x

∂z
=
∂z

∂x
=
∂y

∂z
=
∂z

∂y
= 0.

(22)

Thus, the selection set at this point is σ(Nx0(π
4

), µx0(π
4

) + xβx0(π
4

)) = {1, 2}. The same

logic is applied to the other points.

• t0 = −π
4

x = sin(t) ≈ +
1√
2

+
1√
2

(
t+

π

4

)
y = cos(t) ≈ +

1√
2

+
1√
2

(
t+

π

4

)
→ ∂x

∂y
= −1

→ ∂y

∂x
= +1

→ ∂x

∂z
=
∂z

∂x
=
∂y

∂z
=
∂z

∂y
= 0

σ(Nx0(−π
4

), µx0(−π
4

) + xβx0(−π
4

)) = {1, 2}

(23)

9

• t0 = 3π
4

x = sin(t) ≈ +
1√
2
− 1√

2

(
t− π

4

)
y = cos(t) ≈ +

1√
2
− 1√

2

(
t− π

4

)
→ ∂x

∂y
= +1

→ ∂y

∂x
= −1

→ ∂x

∂z
=
∂z

∂x
=
∂y

∂z
=
∂z

∂y
= 0

σ(Nx0(3π
4

), µx0(3π
4

) + xβx0(3π
4

)) = {1, 2}

(24)

• t0 = −3π
4

x = sin(t) ≈ +
1√
2
− 1√

2

(
t+

π

4

)
y = cos(t) ≈ +

1√
2

+
1√
2

(
t+

π

4

)
→ ∂x

∂y
= +1

→ ∂y

∂x
= +1

→ ∂x

∂z
=
∂z

∂x
=
∂y

∂z
=
∂z

∂y
= 0

σ(Nx0(−3π
4

), µx0(−3π
4

) + xβx0(−3π
4

)) = {1, 2}

(25)

In the end, the union of the local selection leads to the same set of selected variables:

σ(X, f ◦ g) =
⋃
∀x0

σ(Nx0 , µx0 + xβx0)

=
⋃
{{1, 2}, {1, 2}, {1, 2}, {1, 2}}

= {1, 2}

= S∗.

(26)

10

Fig. 2. Local linear approximation of a non-linear manifold at t0 =
{
π
4
, −π

4
, 3π

4
, −3π

4

}

Notes: The red data points are the four points x0(t0), the blue circles represents the

neighbourhoods around these points, and the blue lines are the local linear approximates of

the circle.

That separability assumption is only needed for a local approach, and is not required for

a global estimator. Doing so, divides the overall selection problem into lots of local selection

problems, easier to solve. The parameters from the local linear models can be estimated

via eigenvalue decomposition, known also as Principal Components Analysis (PCA) in the

literature. This is the linear equivalent of the non-linear manifold model. It is a natural choice

as locally the r-manifold is a r-dimensional plane embedded into Rp, and the first r columns

of the eigenvectors V ∈ Rp×p project the data onto a r-dimensional plane. Each eigenvector

is normalized ‖Vj‖ = 1 ∀j = 1, ..., p, and they are orthogonal to each other V V ′ = Id.

11

This is required for identification of the parameters. The low dimensional projection can be

mapped back using the transposed of the same vectors. Doing so, produces the best linear

approximation in a total least square sense.

x ≈ (x− µx)V1:rV
′
1:r + µx. (27)

The last step is to define a selection operator based on these parameters. There have been

several attempts in the literature to perform variable selection in that case. The Sparse PCA

of Zou et al. (2006) uses a composite L1-norm and L2-norm constraint on the eigenvectors.

However it would requires the knowledge of r, which is not the case here. The Graphical

LASSO of Friedman et al. (2008) is the natural extension of the LASSO selection operator

to covariance matrices. It is a serious candidate to perform the local linear selection, but

it does not operate on eigenvectors, it operates directly on the covariance matrix. Thus, it

does not take the dimension reduction into accounts. Also, even if there have been a very

great development of algorithms to solve the graphical LASSO efficiently, the computational

burden of many such estimations is large. Finally, the Penalized Matrix Decomposition

(PMD) Witten et al. (2009), which uses only L1-norm penalty on the eigenvectors, but also

requires the knowledge of r. All the mentioned methods uses norm penalties to achieve

sparsity, which have no analytical solutions and therefore are longer to compute.

Generally speaking, selection directly on all the eigenvectors is not viable because they are

normalized. This means that elements of Vr+1:p are on the same scale as V1:r, between 0 and

1. And that affects the selection. Remind that r is not known nor estimated. Nevertheless,

the eigenvalues L (in diagonal matrix form) do carry some information about r. They

measure the lengths of the principal directions of a plane. Locally the r-manifold is a r-

dimensional plane embedded into Rp. Eigenvalues are sorted in decreasing order, so there

should be a significant difference between Lr,r and Lr+1,r+1. So a way to account for the

uncertainty on r is to use the eigenvectors weighted by the square root of eigenvalues: VL1/2.

There have also been propositions in the literature to try to infer r. In which case, I could

use that estimate and keep only the corresponding columns of V. Still, the solution with

VL1/2 presented before is simpler and faster to compute. Then, to achieve sparsity I will

only use a simple threshold on each element of VL1/2. This is solution is possible, instead of

using L1 or L2 norms, because both orthogonality and shrinkage are already there from the

eigenvalue decomposition. Having normalized the eigenvectors is equivalent to a shrinkage,

in the same way as a ridge estimator. Also, the eigenvectors are orthogonal by construction.

In a classical regression problem, the non-orthogonality of the parameters is the reason why

12

the LASSO has no analytical solutions. Thus, I propose a new linear selection operator: the

EigenThresholding (ET).

Σ = VLV′

Vij = Vij1|VijL1/2
j,j |>θ

.
(28)

The parameter θ is a penalty that controls the amount of sparsity. To the best of my

knowledge, this selection estimator has not been proposed yet. Its properties as a linear

selection estimator are examined in the simulations, along with the other linear selection

operators.

2.2. Local Linear Manifold Selection

I perform non-parametric variable selection on manifolds using a linear selection operator

locally, i.e. on neighbourhoods of the data. Solving the selection at the global level is hard

because of the unknown possible non-linearities. However, simple linear selection operators

have been well studied and greatly improved over time. The major restriction they suffer

is the linearity assumption. To ensure linearity holds, I slice the global non-linear manifold

into lots of neighbourhoods. Inside a given neighbourhood, a simple linear selection operator

should work very well. Doing so produces a selection Ŝ for each neighbourhood. As I want

a single selection in the end, I just merge all the selections by averaging them. Therefore,

the original problem of performing selection on non-linear manifold is solved.

The standard approach, if I were to follow the literature, would be to use a regression op-

erator to obtain an estimate of the manifold, and then derive a selection Ŝ. But the crucial

point is that I perform selection without ever explicitly estimate the manifold. The full

procedure is described in Algorithm 1.

A neighbourhood around a given observation xi (a point on the manifold) contains k

neighbours, and is defined as:

Ni,k(xi) =
{

x ∈ X : ‖x− xi‖ ≤ ‖x− xi‖(k)

}
(29)

The hyper-parameter k needs to be tuned. In each of these neighbourhoods, I apply a

selection operator σ(X,Ω). In the previous section, I have motivated a choice for a specific

estimator. As it was discussed there is not a single estimator suitable for this task. So here

I present the general method, using any linear selection operator. Most of them solve a con-

strained optimisation problem, using a penalty function on the parameters to be estimated.

13

The constraint ensures sparsity in the parameters, which induces the selection. The penalty

function usually involves a penalty parameter θ, it controls the amount of sparsity.

I choose to decompose the correlation matrix for three reasons. First, it standardizes the

coefficients associated with each variable. There is no bias towards a candidate with a larger

scale. This would have been the case using a covariance matrix. Second, it makes no arbi-

trary assumption on the dependent variable. All candidates possibly affect each other. This

would not be true using the simple linear regression. Third, this implies that all candidates

are measured with proportional noise V ar [εj] = υV ar [Xj]. If I were to use a covariance

matrix, this would imply constant variance of the noise: V ar [εj] = υ. However, keep in

mind that this assumption holds only locally. It can vary across the sample, as we compute

it in different neighbourhoods.

The optimization problem in each neighbourhood Ni,k is:

RNi,k
= Cor (Ni,k)

argmin
R̃Ni,k

∥∥∥RNi,k
− R̃Ni,k

∥∥∥+ penalty
(
R̃Ni,k

, θ
)

(30)

Then I record the selected variables:

ŜNi,k,θ =
{
j|R̃Ni,k

(j, s) 6= 0, ∀s 6= j
}
.

The selections ŜNi,k,θ are turned into boolean vectors:

ΨNi,k,θ = 1j∈ŜNi,k,θ

There is a vector Ψ for each neighbourhood and for each value of θ.

Finally, I average the n boolean selections ΨNi,k,θ.

Pθ =
1

n

n∑
i=1

ΨNi,k,θ.

The vector Pθ measures for each candidate variable, the proportion of neighbourhoods in

which it was selected. It is simple to see that Pθ ∈ [0, 1]p. So I might see it as a ”pseudo-

probability”, for a given variable, to belonging to the manifold.

We can connect the matrix P to very usual objects known in the variable selection literature

14

as ”selection paths”. Usually, one represents the behaviour of the parameter of interest as

a function of the penalty parameters θ. Here the same is made but with P , in the same

spirit as the ”probability paths” of StabSel (Meinshausen and Bühlmann (2010)). The exact

definition of θ is narrowed to the selection estimator σ(X,Ω). For some estimator, there

have been procedure proposed to choose θ optimally. This issue is discussed in section 2.4.

The algorithm for the LLMS procedure is presented in Algorithm 1.

Fig. 3. Example of non-linear DGP and LLMS selection paths

Notes: The simulation is made with |S∗| = 5, p = 50 and a single dimensional non-linear

manifold. Green paths correspond to the variables that belong to the true set S∗, the irrelevant

ones are coloured in red. The green paths are close to 1 and the red ones to 0, so it is quite

obvious from the chart which variables should be selected.

15

Algorithm 1 Local Linear Manifold Selection (LLMS1)

input X, k, Θ, σ(X,Ω)

for i = 1 to n do

Search for the neighbourhood Ni,k(Xi)

for θ ∈ Θ do

Estimate the sparse correlation matrix R̃Ni,k
using σ(Ni,k,Ω)

Record active variables in ŜNi,k,θ =
{
j|R̃Ni,k

(j, s) 6= 0,∀s 6= j
}

.

Turn Ŝ into boolean vectors ΨNi,k,θ = 1j∈ŜNi,k,θ

end for

end for

Compute the final selection estimator Pθ = 1
n

∑n
i=1 ΨNi,k,θ.

output Pθ

2.3. Randomization of Distances for Large Candidate Set

There is an issue when constructing neighbourhoods as the candidate set increases. I

cannot measure distances onto the manifold directly because S∗ is unknown. I only observe

distances in the Rp space of the candidate variables. So, I can only compute noisy versions of

the true distances. It disturbs the ordering of the distances and therefore the neighbourhood

is not the same. The local linear assumption might not hold anymore, and as a consequence,

it may affect the selection.

A solution to obtain measures of distances closer to the desired ones is to use a modified

version of kNN known as Random-kNN (RkNN) (Ho, 1998). Here, I use random subsets

B ⊂ A ≡ {j ∈ N, j ≤ p} of the candidates variable set A for computing distances.

DkNN = ‖x− xi‖ ∀x ∈ XA.

N kNN
i,k =

{
x ∈ X : DkNN ≤ DkNN

(k)

}
DRkNN = ‖x− xi‖ ∀x ∈ XB.

NRkNN
i,k =

{
x ∈ X : DRkNN ≤ DRkNN

(k)

}
where the subscript (k) indicates the kth order statistics.

16

Proposition 1. If S∗ ∈ B and m ≡ |B| < |A| = p then RkNN yields closer neighbourhoods

on M than kNN.

max
(∥∥N kNN

S∗ − xi
∥∥) ≥ max

(∥∥NRkNN
S∗ − xi

∥∥)
Proof. Let X be a matrix of p random variables with n observations, so that xi = f ◦
g(xi) ∀i ∈ {1, ..., n},xi ∈ X. Now let’s divide the full set of candidates X into 3 non-

overlapping matrices X , Y and Z composed of respectively px, py and pz random vectors

such px + py + pz = p. Only X ∈ S∗, while (Y ,Z) /∈ S∗). Let x0 ∈ X be a given random

point on the manifold. Wlog, let x1 ∈ X and x2 ∈ X be respectively the first and second

closest point to x0:

px∑
(x1 − x0)2 <

px∑
(x2 − x0)2 <

px∑
(xi − x0)2 ∀i 6= {0, 1, 2}, (31)

where the power of vector is defined element-wise. W.l.o.g. we can write:

px∑
(x2 − x0)2 =

px∑
(x1 − x0)2 + εx

with εx > 0.

Random-kNN consists in computing distances from random subset taken from X, e.g. only

X . Now let’s define y ∈ Y and z ∈ Z, given points which are not on the manifold. Now

lets take two sets of indices A and B such that indices of X that correspond to (X ,Y) are

in B and A contains all X, so B ⊂ A. Now let’s compare the distances w.r.t to (x0,y0, z0).

The condition so the ordering of distances in equation 31 is preserved is

px∑
(x1 − x0)2 +

py∑
(y1 − y0)2 <

px∑
(x2 − x0)2 +

py∑
(y2 − y0)2 +

pz∑
(z2 − z0)2

Which can be rewritten as[
px∑

(x1 − x0)2 −
px∑

(x2 − x0)2

]
<

[
py∑

(y2 − y0)2 −
py∑

(y1 − y0)2

]
+

pz∑
(z2− z0)2. (32)

The first quantity tends to zero as the manifold is more and more sampled (n→∞).

lim
n→∞

[
px∑

(x1 − x0)2 −
px∑

(x2 − x0)2

]
≡ εx → 0.

The distances between two points from Y depends on its distribution. If we assume each

17

vector of Y to be i.i.d. and having finite first and second moments, then their distances are

also i.i.d. with finite first and second moment. We can then write

E

[
py∑

(y2 − y0)2

]
= E

[
py∑

(y1 − y0)2

]
= µy

Then, it follows that

lim
py→∞

[
py∑

(y2 − y0)2 −
py∑

(y1 − y0)2

]
≡ εy → 0.

Finally, since the sum of distances among Z only grows with the number of elements it

contains

lim
pz→∞

pz∑
(z2 − z0)2 ≡ εz →∞.

So we can rewrite equation 32

εx − εy < εz.

The probability that this condition is true tends to one as the number of irrelevant

variables grows

lim
py→∞
pz→∞

P (εz > εx − εy) = 1.

But how can I ensure that S∗ ∈ B and m ≡ |B| < |A| = p ? This is an ill-posed problem

as it would require the knowledge of S∗.
One solution is to start by sampling the subset B from {j ∈ N, j ≤ p}, using a uniform

distribution π. It makes no a priori on which variables are more likely to belong to the

manifold. Then, I can update that sampling probability π, using selection probabilities from

previous steps. As the process goes on, the subset will be drawn from most probably active

variables. The ordering of the data may have an impact here, if the selection is biased

in the first neighbourhoods. Still, the sampling probability might correct itself after some

iterations. One solution to reduce the dependence on initialisation is to proceed by blocks;

instead of updating π after each observation i, π could be updated for instance every 10

observations. Finally, we have to ensure that π sums to one, so in each step, it is divided

by its sum. This is also useful, as it will never set any of its value to zero exactly. This

means that any candidate variable still has a chance to be selected in the subset. Therefore,

I propose a second version of the LLMS algorithm.

18

Algorithm 2 Local Linear Manifold Selection with random subsets (LLMS2)

input X, k, Θ, σ(X,Ω)

Start with equal subset probability π = 1
p

for i = 1 to n do

Choose a subset of {1, ..., p} from probability the probability vector π

Search for the neighbourhood Ni,k(Xi), computing distances w.r.t to the subset.

for θ ∈ Θ do

Estimate the sparse correlation matrix R̃Ni,k
using σ(Ni,k,Ω)

Record active variables in ŜNi,k,θ =
{
j|R̃Ni,k

(j, s) 6= 0,∀s 6= j
}

.

Turn Ŝ into boolean vectors ΨNi,k,θ = 1j∈ŜNi,k,θ

end for

Update the subset probability vector π = π + 1
i

∑i
i′=1 Ψ

end for

Compute the final selection estimator Pθ = 1
n

∑n
i=1 ΨNi,k,θ.

output Pθ

2.4. Optimal Choice for Hyper-parameters

2.4.1. Choice of penalty parameter

The inclusion probability P depends strongly on the amount of penalty applied θ. Ideally,

we would like to find the optimal amount of penalty θ that minimises the difference between

S∗ and Ŝ.

From a simple look at figure 4, this difference is minimized when the discrepancy among the

probabilities of inclusion is at its maximum.

This result suggests the following optimal rule:

θ∗ = argmax
θ

(V ar [Pθ]) (33)

Figure 4 illustrates the selection paths P as well as the optimal rule for the penalty

parameter.

19

Fig. 4. Choice for optimal penalty

Notes: The simulation is made with |S∗| = 5 and p = 50.

The optimal choice for the penalty parameter θ∗ is to maximize the variance of the prob-

abilities of inclusion. It is displayed as a vertical dashed line, through the two plots. At

θ∗ the probability of inclusion P for the truly active variables (∈ S∗) are almost one, and

almost zero for truly inactive variables (/∈ S∗).

Also, when θ → 0 there is no penalty, and thus all the p candidate variables are selected:

Pθ→0 = 1. When θ → ∞ there is infinite penalty, and thus no candidate variables are

selected: Pθ→∞ = 0. This implies: V ar [Pθ=0] = V ar [Pθ=∞] = 0. However for intermediate

amount of penalty 0 < θ < ∞ we have V ar [Pθ=∞] ≥ 0. As P is decreasing in θ there is a

unique maximum.

2.4.2. Reducing the sensitivity to the neighbourhood’s size parameter via

the q-kNN Algorithm

It is known that kNN is sensitive to the hyper-parameter k (Sun and Huang, 2010).

Intuitively, the optimal value of k would be the one that produces the largest neighbourhoods,

such that the linear assumption holds. It follows that this optimal value is dependent on the

shape of the manifold, which is unknown. But even in the case I could measure distances

on the Rm space, these are still not the same as the ones on M. Indeed, take for example

20

the very usual Euclidean distance. If the manifold is very non-linear, increasing euclidean

distances will produce neighbourhoods in which points are very apart on the manifold (see

Figure 5(b)). However, small euclidean distances approximate well the distances on the

manifold. I can use this property to construct better neighbourhoods. This does not solve

the problem of the optimal value of k but still reduces the sensitivity of the algorithm in

case the manifold is very non-linear.

So I propose a refined version of kNN, in which neighbourhoods are constructed sequentially

from small distances only. The basic idea is to take the q < k nearest points to xi and then

expanding along with the next q nearest points to the ones previously selected, etc... until

the neighbourhood’s size is k. This better ensures the local linearity assumption and tends

to reduce the sensitivity to k. Therefore I call the new version q-kNN.

Ni,q(xi) =
{

x ∈ X : ‖x− xi‖ ≤ ‖x− xi‖(q)

}
Ni,>q(xi) =

{
x ∈ X : ‖x−Ni,q(xi)‖ ≤ ‖x−Ni,q(xi)‖(q)

}
Ni,k(xi) =

{
x ∈ X : ‖x−Ni,>q(xi)‖ ≤ ‖x−Ni,>q(xi)‖(q)

} (34)

The first neighbourhood contains q points. Then I compute the q-nearest points of these

q points, so the second neighbourhoods as q2 points. However doubles are removed, so I end

up with a second neighbourhood having between q + 1 and q2 points. So in the nth step the

nth neighbourhood of size at least q+n and at most qn. With a not too small value of q this

sequence quickly converges to a neighbourhood with k points.

21

Fig. 5. Illustration of the revisited q-kNN algorithm.

(a) kNN (b) q-kNN

Notes: The aim of both algorithms is to find neighbourhood (red dots) around a given data

point (green dot): kNN (left) is using simple euclidean distances while the revisited q-kNN

(right) is using compounded euclidean distances. The neighbourhoods both contain k points

in the end.

The q-kNN comes at the cost of computations. For each neighbourhood, distances w.r.t

to all the points have to be evaluated, several times. This can be shortened by computing

all pairwise distances once. Then the remaining computations are only orderings, which are

usually quite fast. However, if q-kNN is used at the same with time RkNN, it is worse. The

pairwise distances have to be evaluated at each step, thus it is very slow.

2.5. Selection Properties

In this part, I study some properties of the selection estimator σLLMS(X, f ◦g). The usual

selection consistency property is known in the literature as the ”Oracle Property” (Fan and

Li., 2001). The weak version of the Oracle Property is stated as follow:

lim
n→∞

P (Ŝ = S∗) = 1. (35)

The strong version requires also the convergence of the estimated model, as established by

Fan and Li. (2001). In that case, that would mean convergence of f̂ ◦ ĝ. But these are never

explicitly estimated. Also, since I am primarily interested in the selected set, I will only

focus on the Weak Oracle Property. Nevertheless, the Oracle Property in this form is not

easy to work with. So first, I define the boolean version of the set of active variables S∗

22

denoted Ψ∗. It is a vector of with p elements.

S∗ := {j : ∃j′ 6= j,
∂Xj′

∂Xj

6= 0} ∈ N

Ψ∗ = 1j∈S∗ ∈ {0, 1}p.
(36)

Their empirical local counterparts are defined as:

ŜNi
:= {j : ∃j′ 6= j,

∂Xj′

∂Xj

6= 0,X ∈ Ni} ∈ N

Ψ̂Ni
= 1j∈ŜNi

∈ {0, 1}p.
(37)

The Local Linear Manifold Selection operator, denoted P , is simply the average of the local

selection operators after the boolean transformation:

P =
1

n

n∑
i=1

Ψ̂Ni
∈ [0, 1]p.

Now, the Weak Oracle Property can be restated, so it is easier to work with the LLMS

estimator.
lim
n→∞

P (Ŝ = S∗) = 1

⇔ lim
n→∞

P (
∥∥∥Ψ̂−Ψ∗

∥∥∥2

2
= 0) = 1

⇔ lim
n→∞

P (
∥∥∥Ψ̂−Ψ∗

∥∥∥2

2
≤ ν) = 1 ∀ν ≥ 0.

(38)

I will refer to 38 as the Continuous Weak Oracle Property. Then, the LLMS estimator is

consistent in selection if:

lim
n→∞

P (‖P −Ψ∗‖2
2 ≤ ν) = 1 ∀ν ≥ 0. (39)

However, since P is the average of a linear selection operator ΨNi
, its selection properties have

to be inherited from the selection properties of ΨNi
. The properties of the latter may vary

substantially from one estimator to the other. So, I cannot directly deduce the properties of

P in a general way. Nevertheless, the continuous weak oracle is illustrated using simulations

in section 4.3. The results seem to indicate that the property holds.

Still, there is one thing of interest, which is to show the behaviour of P w.r.t to any given

local estimator. Therefore, I make three propositions to show that P is never worse, in

terms of selection consistency, than its local linear estimator ΨNi
. Following these results,

23

by choosing a consistent local selection estimator ensures the selection consistency of the

LLMS estimator.

Proposition 2. The LLMS estimator P is closer to the true set Ψ∗ than the underlying

local linear selection estimator ΨNi
.

P (‖P −Ψ∗‖2
2 ≤ ν) ≥ P

(
1

n

n∑
i=1

∥∥∥Ψ̂Ni
−Ψ∗

∥∥∥2

2
≤ ν

)
(40)

Proposition 3. When the level of type I and type II error α tends to zero, the underlying

local linear selection estimator ΨNi
is closer to the true set Ψ∗ than the LLMS estimator P.

When α = 0, both are perfectly consistent.

lim
α→0

P

(∥∥∥Ψ̂Ni
−Ψ∗

∥∥∥2

2
≤ ‖P −Ψ∗‖2

2

)
→ 1 (41)

Proposition 4. When the number of variables increases, the LLMS estimator P is closer

to the true set Ψ∗ than the underlying local linear estimator ΨNi
.

lim
p→∞

P

(∥∥∥Ψ̂Ni
−Ψ∗

∥∥∥2

2
≤ ‖P −Ψ∗‖2

2

)
→ 0 (42)

Proof of Proposition 2 is pretty simple, following the triangle inequality. First, I expand

each of the norms.

‖P −Ψ∗‖2
2 =

∥∥∥∥∥ 1

n

n∑
i=1

Ψ̂Ni
−Ψ∗

∥∥∥∥∥
2

2∥∥∥∥∥ 1

n

n∑
i=1

Ψ̂Ni
−Ψ∗

∥∥∥∥∥
2

2

=

(
1

n

n∑
i=1

Ψ̂Ni
−Ψ∗

)2

=

(
1

n

n∑
i=1

Ψ̂Ni

)2

+ (Ψ∗)2 − 2

(
1

n

n∑
i=1

Ψ̂Ni

)
Ψ∗

1

n

n∑
i=1

∥∥∥Ψ̂Ni
−Ψ∗

∥∥∥2

2
=

1

n

n∑
i=1

(
Ψ̂Ni
−Ψ∗

)2

=

(
1

n

n∑
i=1

Ψ̂2
Ni

)
+ n(Ψ∗)2 − 1

n

n∑
i=1

2Ψ̂Ni
Ψ∗

(43)

Then, I compare each terms of the expansions. The first terms are easy to compare by

24

Jensen inequality (
1

n

n∑
i=1

Ψ̂2
Ni

)
≥

(
1

n

n∑
i=1

Ψ̂Ni

)2

.

The term in the middle is bigger if the sample size is greater than one.

n(Ψ∗)2 > (Ψ∗)2 ∀n > 1.

And the last terms in 43 are equal, so that concludes the proof.

Proposition 3 shows the behaviour of the LLMS estimator w.r.t the ”consistency” of the

underlying linear selection operator. That consistency is represented by a parameter α ∈
[0, 1], which can be understood as a Type I/II error. To do so, I need to assume that each

element of the boolean linear selection operator Ψ̂Ni
is a Bernoulli random variable.

π ≡ (π1, ..., πp) ∈ [0, 1]p,

πj =

1− α if j ∈ S∗

α if j /∈ S∗

Ψ̂Ni
∼ Bern(π).

(44)

Since the vector Ψ∗ is only composed of ones and zeros, then it follows that the difference

(Ψ̂Ni
−Ψ∗) is also a vector of Bernoulli r.v. having all the same parameter equal to α.

(Ψ̂Ni
−Ψ∗) ∼ Bern(α). (45)

Also, because the linear selection vector is a boolean vector, taking its square does not change

anything, it remains a boolean vector. Therefore its distribution is unchanged.

Ψ̂Ni
∈ {0, 1}p ⇒ (Ψ̂Ni

−Ψ∗)2 ∼ Bern(α). (46)

The first norm
∥∥∥Ψ̂Ni

−Ψ∗
∥∥∥2

2
we are interested in, is the sum of the squared difference vector

above. Because each element of the difference vector is a Bernoulli r.v., its sum, denoted y,

is therefore a Binomial r.v. with parameter p, which is the length of the sum.

y ≡ 1

p

p∑
j=1

(Ψ̂Ni
−Ψ∗)2 ∼ Binom(p, α).

Now, moving on to the second norm ‖P −Ψ∗‖2
2. By definition, the expected value of the

25

local linear selection is the vector of parameters π in equation 44. It happens to be exactly

the definition of the LLMS estimator.

E[Ψ̂Ni
] = π

lim
n→∞

P → π

We can exploit this result to obtain the norm in terms of α and p only:

lim
n→∞

‖P −Ψ∗‖2
2 = ‖π −Ψ∗‖2

2

= ‖α‖2
2

=

p∑
j=1

α2

= α2p.

Knowing this, I can write the probability of the first norm, represented by the r.v. y, being

greater than the second norm which is equal to α2p. That probability is easy to obtain as y

is binomial.

P
(
y ≤ α2p

)
=

bα2pc∑
l=0

(
p

l

)
αl(1− α)p−l

This probability tends to one as α decreases, and that concludes the proof. However it is

worth noticing that when α = 0 then both norms are equal to zero.

Proof of Proposition 4, follows directly from the previous proof. Simply by taking the limit

of the same probability as the number of candidate variables p increases.

lim
p→∞

P
(
Y ≤ α2p

)
→ 0.

That limits tends to zero, which means that the local linear selection is always worse than

LLMS when the number of variable is very large. The LLMS smooths by averaging, and so

remains closer to the true set of selected variables.

26

3. Global Approach via Diagonal Auto-Encoders

Compared to the first section, here I use a completely different approach. Instead of a

local estimator, Neural Networks provide a global estimator of the manifold.

There have been plenty of papers on neural networks that implemented variable selection.

Many empirical works only uses some heuristics, while the theoretical part is significantly

smaller. This literature is mainly driven by computer scientist, so here I also want to highlight

the connection with more traditional statistics. Frequently, in regression models for instance,

variable/feature is performed through constrained optimization. Parameters associated with

a given variable are penalized such that some of them are exactly zeros, thus performing

variable selection. These are known as ”penalty methods”, see Fan and Lv. (2010); Huang

et al. (2012); Mehmood et al. (2012); Jović et al. (2015); Desboulets (2018) for complete

reviews. Parameter penalization is quite easy to solve in the linear models. Whereas there

is often no analytical formulas, simple algorithms can be implemented to get a solution. In

non-linear models, the usual practice is to rewrite the problem using basis transformations

(Wang and Xia, 2009; Ni et al., 2009) to reduce it back to a linear problem, solved with

almost the same aforementioned algorithms. A Neural network can indeed be subject to

these kinds of constraint since a network is a combination of multiple basis transformations.

These bases are formed with non-linearities, often a sigmoid/tanh function, and parameters

matrices. But only imposing sparsity on these matrices does not ensure variable selection,

because a given variable is connected to multiple bases. So a sparse neural network is not

necessarily a selection operator. One has to impose a sparsity condition on every connection

of a variable to the network. Again, there exist different ways to implement this solution.

But before going into the final manifold selection operator, I will introduce a simple concept

for sparse neural network, that ensures variable selection in the end.

3.1. Restricted Diagonal Layer for Variable Selection

First, I introduce the mechanism I use for variable selection in the neural network frame-

work. To do so, I consider the basic non-parametric model, that distinguishes between inputs

and outputs. The objective is still to find the sets of ”true” variables, but now there are two

such sets: S∗x and S∗y .

27

y = m(x)

(X1, X2, ..., Xpx) ≡ X ∈ Rn×px

(Y1, Y2, ..., Ypy) ≡ Y ∈ Rn×py

m : Rpx → Rpy

S∗x := {j : ∃j′, ∂Yj
′

∂Xj

6= 0}

S∗y := {j : ∃j′, ∂Yj
∂Xj′

6= 0}

|S∗x| ≤ px

|S∗y | ≤ py

(47)

The objective is to build a sparse estimator that only include the true sets of variables.

And the mapping m is approximated by a neural network. For the choice of the structure

of the neural network, I will stick to the proof of Hornik et al. (1990) and use a 3-layer

architecture (as illustrated in Figure 6). To summarise, it is the minimal architecture required

to approximate any non-linear function. From the viewpoint of these authors, there is no

need to make the network deeper, i.e. having more layers.

Fig. 6. Basic architecture for a Neural Network

X1

X2

X3

Z
(1)
1

Z
(1)
2

Z
(1)
3

Z
(1)
4

Z
(1)
5

Y1

Y2

W1
W2

For the sake of simplicity, I omit biases in the representation even though they are

included at every layer, but said otherwise. Nevertheless, the simple 3-layer network does

not provide a sparse solution. So how do we implement variable selection in neural networks?

In the Machine Learning literature, selection often consists in quantifying the predictive

importance of a given variable/feature (Breiman (2001)). This can be very computationally

consuming. To make the network select variables, I use a different approach based on

Neuneier and Zimmermann (1998) and Vecoven (2017). The main idea is to introduce

28

diagonal matrices that directly connect inputs and outputs to the network, controlling their

entry in the model. W.r.t these papers, there are two contributions: (1) selection is performed

also on the outputs, not only the inputs, (2) the domain of the diagonal selection parameters

is constrained to be between 0 and 1. Figure 7, depicts the addition of the two selection

layers at both ends of the network. On top of this, I do not need to enlarge the loss function

to impose restrictions on parameters, contrary to Ye and Sun (2018) for instance. Only

the structure of the network is modified. Restricting the selection parameters to the [0, 1]

domain has advantages in terms of interpretation: they can be seen as ”pseudo-probabilities”.

If a variable seems to be useful to the network then its associated parameter in the input

selection layer tends to 1, otherwise, it tends to 0. That directly links to the LLMS estimator

presented in the previous part of the paper. Both give a continuous selection vector, whose

elements are between 0 and 1.

Fig. 7. Modified architecture for selection in Neural Network

X1

X2

X3

X̃1

X̃2

X̃3

Z
(1)
1

Z
(1)
2

Z
(1)
3

Z
(1)
4

Z
(1)
5

Ỹ1

Ỹ2

Y1

Y2

Ws1

W1
W2

Ws2

I restrict the domain of Ws1 and Ws2 using the non-linear sigmoid function.

sigmoid : R→ [0, 1]

γ 7→ 1

1 + e−γ
.

Ws1 = diag [sigmoid(γ1)] ,

Ws2 = diag [sigmoid(γ2)] .

For the rest of the network, I use the hyperbolic tangent as the activation function,

mainly for the reason that it is symmetric. The output layer is linear so that the network

can map any real inputs to any real outputs, without further restrictions. For optimization

stability one may still normalize the variables w.r.t their means and standard deviations.

No activation function is applied to the selection layers. The full set of equations, in matrix

29

form, for the modified network structure is:

Ws1 = diag [sigmoid(γ1)]

X̃ = XWs1

Z(0) ≡ X̃

Z(l) = tanh(Z(l−1)Wl), ∀l ∈ 1, · · · , nh − 1

Ŷ = Z(nh−1)Wnh

Ỹ = ŶWs2

Ws2 = diag [sigmoid(γ2)]

E = Y − Ỹ

Where nh represents the depth of the network, the number of successive hidden layers. It is

a hyper-parameter, that is chosen arbitrarily. Its value is in fact very linked to the neigh-

bourhood size k in LLMS. Both control the degree of non-linearity, and ultimately depends

on the shape of the DGP.

The optimization program is:

min
W1,...,Wnh

,γ1,γ2

Trace(E′E).

The estimated selections are represented by selection weights Ws1 and Ws2 obtained at the

end of the optimization:

Ŝx → diag(Ws1),

Ŝy → diag(Ws2).

To illustrate the validity of the concept, I run a simulation according to model 47. The

selection paths are reported in Figure 8. Green paths correspond to the variables that belong

to the true sets S∗x and S∗y , the irrelevant ones are coloured in red. The green paths converge

to 1 and the red ones to 0, so it is quite obvious from the chart which variables should be

selected. Therefore, the selection seems consistent is this simulation. Nonetheless, I observe

the paths for inputs and the paths for outputs do not converge in the same way. On the

one hand, the inputs’ parameters spread from epoch 1 to epoch 2000, and then are attracted

to the boundaries. On the other hand, the outputs’ parameters all go down first, and then

diverge around epoch 2000.

30

Fig. 8. Selection paths for inputs and outputs selection

(a) Inputs Layer

(b) Output Layer

31

3.2. Diagonal Auto-encoders Manifold Selection

In this section, I extend the model from equation 47 to take into accounts non-linear

manifolds. It is a generalisation, and it encompasses the previous section as a special case.

Inputs X and outputs Y are embedded into a the larger ”new inputs” X of size p = px + py.

So the network has the same data at both ends. The model is therefore the same as for

LLMS:

M :={x ∈ Rp|x = f ◦ g(x)}

g : Rp → Rr, f : Rr → Rp, p > r

(X1, X2, ..., Xp) ≡ X ∈ Rn×p

S∗ := {j : ∃j′ 6= j,
∂Xj′

∂Xj

6= 0}

|S∗| ≤ p

(48)

The projection function g maps the input onto a low-dimensional space, that is mapped

back to the original space by the immersion function f . The problem turns into the esti-

mation of two separate non-linear functions. Each function can be approximated using the

3-layers neural network. So to estimate both functions, the network is enlarged by combining

two 3-layers architectures. At the center, they are connected by a ”contraction” layer. This

layer reduces the dimension of the input to the dimension of the manifold, as depicted in

Figure 9. Its dimension has to be lower than the one of the input, otherwise, the network

may learn the identity function. This architecture is not new. It is known as the 5-layers

Auto-Encoder, proposed by Kramer (1991).

As I did before, I add the selection layers to this Auto-Encoder, thus obtaining a 7-layers

architecture. Since the input flow through a deeper network, I will refer to this selection es-

timator as DAMS, for Diagonal Auto-Encoder Manifold Selection. Also, because the inputs

and outputs are now the same, I can enforce the two selection parameters to be the same.

Thanks to the chain rule, the derivative of this shared weight is fairly easy to compute. I

only have to sum the two derivatives.

32

Fig. 9. Modified architecture for Diagonal Auto-Encoder Manifold Selection

X1

X2

X3

X̃1

X̃2

X̃3

Z
(1)
1

Z
(1)
2

Z
(1)
3

Z
(1)
4

Z
(1)
5

Z
(2)
1

Z
(3)
1

Z
(3)
2

Z
(3)
3

Z
(3)
4

Z
(3)
5

X̃1

X̃2

X̃3

X1

X2

X3

Ws

W1
W2 W3

W4

Ws

The full set of equations, in matrix form, for the DAMS structure is almost the same.

Ws = diag [sigmoid(γ)]

X̃ = XWs

Z(0) ≡ X̃

Z(l) = tanh(Z(l−1)Wl), ∀l ∈ 1, · · · , nh − 1

X̂ = Z(nh−1)Wnh

X̃ = X̂Ws

E = X− X̃

The optimization program is:

min
W1,...,Wnh

,γ
Trace(E′E).

And the estimated set is simply:

Ŝ → diag(Ws)

The DAMS estimator diag(Ws) is an analogue to the LLMS estimator P . Their main

difference lies in the differentiability and continuity assumptions of the manifold. DAMS

requires both f and g to be continuous everywhere, while LLMS requires continuity only

locally, inside the neighbourhoods. Also, for LLMS, the two functions have to be differen-

tiable, at least locally. Differentiability is not needed for DAMS. If the true manifold is not

continuous everywhere, DAMS might be inconsistent. The selection parameters depend on

the derivatives of the total error. They are not linked to the derivatives of f or g, contrary

to LLMS.

Another thing is that the LLMS estimator is dependent on a penalization parameter θ.

That is not the case for DAMS, which incorporates that mechanism inside the optimisation

33

process. The nice thing is that I can still provide the so-called ”selection paths” for DAMS

exactly as for LLMS. It suffices to plot the evolution of the parameters diag(Ws) throughout

the optimisation process. Obviously, the optimal value for Ws is chosen to be the last of the

optimisation process.

3.3. Estimation of the Parameters of the Network

3.3.1. Stochastic First-Order Optimization

The architecture proposed only enlarge the network by 2 linear layers. I do not modify

the loss function. Thanks to the chain rule, it makes the computations of the derivatives for

each weight as simple as any other layers. Standard backpropagation algorithm can be used

without further modifications. Thus, I simply use the gradient descent algorithm, computed

on a random batch of the data. This method is known as stochastic gradient descent. It has

two main advantages: (1) it avoids local minimas more easily and (2) it reduces the duration

of the computations. The size of the batches is a hyper-parameter, usually set to a fraction

of the total number of observations.

3.3.2. Smoothing selection paths with Ensemble Averaging

There are two reasons why the paths of the parameters might be unstable. First, optimi-

sation of both selection weights and the rest of the network parameters simultaneously. This

means that the network has to learn the manifold at the same time it does the selection.

A better idea would be to start learning the manifold with all the variables, even though

it means a less precise estimator. After that, start the selection. The estimator will then

be more precise. So W1, ...,Wnh
are being optimised few epochs before Ws. Second, the

parameters estimated for a given network depend on weights initialization. A single set of

selection paths Ws might not be stable, nor lead to consistent selection. This phenomenon

is depicted in Figure 10. The green paths correspond to the variables that are in S∗, while

the red correspond to the noisy variables. Indeed, the paths are sometimes chaotic. The

solution is to average the paths across many random initialisations. This method is known as

”Ensemble Averaging”. The network is replicated a certain number of times, to form what

is called an ”Ensemble”. The paths for every replication of the network are then averaged.

That produces more stable, but also more consistent selection paths, as it is shown in Figure

11

34

Fig. 10. Examples of DAMS selection paths with a single network

(a) Selection paths for Network n◦ 1 (b) Selection paths for Network n◦ 2

(c) Selection paths for Network n◦ 3 (d) Selection paths for Network n◦ 4

Fig. 11. Smooth selection paths for an ensemble average of 10 networks

35

4. Simulations

4.1. Design

To simulate a manifold, I choose to first simulate r-dimensional coordinates, then project

them linearly into d = |S∗| dimensions, and finally fold them with non-linear functions. This

allows to control r and the non-linearities of the manifold. The amount of non-linearity is

controlled by linear coefficients A. For each simulated process, A is randomly chosen, so

that the shape of the manifold changes as well. Very small changes in A might induces

very different manifolds in the end. I simulate Xj = fj′(ZjAj) with Zj ∼ U [−2, 2], j′ 6= j ,

A ∼ U [−2, 2]. The non-linear transformations are chosen among the following ones:

• f1(x) = x,

• f2(x) = x2,

• f3(x) = sin
(
x
2

)
,

• f4(x) = cos
(
x
2

)
,

• f5(x) = tanh (2x),

• f6(x) = exp
(

(x−10)2

20

)
,

• f7(x) = (x+ 1)1x>x̄ − (x− 3)1x≤x̄.

I also set the following parameters:

• n = 5000,

• p = 50,

• d = 7,

• υ = {0.01, 0.25}

There are two hyper-parameters left. The size of the neighbourhood k for LLMS,

and the size of the hidden layers for DAMS. Both control the degree of non-linearities.

I choose to perform both algorithms with 3 different values of these parameters. For LLMS,

k = {5%, 20%, 50%} of the sample size n. And for DAMS, the hidden layer sizes are

{(7, 1, 7), (7, 3, 7), (7, 5, 7)}. The simulation is run 1000 times and results are averaged. The

36

computations are performed on an Intel(R) Core(TM) i5-3220M CPU 2 × 2.60GHz with

12GB RAM. The estimated selections are compared with existing methods, both parametric

and non-parametric. I only compare to selection methods which do not make difference

between explanatory variables and outcome variables. These are methods which act on co-

variance/correlation matrices, for instance, the LASSO is not valid for comparison in these

simulations but the Graphical LASSO is.

• Eigen Thresholding (ET)

Σ = VLV′

p (Σ, θ) = Vij1|VijL1/2
j |>θ

• Sparse PCA (sPCA) Zou et al. (2006)

Σ = (XVV′)′(XVV′)

p (Σ, θ) = θ1 ‖V‖1 + θ2 ‖V‖2
2

• Graphical LASSO (gLASSO) Friedman et al. (2008)

Σ = Cov(X)

p (Σ, θ) = log(det(Σ−1))− tr(Σ−1)− θ
∥∥Σ−1

∥∥
1

• Penalized Matrix Decomposition (PMD) Witten et al. (2009)

Σ = (dUV′)′(dUV′)

p (Σ, θ) = θ1 ‖U‖1 + θ2 ‖V‖1

• NonParanormal (NPN) Lafferty et al. (2012)

fX = (f1(X1), ..., fp(Xp))

fj = E(Xj) + V ar(Xj)Φ
−1
(
F̂j(Xj)

)
∀j ∈ {1, ..., p}

Σ = Cov(fX)

p (Σ, θ) = log(det(Σ−1))− tr(Σ−1)− θ
∥∥Σ−1

∥∥
1

where Φ−1 is the Inverse Normal CDF and F̂ is the empirical CDF.

37

Fig. 12. Simulated DGP with low noise (υ = 0.01)

(a) Linear r = 1 (b) Linear r = 2 (c) Linear r = 3

(d) Non-linear r = 1 (e) Non-linear r = 2 (f) Non-linear r = 3

Fig. 13. Simulated DGP with high noise (υ = 0.25)

(a) Linear r = 1 (b) Linear r = 2 (c) Linear r = 3

(d) Non-linear r = 1 (e) Non-linear r = 2 (f) Non-linear r = 3

38

4.2. Results

In this section, I report the results of the simulations. First, I report average selection

paths for DAMS and LLMS in Figure 15 and 14. In both cases, the parameters converge

to the true set of variables S∗. The green paths correspond to the variables that are in S∗,
while the red correspond to the noisy variables. The paths are smooth, and clearly show

which variable should be selected.

Fig. 14. Selection paths - LLMS

Fig. 15. Selection paths - DAMS

Then, I compare different versions of LLMS and several other algorithms in terms of True

Positive Rate (TPR) and False Positive Rate (FPR). The TPR measures the proportion of

39

selected variables that are truly in the set S∗. The FPR is the opposite, i.e. the proportion

of selected variables which are not in S.

TPR =
|Ŝ ∩ S∗|
|S∗|

FPR =
|Ŝ − S∗|
p− |S∗|

Table 1: Selection rates - Simulation with low noise (υ = 0.01)

Linear Non-Linear

r = {1, 2, 3} r = 1 r = 2 r = 3

TPR FPR TPR FPR TPR FPR TPR FPR Runtime (sec.)

LLMS1k=5% 100. - 99.9 - 88.9 - 85.7 - 61.200
LLMS1k=20% 100. - 98.9 - 83.5 - 71.4 - 97.300
LLMS1k=50% 100. - 96.4 - 59.4 - 51.9 - 291.800

LLMS2k=5% 100. - 100. - 100. - 100. - 50.800
LLMS2k=20% 100. - 100. - 98.6 - 98.7 - 60.800
LLMS2k=50% 100. - 96.5 - 70.6 - 71.1 - 73.400

LLMS3k=5% 100. - 100. - 90.6 - 86.3 - 179.300
LLMS3k=20% 100. - 100. - 85.2 - 73.4 - 306.500
LLMS3k=50% 100. - 96.8 - 62.1 - 50.3 - 1775.300

DAMS(7,1,7) 100. - 100. - 100. - 85.7 - 342.700
DAMS(7,3,7) 100. - 100. - 100. - 100. - 0.1 354.800
DAMS(7,5,7) 100. - 100. - 100. - 4.6 100. - 9.8 391.200

ET 100. - 86.6 - 37.1 - 17.6 - 0.014
sPCA 100. - 23.2 - 30.3 - 25.8 - 0.625
gLASSO 100. - 89.3 - 46.7 - 18.7 - 0.036
PMD 100. - 1.9 89.6 - 7.2 87.5 - 25.6 70.8 - 40.1 2.279
NPN 100. - 90.3 - 5.7 70.9 - 28.9 71.4 - 76.6 1.058

All values equal to zero are left as blanks.

Results for low variance of noise are reported in Table 1. Each column corresponds to

a different DGP. There are six possibles DGP, three linear, three non-linear. Each has a

different reduced dimension of r. When that dimension is equal to 1, visual inspection is

enough to assess the correlation, as you can see in the graph d) from Figure 12. The corre-

lations become less obvious as r increases. Therefore, the value of r may have an impaction

on the selection properties. So in the end, there are four columns in the tables. The first

one aggregates the three linear models since the results I obtain do not vary at all with r.

Then, each line of the table corresponds to a different algorithm. The three first blocks are

for the three versions of LLMS. So there are 9 lines corresponding to LLMS, since there are

40

three values for k. The next block is for DAMS, there are also 3 lines. The last block is for

all other algorithms.

In the first column, you observe TPR (left) and FPR (right) for linear models. Without

any surprises, all algorithms have 100% performance. They all select the true set S∗ and

have also zero FPR.

Next, in the second column, there are results for the non-linear manifold of dimension r = 1.

Overall, LLMS performs very well. I observe that LLMS3 is very slightly superior to LLMS1.

This result shows that correcting distances with q− kNN improves selection. Another find-

ing is the choice of k does not seem to greatly affect the TPR. That finding is also observed

for DAMS, whatever the hidden layer sizes it always selects the true set. Surprisingly, the

other algorithms also have decent performances on the non-linear DGP. The linear selection

operators (ET, gLASSO and PMD) have a near 90% TPR. Only PMD has a non-zero FPR,

but it is quite low (7.2%). The only other non-linear operator which is NPN, has 90.3%

TPR and 5.7% FPR. I can conclude that in case of very low dimensional non-linear manifold

(r = 1), the linear operators have quite good selection properties.

Finally, in the last columns (r = 2 and r = 3) the performances change radically. The

sensitivity to k in LLMS is much greater, whereas DAMS is robust to different layer sizes.

This result highlights the difference between a local and a global approach. If k is at 50%,

all versions of LLMS fail to select the true set. Also, LLMS1 and LLMS3 have much poorer

performance than LLMS2, respectively 85.7% and 86.3% versus 100%. Among the proposed

methods, only DAMS with the largest hidden layer (7, 5, 7) has non-zero FPR. This is due to

the fact that, in these cases, the contraction layer has a dimension greater than r. Therefore,

there are too many dimensions than what is needed to approximate the manifold. These

extra dimensions are used by the network and learn the identity function for some noise

variables. Symmetrically, the smallest structure (7, 1, 7) has only 85.7% TPR. There are not

enough dimensions to approximate the manifold, and it biases the selection afterwards. So,

just as k, there is a trade-off for choosing a good value of the hidden layer sizes. Neverthe-

less, the performance is better than the other algorithms. The linear operators exhibit two

patterns. The first one is characterized by a low TPR (around 20%) and a zero FPR. The

second pattern is characterized by a relatively high FPR (around 70%) but with also a high

FPR (ranging from 40% to 80%). So in the first case, they fail to select all the relevant

variables, only some of them. In the second case, they simply select too many variables,

including, by chance, some of the relevant ones.

41

The runtimes show that both LLMS and DAMS are much longer to perform than any

competitors. Among the three versions of LLMS, LLMS3 is the longest. The best version in

terms of TPR, is LLMS2. It takes around a minute, which is reasonable. The computations

depend on the neighbourhood size k, so the runtime can be reduced by reducing k but

that may affect selection. DAMS takes, on average, 6 minutes. The computations heavily

depend on the batch size and the number of networks in the ensemble. Reducing these two

parameters can shorten the runtime but may affect selection.

Table 2: Selection rates - Simulation with high noise (υ = 0.25)

Linear Non-Linear

r = {1, 2, 3} r = 1 r = 2 r = 3

TPR FPR TPR FPR TPR FPR TPR FPR Runtime (sec.)

LLMS1k=5% 99.1 - 94.3 - 90.4 - 76.4 - 59.600
LLMS1k=20% 99.3 - 88. - 73.7 - 57.1 - 104.100
LLMS1k=50% 97.7 - 83.4 - 55.8 - 41.9 - 313.300

LLMS2k=5% 99.7 - 99.7 - 99.8 - 99.6 - 51.000
LLMS2k=20% 99.7 - 97.3 - 98.1 - 95.7 - 60.000
LLMS2k=50% 99.1 - 85.4 - 68.5 - 50.6 - 69.100

LLMS3k=5% 99.4 - 97.1 - 100. - 80.7 - 147.400
LLMS3k=20% 99.3 - 90.9 - 75.6 - 58.4 - 300.400
LLMS3k=50% 98.0 - 84.9 - 59.4 - 41.2 - 1825.300

DAMS(7,1,7) 95.7 - 94.4 - 92.3 - 74.7 - 334.700
DAMS(7,3,7) 100. - 100. - 100. - 97.1 - 355.300
DAMS(7,5,7) 100. - 100. - 100. - 100. - 371.200

ET 93.7 - 76.6 - 44.3 - 27.5 - 0.016
sPCA 97.6 - 40.6 - 32.3 - 27.1 - 0.635
gLASSO 97.4 - 80.3 - 45.1 - 24.6 - 0.030
PMD 96.7 - 5.8 86.9 - 18.6 85.9 - 28.5 82.9 - 35.5 2.170
NPN 99.9 - 0.1 82.6 - 71.4 - 35.7 72.9 - 73.2 1.093

All values equal to zero are left as blanks.

Results for high variance of noise are reported in Table 2. The structure of the table is

the same as the preceding. The only difference w.r.t to Table 1 is the level of the noise. This

noise may affect the selection, as it is more difficult to approximate the manifold.

In the first column, for the linear DGPs, I observe almost the same performance for all

algorithms, above 95%. DAMS is the only algorithm to have 100% TPR. In columns 2, 3

and 4, the overall performance is poorer than in the low noise case. The relative performance

42

between each algorithm and the others stays the same, compared to the previous table. Only

LLMS2 and DAMS are consistent estimators for all values of r. Still, LLMS2 is sensitive to

k. A value between 5% and 20% produces high TPR, ranging from 95.7% to 99.8%. For

DAMS, the (7, 5, 7) structure always produces perfect selection.

The results from these simulations are the following. LLMS2 and DAMS are good can-

didates as selection estimator for data on non-linear manifolds. The basic implementation

(LLMS1) is not consistent enough, and it is very sensitive to k. The last version LLMS3 is

indeed better than LLMS1, but not as much as LLMS2 is. A combination of LLMS2 and

LLMS3 (r-kNN + q-kNN) would certainly produce even better results. But it would need

even more computations. And when looking at runtimes of LLMS3, such a combination

would be computationally prohibitive.

A linear selection estimator fails to select the right set of variables when the true DGP is

non-linear.

4.3. Numerical Oracle Properties

The Oracle Property is the property for a selection operators to uncover the set of true

variables S∗. This property has already been discussed for LLMS in section 2.5. Because the

two proposed estimators take on continuous values, I have defined that property in terms of a

distance w.r.t to the true set, in boolean form, denoted Ψ∗. Therefore, the Weak Continuous

Oracle property for LLMS and DAMS is stated as:

lim
n→∞

P
(
‖Pθ∗ −Ψ∗‖2

2 ≤ ν
)
,

lim
n→∞

P
(
‖diag(Ws)−Ψ∗‖2

2 ≤ ν
)
.

with ν arbitrarily small. So in this section, I investigate on that property numerically for

the two algorithms. For increasing values of n, I simulate a non-linear DGP 1000 times, as

I did in the previous section. Then, I compute the frequency at which the observed norm is

lower than an arbitrarily small value ν. If the estimator is consistent, as the sample size in-

creases I should observe the norm decreasing as well. In the upper part of the figure, I report

the norm along with sample size. It takes on four values n = {500, 5′000, 50′000, 500′000}.
The solid black line represents the median of the different runs for a given sample size. The

lower part of the figure represents the frequency at which the norm is lower than a given

small value ν. These small values range from 0.01 to 0.0001. There is a coloured line for

43

each value of ν.

The results of the simulations for LLMS2 are presented in Figure 16. In the upper part,

the norm decreases with sample size. In the lower part, the observed frequency tends to 1

as n increases for any value of ν. This finding supports the hypothesis that LLMS is indeed

an Oracle estimator. I also note that the convergence is pretty fast. Most of the coloured

lines are already closed to 1 at sample size 5′000.

The results for DAMS are presented in Figure 17. In the upper part, the norm decreases

with sample size as well. However, for a small value of n, there are some outliers. The

DAMS operator is therefore not stable in selection, in small samples, in these simulations.

As n increases, the observed frequency tends also to 1 for any value of ν. Again, this

result supports the hypothesis that DAMS is indeed an Oracle estimator. Nevertheless, the

convergence is slower than LLMS.

44

Fig. 16. Continuous Oracle property - LLMS

45

Fig. 17. Continuous Oracle property - DAMS

46

5. Discussion

In summary, I have proposed two statistical procedures to perform non-parametric vari-

able selection. The first method is the Local Linear Manifold Selection, denoted LLMS. It

relies on multiple linear selection estimators. The sample is divided into subregions called

neighbourhoods, which have the property to be almost linear. In each of these subregions,

a linear selection operator is applied and the result of the selections are averaged. These

neighbourhoods are constructed using three different versions of the k-nearest neighbours

(kNN) algorithm. The vanilla version, a second one to handle very high dimensional inputs

(r-kNN), and a third one to handle very high non-linearities (q-kNN). The results of the

simulations indicate very good performance of LLMS, especially the second version. In the

second part, I propose a method called DAMS, for Diagonal Auto-encoder Manifold Selec-

tion. I first introduce the ”diagonal layer”, to perform input/output selection in the simple

non-parametric model. The diagonal layer network is an enlarged network, with two diag-

onal matrices of selection parameters, restricted on [0, 1]. This layer controls the entry and

the exit of the data in the network. Therefore, it acts as a selection operator. Then, I show

that Auto-encoder Networks can be used for variable selection on non-linear manifolds. I

use the trick known as ”Ensemble Averaging”, a common method in Machine Learning, to

obtain smooth selection paths.

The main findings of the paper are the investigation of their selection properties. For LLMS,

selection consistency is theoretically established. As long as the underlying linear selection

operator is consistent, LLMS is also consistent. Through simulations, I show that the two

methods, LLMS and DAMS, lead to consistent selection. LLMS and DAMS are both con-

sistent as the sample size increases.

Still, there is room for improvement, especially for hyper-parameter selection. For LLMS,

I propose an optimal rule for the penalty parameter θ, but not for the neighbourhoods’ size

k. For instance, the latter could be optimized w.r.t to the manifold reconstruction error.

For DAMS, the only hyper-parameters of interest are the layer size, especially the central

contraction layer. If it is larger than r, there can be over-identification of f and g. But it is

not obvious that selection parameter will be affected. If the contraction layer size is larger or

equal to |S∗|, the network can start to learn the identity function, and select more variables.

Unfortunately, both r and |S∗x| are unknown beforehand. These are issues for future research

to explore.

47

References

Breiman, L. (2001). Random forests. Machine Learning, 45:5–32.

Desboulets, L. (2018). A review on variable selection in regression analysis. Econometrics,

6(4):45.

Ding-Cheng, F., Feng, C., and Wen-Li, X. (2014). Detecting local manifold structure for

unsupervised feature selection. Acta Automatica Sinica, 40(10):2253–2261.

Doquet, G. and Sebag, M. (2020). Agnostic feature selection. In Machine Learning and

Knowledge Discovery in Databases: European Conference, ECML PKDD 2019, Würzburg,

Germany, September 16–20, 2019, Proceedings, Part I, pages 343–358. Springer.

Fan, J. and Li., R. (2001). Variable selection via nonconcave penalized likelihood and its

oracle properties. Journal of the American Statistical Association, 96:1348–60.

Fan, J. and Lv., J. (2010). A selective overview of variable selection in high dimensional

feature space. Statistica Sinica, 20:101.

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation

with the graphical lasso. Biostatistics, 9(3):432–441.

Gorban, A. and Zinovyev, A. (2011). Principal graphs and manifolds. pages 28–59.

Hastie, T. and Stuetzle, W. (1989). Principal curves. Journal of the American Statistical

Association, 84(406):502–516.

Ho, T. K. (1998). Nearest neighbors in random subspaces. In Joint IAPR International

Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and

Syntactic Pattern Recognition (SSPR), pages 640–648. Springer.

Hornik, K., Stinchcombe, M., and White, H. (1990). Universal approximation of an un-

known mapping and its derivatives using multilayer feedforward networks. Neural net-

works, 3(5):551–560.

Huang, J., Breheny, P., and Ma., S. (2012). A selective review of group selection in high-

dimensional models. Statistical Science, 27.

Jolliffe, I. T. (1982). A note on the use of principal components in regression. Journal of the

Royal Statistical Society: Series C (Applied Statistics), 31(3):300–303.

48

Jović, A., Brkić, K., and Bogunović, N. (2015). A review of feature selection methods

with applications. Paper presented at 38th International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia,

2015:25–29.

Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21(1-3):1–6.

Kramer, M. (1991). Nonlinear principal component analysis using autoassociative neural

networks. AIChE Journal, 37(2):233–243.

Lafferty, J., Liu, H., and Wasserman, L. (2012). Sparse nonparametric graphical models.

Statistical Science, 27(4):519–537.

Li, Y., Shi, X., Du, C., Liu, Y., and Wen, Y. (2016). Manifold regularized multi-view feature

selection for social image annotation. Neurocomputing, 204:135–141.

Mehmood, T., Liland, K. H., Snipen, L., and Sæbø, S. (2012). A review of variable selection

methods in partial least squares regression. Chemometrics and Intelligent Laboratory

Systems, 118:62–69.

Meinshausen, N. and Bühlmann, P. (2010). Stability selection. Journal of the Royal Statis-

tical Society: Series B, 72:417–73.

Mika, S., Schölkopf, B., Smola, A., Müller, K.-R., Scholz, M., and Rätsch, G. (1999). Kernel

pca and de-noising in feature spaces. pages 536–542.

Neuneier, R. and Zimmermann, H. G. (1998). How to train neural networks. pages 373–423.

Ni, X., Zhang, H. H., and Zhang, D. (2009). Automatic model selection for partially linear

models. Journal of Multivariate Analysis, 100:2100–11.

Roweis, S. and Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embed-

ding. Science, 290(5500):2323–2326.

Saul, L. and Roweis, S. (2003). Think globally, fit locally: unsupervised learning of low

dimensional manifolds. Journal of Machine Learning Research, 4(Jun):119–155.

Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear component analysis as a

kernel eigenvalue problem. Neural Computation, 10(5):1299–1319.

49

Sun, S. and Huang, R. (2010). An adaptive k-nearest neighbor algorithm. In 2010 seventh

international conference on fuzzy systems and knowledge discovery, volume 1, pages 91–94.

IEEE.

Tang, C., Bian, M., Liu, X., Li, M., Zhou, H., Wang, P., and Yin, H. (2019). Unsupervised

feature selection via latent representation learning and manifold regularization. Neural

Networks, 117:163–178.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society. Series B, 58:267–88.

Vecoven, N. (2017). Feature selection with deep neural networks. Master’s thesis.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked

denoising autoencoders: Learning useful representations in a deep network with a local

denoising criterion. Journal of Machine Learning Research, 11(Dec):3371–3408.

Wang, H. and Xia, Y. (2009). Shrinkage estimation of the varying coefficient model. Journal

of the American Statistical Association, 104:747–57.

Witten, D. M., Tibshirani, R., and Hastie, T. (2009). A penalized matrix decomposition,

with applications to sparse principal components and canonical correlation analysis. Bio-

statistics, 10(3):515–534.

Ye, M. and Sun, Y. (2018). Variable selection via penalized neural network: a drop-out-one

loss approach. In International Conference on Machine Learning, pages 5620–5629.

Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analysis. Journal

of Computational and Graphical Statistics, 15(2):265–286.

50

	Introduction
	Local Linear Approach via k-Nearest Neighbours
	Motivations for a Locally Linear estimator
	Local Linear Manifold Selection
	Randomization of Distances for Large Candidate Set
	Optimal Choice for Hyper-parameters
	Choice of penalty parameter
	Reducing the sensitivity to the neighbourhood's size parameter via the q-kNN Algorithm

	Selection Properties

	Global Approach via Diagonal Auto-Encoders
	Restricted Diagonal Layer for Variable Selection
	Diagonal Auto-encoders Manifold Selection
	Estimation of the Parameters of the Network
	Stochastic First-Order Optimization
	Smoothing selection paths with Ensemble Averaging

	Simulations
	Design
	Results
	Numerical Oracle Properties

	Discussion

