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REDUCING INEQUALITIES AMONG UNEQUALS

By Mathieu Faure and Nicolas Gravel1

Centre de Sciences Humaines (Delhi) & Aix-Marseille University, CNRS, AMSE

This article establishes an equivalence between four incomplete rankings of distributions of income among 
agents who are vertically differentiated with respect to some nonincome characteristic (health, household size, 
etc.). The first ranking is the possibility of going from one distribution to the other by a finite sequence of in-
come transfers from richer and more highly ranked agents to poorer and less highly ranked ones. The second 
ranking is the unanimity among utilitarian planners who assume that agents’ marginal utility of income is de-
creasing with respect to both income and the source of vertical differentiation. The third ranking is the Bour-
guignon (Journal of Econometrics, 42 (1989), 67–80) Ordered Poverty Gap dominance criterion. The fourth 
ranking is a new dominance criterion based on cumulative lowest incomes.

1. introduction

When can a distribution of income among a group of homogeneous agents be considered 
more equal than another? An important achievement of the modern theory of inequality 
measurement is the demonstration made by Hardy et al. (1952)—and popularized among
economists by Dasgupta et al. (1973), Kolm (1969), Sen (1973), and Fields and Fei (1978)—
that the following four answers to this question are equivalent.

(1) A is more equal than B if it can be obtained from B by means of a finite sequence of
bilateral Pigou–Dalton transfers.

(2) A is more equal than B if all utilitarian ethical observers who assume that individuals
convert income into well-being by the same concave utility function so agree.

(3) A is more equal than B if poverty, as measured by the poverty gap, is lower in A than in
B for every definition of the poverty line.

(4) A is more equal than B if the k poorest agents have a larger cumulated income in A
than in B whatever k is (i.e., if the distribution of income in A Lorenz dominates that
in B).

Any of these answers provides an incomplete, but yet very robust, answer to the basic
question. The first answer identifies an elementary transformation of the distribution that in-
tuitively captures in a crisp fashion the very notion of inequality reduction—Pigou-Dalton
here—that is sought. The second answer links inequality measurement to a set of explicit
normative principles and seeks consensus among them. Although answer (2) is formulated
in terms of the ethically contentious doctrine of utilitarianism, it can actually be shown (see,
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e.g., Gravel and Moyes, 2013) to hold for the much larger class of aggregations of concave
utilities by increasing and utility-inequality-averse ethical observers. Moreover, even the wel-
farist or utilitarian interpretation underlying answer (2) is not required. The utility function
can also be interpreted as reflecting the “social value” attached by the ethical observer to
the income received by the agent. This social value may not be related to the agent’s per-
sonal welfare or happiness. Finally, the third and fourth answers provide empirically imple-
mentable tests—poverty gap or Lorenz dominance—to determine whether or not one dis-
tribution is more equal than another. Comparing income distributions by means of Lorenz
dominance has become a routine practice followed by thousands of researchers all over the
world. Many sophisticated inference techniques—see, for example, Anderson (1996), Beach
and Davidson (1983), Bishop et al. (1989a), Bishop and Formby (1999), and Davidson and
Duclos (2000)—have also been proposed to assess the robustness of Lorenz dominance or
stochastic dominance comparisons when applied to samples instead of the whole population
of interest. Moreover, despite their possible incompleteness, these criteria have been shown
in empirical applications—see for example Bishop et al. (1989b), Duclos et al. (2006), Gravel
et al. (2009), or Gravel and Mukhopadhyay (2010)—to rank conclusively a significant fraction
of all the possible pairs of distributions. When such conclusive rankings cannot be obtained,
and the Lorenz curves associated to the two distributions cross, it is common to compare dis-
tributions using (much) more ethically demanding inequality indices. In such a case, the re-
quirement that the ranking provided by the inequality indices be compatible with any of those
four answers is considered to be very important (see, e.g., Foster, 1985).

Remarkable and foundational to inequality measurement as it is, this equivalence only con-
cerns distributions of income, or any other cardinally measurable attribute, between otherwise
perfectly homogeneous agents. Yet, income is not the only ethically relevant source of dif-
ferentiation between economic agents. If these agents are collectivities such as households or
jurisdictions, they differ not only by their total income but also by the number of members
among whom the income must be shared. If the agents are individuals, they may also differ by
nonincome characteristics such as age, health, education, or effort. What does “reducing in-
equalities” in one characteristic mean when applied to agents who are differentiated with re-
spect to another characteristic? In short, how can one define reducing inequality among un-
equals? This is the basic question addressed in this article.

Specifically, we establish an equivalence between four notions of inequality reduction
among unequals, each of which being analogous in nature to one of the above four notions
of inequality reduction among equals. The elementary transformation that we propose to cap-
ture inequality reduction among unequals is like a Pigou–Dalton transfer, but with the stip-
ulation that the donor must be both richer and more highly ranked than the receiver. More-
over, contrary to what is usually required in a Pigou-Dalton transfer—see however Atkinson
(1987), Chakravarty and Muliere (2003), or Zheng (2007) for alternative formulations—we do
not restrict the transfer to being lower than half the income difference between the giver and
the receiver. The quantity transferred can be as large as the full income difference. The nor-
mative principles that we examine are those generated by comparisons of distributions by a
utilitarian ethical observer who assumes that agents convert income into utility by the same
function exhibiting a marginal utility of income that is decreasing with respect to both income
and the source of vertical differentiation. The empirically implementable criterion that we
consider is the Bourguignon (1989) Ordered Poverty Gap (OPG) dominance criterion. This
criterion requires that poverty, measured by the income poverty gap, be smaller in the domi-
nating distribution than in the dominated distribution for any collection of poverty lines that
are decreasing with respect to the agent’s vertical standing. We finally introduce a “cumulated
lowest incomes” dominance criterion—which generalizes Lorenz dominance to our setting—
and prove its equivalence with OPG dominance.

This article can clearly be seen as a contribution to the multidimensional—in fact two-
dimensional—inequality measurement literature, which has emerged in the last 40 years or so.
To the best of our knowledge, no contribution to this literature has succeeded in establishing
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a foundational equivalence between an empirically implementable criterion (such as Lorenz
or poverty gap dominance), a welfarist (or otherwise) unanimity over a class of functions that
transform the attributes into achievement and an elementary operation that captures in an in-
tuitive way the nature of the equalization sought.

For instance, Atkinson and Bourguignon (1982) (and before them Hadar and Russell
(1974)) show that first- and second-order multidimensional stochastic dominance imply util-
itarian dominance over a class of individual utility functions that is specific to the order of
dominance. They also suggest (without providing proof) that there could be an equivalence
between their multidimensional stochastic dominance criteria and utilitarian unanimity over
their class of individual utility functions. But they do not identify an elementary operation
that can be implied by their criteria or that can imply them. Atkinson and Bourguignon (1987)
propose a nice interpretation of one of the Atkinson and Bourguignon (1982) stochastic dom-
inance criteria in the specific case of two attributes, one of which interpreted as an ordinal in-
dex of needs (such as household size). Yet, they do not identify the elementary operation that,
when performed a finite number of times, would coincide with the criterion. It is in the very
same setting that Bourguignon (1989) introduces his OPG criterion. Bourguignon (1989) also
identifies the class of utility functions over which utilitarian unanimity is equivalent to his cri-
terion. However, he does not identify the elementary operation that is equivalent to it.

Elementary transformations believed to lie behind the criteria proposed by Atkinson and
Bourguignon (1982), Atkinson and Bourguignon (1987), and Bourguignon (1989) have been
discussed by various authors, including Atkinson and Bourguignon (1982) themselves, Ebert
(1997), Fleurbaey et al. (2003), and Moyes (2012). Yet, none of these papers demonstrates
that performing these elementary operations a finite number of times is equivalent to the im-
plementable criteria. In a related vein, Muller and Scarsini (2012) establish an equivalence
between a class of elementary transformations—multidimensional transfers and correlation-
reducing permutations, to be discussed below—and utilitarian unanimity over the class of in-
creasing and submodular utility functions.2 However, they do not provide an implementable
test—such as Lorenz or poverty gap dominance—that coincides with either their elementary
transformations or the utilitarian unanimity over their class of utility functions. Another at-
tempt to propose an elementary transformation that would capture a plausible notion of in-
equality reduction in a multidimensional context has been made by Kolm (1977). This au-
thor defines equalization by the fact of transferring from one agent to another an identical
fraction of both income and the source of vertical differentiation. Making sense of this no-
tion of equalization obviously requires that this source of vertical differentiation be cardinally
measurable. Although this measurability may be conceivable in some context (e.g., when the
agents are workers vertically differentiated by their number of hours worked), it is less so in
others (e.g., households differentiated by the number of their members). Kolm (1977) proves
that obtaining one distribution from another by means of a finite sequence of such transfor-
mations is equivalent to having the two distributions ranked by all utilitarian ethical observers
who evaluate the agents’ well-being by means of the same concave utility function. However,
Kolm (1977) does not identify an empirically implementable criterion that is equivalent to his
notion of equalization.

Another approach to multidimensional equalization is followed by Koshevoy (1995) who
suggests that distributions of several attributes be compared on the basis of the inclusion of
their Lorenz zonotope. This Lorenz zonotope inclusion criterion is a clear generalization, to
any number of dimensions, of the usual unidimensional Lorenz dominance. It is a (relatively)
easy-to-check criterion that is applicable to any two distributions of several attributes. Ko-
shevoy (1995) proves that performing a finite number of times the elementary transformation
proposed by Kolm (1977) is a sufficient condition for obtaining Lorenz zonotope inclusion.
However, this does not tell us much about the implicit equalization process embedded in this
criterion because the converse statement does not hold.

2 See, for example, Marinacci and Montrucchio (2005) for a definition of these properties.
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Progress toward establishing equivalence between an empirically implementable criterion,
a utilitarian unanimity over a suitable class of individual utility functions and a finite sequence
of elementary transformations has been made in two streams of the literature. One of them,
initiated by Epstein and Tanny (1980) (see also Tchen, 1980), and significantly generalized
by Decancq (2012), considers first-order stochastic dominance rankings of multivariate distri-
butions in the context of decision making under uncertainty. In this setting, Decancq (2012)
establishes an equivalence between first-order dominance among multivariate distributions
with the same marginals and the possibility of going from the dominated to the dominat-
ing distribution by a finite sequence of Frechet rearrangements. By significantly generalizing
results from Quirk and Saposnik (1962) and Levhari et al. (1975), Osterdal (2010) also es-
tablishes an equivalence between utilitarian unanimity over the class of all increasing utility
functions, the possibility of going from one distribution to another by a finite sequence of im-
proving mass transfers, and a specific first-order stochastic dominance test that is less discrim-
inant than the usual multivariate one considered in Hadar and Russell (1974) and Atkinson
and Bourguignon (1982). None of these results, however, sheds light on the meaning of reduc-
ing income inequality between heterogenous agents.

An attempt in this direction has been made by Gravel and Moyes (2012), who establish a
form of equivalence between the three following answers to the question of when a distribu-
tion A of income between vertically differentiated agents is normatively better than another
distribution B:

(a) When A could be obtained from B by performing a finite sequence of either Pigou–
Dalton transfers of income between agents of the same type or correlation-reducing
permutations.

(b) When A is considered better than B by all utilitarian planners who assume that ver-
tically differentiated agents convert income into well-being by the same utility func-
tion whose marginal utility of income is decreasing with respect to both income and the
source of vertical differentiation.

(c) When A dominates B by the OPG criterion.

Answer (a) combines two elementary operations. The first is the standard Pigou–Dalton
transfer performed between agents of the same “type.” The second is a correlation-reducing
income permutation between two agents, one of them being both richer and more highly
ranked than the other. A correlation-reducing permutation is an operation closely related to
the notion of Frechet rearrangement used by Decancq (2012); see also Tsui (1999), Atkinson
and Bourguignon (1982), and Epstein and Tanny (1980). Answers (b) and (c) are of course
those considered here. However, Gravel and Moyes (2012) have not succeeded in proving
that answer (c) (or answer (b)) implies answer (a) (clearly answer (a) implies answer (b),
which in turn implies answer (c)). What they prove is that if distribution A dominates distribu-
tion B for the OPG criterion, then it is possible to add dummy individuals—or phantoms—to
both distributions A and B in such a way as to be able to go from phantom-augmented distri-
bution B to phantom-augmented distribution A.

In this article, we prove the equivalence between the above answers (b) and (c) and the
possibility of going from dominated to dominating distributions by a finite sequence of ele-
mentary transfers of income from richer and more highly ranked agents to poorer and less
highly ranked agents. We do so without resorting to phantoms. Our notion of transfer contains
as particular cases both the correlation- reducing permutation and the within-type transfer
considered in Gravel and Moyes (2012). An additional contribution of this article is to estab-
lish an equivalence between the OPG criterion and a Lorenz-like dominance criterion based
on partial sums of incomes of the poorest agents. A difficulty involved in the latter criterion
is identifying the poorest agents when these agents are differentiated by a nonincome charac-
teristic. Our main result shows that this criterion is equivalent to the OPG criterion. We there-
fore view this article as providing what is to our knowledge the first theoretical foundation to
the measurement of inequality among heterogeneous agents.
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The remainder of the article is organized as follows. In the next section, we introduce nota-
tions and provide definitions of the main criteria and elementary transformations considered.
The main results are stated and discussed in Section 3. Section 4 indicates how the results of
Section 3 extend to the case where the number of agents and/or the total income to be dis-
tributed vary across distributions, and Section 5 concludes.

2. the formal setting

2.1. Notations. We consider a finite population of n agents who are vertically differenti-
ated into k categories or types, indexed by h. Agents in lower categories are assumed to be
“more needy” ceteris paribus than agents in higher categories. These categories may refer to
any nonpecuniary source of agents’ differentiation, such as health, number of members, edu-
cation level, labor effort. We do not assume at this stage (see however the generalization of
the analysis in Section 4) that the ordering of the agents in terms of those categories reflects
these agents’ well-being. For example, a single adult may admittedly be considered less needy
than a couple who earns the same income. However, this does not mean that the single adult
is “happier” or “better off” than (either member of) this couple. We emphasize also that we
do not require the source of vertical differentiation to be discrete. It could be continuous (as
would, e.g., be the number of hours worked). However, for any finite population of agents of
size n, the set of possible values taken by the nonpecuniary source of differentiation in that
population will be finite. It is therefore not restrictive to view these different values as under-
lying the categories. In the current as well as the next sections, we consider the case where
both the total number of agents and their distributions in the k different categories is fixed. In
this case, for any category h, we denote by N (h) the set of agents in h and by n(h) = #N (h)
the number of those agents.

Our objective is to provide a ranking of alternative distributions of income (or any other
cardinally meaningful variable) between these differentiated agents on the basis of equality.
Any such income distribution, x say, is depicted as a collection of k vectors (xh

1, . . . , xh
n(h))

∈ R
n(h) (for h = 1, . . . , k). The criteria used in this article for comparing alternative distri-

butions are all anonymous conditional on the agent’s type. Because of this, we find conve-
nient to index the agents in category h (for h = 1, . . . , k) according to their income and to
assume that xh

i ≤ xh
i+1 for i = 1, . . . , n(h) − 1. More compactly, we write a distribution x as

x = {(xh
1, . . . , xh

n(h))}k
h=1. Since we focus on pure equality considerations in this section and the

next one, we restrict our attention to income distributions x such that

k∑
h=1

n(h)∑
i=1

xh
i = I for some real number I.

We let D(I) denote the set of all such income distributions for any given I. Given two dis-
tributions x, y ∈ D(I), we finally denote by v(x, y) and v(x, y) their lowest and highest in-
come, respectively.

We find useful to illustrate the concepts and definitions proposed herein by means of the
following simple examples of distributions of 6,000 dollars (say) of income among four house-
holds belonging to three different categories: couples with one child (two households), couples
without children (one household), and single persons (one household). We consider specifi-
cally the three distributions x, y, and z described in Table 1. Applying the above notation to
the distribution x of this table, we would have x1

1 = 1, 500, x1
2 =, 1, 600, x2

1 = 1, 900, and x3
1 =

1, 000.
We now introduce the main concepts between which an equivalence will be established.
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Table 1
three distributions of income between four households belonging to three categories

Distribution Couple, One Child Couple, No Children Single Person

x 1,500, 1,600 1,900 1,000
y 1,300, 1,700 1,000 2,000
z 1,200, 1,400 1,800 1,600

2.2. Elementary Transformations. The main elementary transformation considered is the
Between-Type progressive transfer discussed in many papers, including Ebert (1997), Atkin-
son and Bourguignon (1982), Fleurbaey et al. (2003), Muller and Scarsini (2012), and Gravel
and Moyes (2012). In order to simplify the discussion, we provide in what follows an imper-
fectly rigorous definition of this elementary transformation that implicitly rules out the possi-
bility for agents not involved in the transfer to have income or categories that lie in between
those of the involved agents. The Appendix provides a rigorously corre4ct—but considerably
heavier—definition that allows for this possibility.

Definition 1 (Between Type Progressive Income Transfer). For any two distributions x
and y in D(I), we say that x is obtained from y by means of a Between-Type Progressive In-
come Transfer (BTPIT) if there are categories g and h for which g ≤ h, two agents ig ∈ N (g)

and ih ∈ N (h) for which yh
ih > yg

ig and a number α ∈]0,
yh

ih
−yg

ig

2 ] such that:

(i) xg
ig = yg

ig + α.
(ii) xh

ih = yh
ih − α.

(iii) xl
i = yl

i for any other pair (i, l) where l ∈ {1, . . . , k} and i ∈ N (l).

A BTPIT resembles a standard one-dimensional Pigou–Dalton transfer. There is however
a major difference: the beneficiary of the transfer must have both a lower income and a
(weakly) lower status than the donor.

This kind of transfer is a particular case of the equalizing transformation considered by
Muller and Scarsini (2012), where the transfers can be made in all dimensions. In the cur-
rent setting, it would not make much sense to transfer the (ordinal) nonpecuniary variable by
which agents differentiate themselves. A BTPIT is illustrated in Figure 1. Note that our def-
inition of a BTPIT allows the donor to be of the same type as the receiver. Hence, the stan-
dard one-dimensional Pigou–Dalton transfer (conditional on type) is a particular case of BT-
PIT. Note also that our definition of BTPIT rules out the possibility of the amount transferred
being more than half the income difference between giver and receiver.

This restriction can be eliminated by considering the following additional elementary trans-
formation, called Favorable Income Permutation (FIP) in Gravel and Moyes (2012).3

Definition 2 (FIP). For any two distributions x and y in D(I), we say that x is obtained
from y by means of an FIP if there are categories g and h for which g < h and two agents
ig ∈ N (g) and ih ∈ N (h) for which yh

ih > yg
ig such that:

(i) xg
ig = yh

ih .
(ii) xh

ih = yg
ig .

(iii) xl
i = yl

i for any other pair (i, l) where l ∈ {1, . . . , k} and i ∈ N (l).

3 Again, the definition provided here rules out the possibility that the transformation performed between two
agents modifies the indices assigned to other agents. The proper definition that allows for this possibility is provided
in the Appendix.
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Figure 1

a btpit

Figure 2

a fip

In words, a FIP (illustrated on Figure 2) is a swap of income between a (relatively) rich
agent belonging to a (relatively) high category and a poorer agent belonging to a lower cat-
egory. It can thus be viewed as an extreme form of BTPIT in which the total income dif-
ference between the two agents is transferred. We emphasize however that transferring the
total income difference between two agents belonging to two distinct categories is viewed
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here as a strictly equalizing transformation. This is in sharp contrast with the traditional one-
dimensionnal inequality measurement setting where transferring the totality of the income
difference between two agents—allowed for in the definition of a Pigou–Dalton transfer by
some authors, Atkinson (1987), Chakravarty and Muliere (2003), or Zheng (2007)—is only a
matter of indifference.

Gravel and Moyes (2012) have shown that a BTPIT can always be decomposed into a
(within-type) conventional Pigou–Dalton transfer followed by an FIP provided that a phan-
tom agent is added. This phantom agent must be endowed with the income of the beneficiary
and the category of the donor prior to the transfer.

A way to see these elementary transformations at work is to consider distributions x and y
in Table 1. One can easily check that one can go from y to x by means of the following se-
quence of BTPITs and FIPs:

(1) Transfer 100 dollars from the single person to the poorest of the two couples with one
child.

(2) Transfer 100 dollars from the richest couple with one child to the poorest such couple.
(3) Makes an FIP between the couple without children and the single person.

2.3. Utilitarian Dominance. This notion of dominance rides on the assumption that all
agents of a given type transform their income into some type-dependent, ethically meaningful
achievement (well-being, happiness, freedom, etc.) by means of the same (utility) function sat-
isfying some minimal property. Specifically, the utility achieved by agent i of type h in distribu-
tion x is indicated by U h(xh

i ), where U h : R → R. The utilitarian rule ranks the distributions on
the basis of the sum of the utilities they generate. More precisely, the utilitarian rule considers
distribution x to be no worse than distribution y if and only if

k∑
h=1

n(h)∑
i=1

U h(xh
i

)
�

k∑
h=1

n(h)∑
i=1

U h(yh
i

)
.(1)

The list of type-dependent utility functions U 1, . . . ,U k used by the utilitarian rule reflects
some normative evaluation of the contribution of income to every agent’s achievement, con-
ditional on the agent’s type. For the sake of robust normative evaluation, the dominance ap-
proach commonly requires a consensus among a relatively large class, U∗ say, of such lists of
utility functions. This gives rise to the following general notion of utilitarian dominance.

Definition 3. (Utilitarian Dominance). For any two distributions x and y in D(I), we say
that x utilitarian dominates y for the class U∗ of collections of k utility functions if and only if

k∑
h=1

n(h)∑
i=1

U h(xh
i ) �

k∑
h=1

n(h)∑
i=1

U h(yh
i ), ∀ (U 1, . . . ,U k) ∈ U∗.(2)

In this article, we specifically consider the class U∗ of list of type-dependent utility functions
U 1, . . . ,U k that satisfy:

U h(w + a) − U h(w) ≥ U h′
(w′ + a) − U h′

(w′)(3)

for any nonnegative real number a, any categories h, h′ ∈ {1, . . . , k} with h ≤ h′, and any in-
come pair (w,w

′
) such that w ≤ w′. In words, U∗ is the class of collections of utility functions

U h (for h = 1, . . . , k) with the property that the contribution of an additional unit of income
to the individual’s advantage (as measured by the function U h) is decreasing with respect to
both income and type. The requirement that the marginal utility of income is decreasing with
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income for any type is standard, and reflects inequality aversion. The requirement that the
marginal utility of income is also decreasing with respect to the type—given income—reflects
the idea that the types are ordered by their needs. With the same income, a needier agent
makes a better use of an additional unit of income than a less needy agent. Observe that type-
dependent functions in the class U∗ are neither assumed to be increasing with respect to in-
come nor with respect to type. In particular an agent of higher type is not necessarily “better-
off” than an agent of a lower type with the same income.

In order to illustrate this notion of utilitarian dominance, consider the distributions x and
z of Table 1, and the list of three-type dependent utility functions (U 1,U 2,U 3) defined by
U 2(x) = U 3(x) = 1, 500, U 1(x) = min{x, 1, 500}. It is clear that this list belongs to U∗. Observe
that one has:

3∑
h=1

n(h)∑
i=1

U h (xh
i

) = 1500 + 1500 + 1500 + 1500 = 6000

and
3∑

h=1

n(h)∑
i=1

U h (zh
i

) = 1200 + 1400 + 1500 + 1500 = 5600

so that
∑3

h=1

∑n(h)
i=1 U h(xh

i ) >
∑3

h=1

∑n(h)
i=1 U h(zh

i ). However, if one considers the collection
(V 1,V 2,V 3) of utility functions defined by V 1(x) = V 2(x) = V 3(x) = min{x, 1200} (that also
trivially belong to U∗), then one has the reverse inequality:

3∑
h=1

n(h)∑
i=1

V h (xh
i

) = 4600 <

3∑
h=1

n(h)∑
i=1

V h (zh
i

) = 4800.

Hence, x and z are not comparable for the utilitarian dominance criterion applied to the class
of lists of utility functions satisfying (3).

2.4. OPG Dominance. The OPG criterion has been proposed by Bourguignon (1989) for
comparing income distributions between households of differing sizes. In order to discuss this
criterion in the current context, we first define the set V ⊂ R

k by:

V = {(v1, . . . , vk) ∈ R
k : v1 ≥ v2 ≥ . . . ≥ vk}.(4)

Set V comprises all combinations of poverty lines (one such line for every type) that are
weakly decreasing with respect to type. Given this set, we define the OPG dominance crite-
rion as follows.

Definition 4. (OPG Dominance). For any two distributions x and y in D(I), we say that x
dominates y for the OPG criterion, denoted by x �OPG y, if the following holds:

Px(v1, . . . , vk) ≤ Py(v1, . . . , vk), ∀(v1, . . . , vk) ∈ V,(5)

where Px(v1, . . . , vk) := ∑k
h=1

∑n(h)
i=1 max(vh − xh

i , 0).

In words, x dominates y for the OPG criterion if, for all possible poverty lines that are non-
increasing with respect to agent’s type, the minimum income required to eliminate poverty de-
fined by these lines is lower in x than in y. The requirement for the poverty lines to be non-
increasing with the type is quite intuitive. It simply says that with a given income, an agent is
(weakly) more likely to be considered poor when his/her type is low than when it is high. In
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order to illustrate OPG dominance, consider distributions y and z of Table 1. Choosing first
the three nonincreasing poverty lines (v1, v2, v3) = (1300, 1000, 1000), we observe that:

Py(v1, v2, v3) = 0

whereas:

Pz(v1, v2, v3) = 100.

Hence, z does not dominate y as per the OPG criterion. However, if one chooses instead the
three nonincreasing poverty lines (v′

1, v
′
2, v

′
3) = (1200, 1200, 1200), one has:

Py(v′
1, v

′
2, v

′
3) = 200

whereas:

Pz(v′
1, v

′
2, v

′
3) = 0

so that y does not dominate z either. Hence y and z are not comparable by OPG dominance.
Although OPG dominance requires a comparison of the poverty gap between two distri-

butions for all lists of ordered poverty lines in V (a noncountable set), it is nonetheless eas-
ily implementable; see, for example, Decoster and Ooghe (2006) or Gravel et al. (2009). One
way of implementation is to restrict attention, as just done for the distributions y and z of Ta-
ble 1, to the (finite) subset of lists of poverty lines in V that are actually observed in the two
distributions under comparison. Another is to use the ingenious alternative formulation of the
OPG dominance criterion proposed by (Bourguignon, 1989, p. 74, equation (12)) via an iter-
ative procedure based on the largest difference in poverty gap between two distributions for
all poverty lines above any arbitrary threshold. In the next subsection, we introduce an alter-
native dominance criterion that is somewhat analogous to Lorenz dominance and that is also
easily implementable.

2.5. Cumulative Lowest Incomes (CLI) Dominance. In the classical case of income distri-
butions among homogeneous agents, it is well known that poverty gap dominance is equiva-
lent to the requirement, known as Lorenz dominance, that the sum of income of the m poor-
est agents is larger in the dominating than in the dominated distribution no matter what m is
(see Berge, 1959, for instance). In this subsection, we introduce a similar dominance criterion
based on the sum of incomes of the m poorest agents when those agents are differentiated by
a non-income characteristic. This is challenging because there is no obvious way to define who
the m poorest agents are in such a case. For example, is a couple without children earning a
weekly income of $350 really poorer than a couple with one child earning $500?

Any definition of the m poorest agents rides on a ranking of the agents in terms of poverty.
Once a poverty ranking of the agents is defined, a set of the m poorest agents is simply a col-
lection of m agents such that if an agent is in the collection and if another agent is poorer
than this agent as per the ranking, then this other agent must also be in the collection. When
agents are homogenous in all other dimensions than income, the poverty ranking of the agents
is clear and complete: Agent A is poorer than Agent B if and only if A has a lower income
than B. Under this poverty ranking, there can be only one set of m poorest agents: it is the set
of agents who have the m-lowest incomes.

In the current setting where agents are vertically differentiated with respect to a nonin-
come characteristic, we propose to consider agent A to be (weakly) poorer than agent B if
and only if A both has a (weakly) lower income and belongs to a (weakly) lower category
than B. This poverty ranking is clearly incomplete. As a result, it will typically generate sev-
eral sets of the m-poorest agents satisfying the requirement that whenever they contain an
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agent, they also contain all agents who are poorer than this agent as per the ranking. Any such
set of m-poorest agents can therefore be represented as a k-tuple of ranks (r1, . . . , rk), below
which agents of the different categories are considered to be poor. This leads us to define, for
any given m ≤ n, the family �(x, m) of admissible sets of m-poorest agents in distribution x ∈
D(I) as follows:

�(x, m) =
{

(r1, . . . , rk) : rh ∈ {0, . . . , n(h)},
k∑

h=1

rh = m, xh
rh+1 > xh′

rh′ ∀h′ > h

}
,(6)

with the convention that xh
0 = v(x, y) and xh

nh+1 = v(x, y) for every h. In words, �(x, m) is the
family of all combinations (r1, . . . , rk) of type-dependent poverty ranks of agents that have two
characteristics. First, the ranks must sum to m so as to identify m “poorest” agents in the
whole distribution. Second, the ranks must be such that if they define an agent as poor, they
must also consider as poor any agent in a lower category who has a lower income.

Observe that the set of m-poorest agents in the usual sense—that is the agents who earn the
m lowest incomes irrespective of their type—will always be a set of m-poorest agents as per
the definition of the family �(x, m). Because of this, the family �(x, m) is never empty. How-
ever, and contrary to the usual definition of the set of the m-poorest agents, there will typi-
cally be many lists of type-dependent ranks in �(x, m). Moreover, these lists may vary across
distributions. In order to illustrate this, consider distributions x and z in Table 1. There are two
ways of defining the poorest household as per �(.) in x. One is of course to consider the ab-
solutely poorest household—who is the single person in x—as the poorest. This would corre-
spond to the list of ranks (0, 0, 1). The only other possibility compatible with the second in-
equality of Expression (6) is to consider that the poorest of the two couples with one child is
the poorest household. This would correspond to the list of ranks (1, 0, 0). The possibility of
considering the couple without children as the poorest, which would correspond to the list of
ranks (0, 1, 0), is ruled out by the definition of �(.) because both couples with one child (who
would be above their assigned rank and therefore not poor under this specification) have a
lower income than the couple without children. We thus have �(x, 1) = {(1, 0, 0), (0, 0, 1)}.
However there is only one way to define the poorest household in distribution z. It is the
household with the lowest income, here the poorest of the two couples with one child. Any
other specification of the ranks that sum to one would indeed violate the second inequality of
Expression (6). Hence, we have �(z, 1) = {(1, 0, 0)}.

Using this definition of the set �(., m) of m poorest agents, we propose the following no-
tion of CLI dominance.

Definition 5. For any two distributions x and y in D(I), we say that x dominates y for the
CLI criterion, which we denote as x �CLI y if, for any m ∈ {1, . . . , n}, and any (r1, . . . , rk) ∈
�(x, m), there exists (r′

1, . . . , r′
k) ∈ �(y, m) such that

k∑
h=1

∑
i≤rh

xh
i ≥

k∑
h=1

∑
i≤r′

h

yh
i .(7)

and

h∑
g=1

r′
g ≥

h∑
g=1

rg,(8)

for any h = 1, . . . , k.
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In words, x dominates y for the CLI criterion if, for any m, and any admissible set of m
poorest agents in x, there is an admissible set of m poorest agents in y who have a lower sum
of income than the m poorest agents in x (Condition (7)) and who are such that, for every
category h, the sum, over all categories below h, of the category-specific ranks below which
agents are considered poor is larger in y than in x (Condition (8)). In essence, this latter con-
dition requires the definition of the poorest agents to be such that the number of agents con-
sidered poor in the bottom h categories is larger in the dominated than in the dominating dis-
tribution for all h.

In order to illustrate this latter condition, which does not appear in the definition of stan-
dard Lorenz dominance, consider again distributions x and z in Table 1. It is easy to see that
these two distributions cannot be compared by the CLI criterion. Indeed, we first observe that
x does not dominate z. Such a dominance would make it possible to find, for any m and any
admissible definition of the m poorest agents in x, an admissible collection of the m poorest
agents in z with respect to which the two inequalities (8) and (7) hold. But this is not possible,
even for m = 1. If we take the single person as the poorest agent in x (corresponding to the
list of ranks (0, 0, 1) in �(x, 1)), we observe that this single person has a lower income than
that of the poorest of the two couples with one child in z, who is as we know the only admissi-
ble poorest agent in this distribution. Hence, Inequality (7) would be violated in that case. To
see that z does not dominate x either, we again only consider the case m = 1 and the only ad-
missible definition of the poorest agent in z (the poorest of the two couples with one child).
Only one of two admissible poorest agents in x—the single person—has a lower income than
the poorest of the two couples with one child in z. However the list of ranks that would make
the single person the poorest household in x—that is, (0, 0, 1)—violates Inequality (8) as com-
pared to (1, 0, 0). In fact, defining the single person as the poorest household in x and the
poorest of the two couples with one child as the poorest household in z, amounts to assuming
that there are more poor agents in in the bottom category (couples with one child) in z than in
x, in violation to (8).

The CLI dominance criterion is no doubt more difficult to implement empirically than its
unidimensional Lorenz dominance cousin. For one thing, the criterion cannot be checked by
simply comparing two curves. Yet the CLI dominance criterion is easy to implement through
the following procedure, suggested by the fact that having Lorenz dominance between two
distributions is a necessary condition for CLI dominance. Check first for standard Lorenz
dominance. If there is no such dominance, then there is no CLI dominance and the proce-
dure stops. If, however, there is Lorenz dominance, then the Lorenz dominating distribution
could be a CLI dominant distribution. Start therefore with the Lorenz dominating distribu-
tion and, for any m = 1, . . . , n, identify all admissible (under Condition (6)) combinations of
ranks that sum to m in that distribution. For any such combination, find all admissible (under
Condition (6)) combinations of ranks that sum to m in the Lorenz dominated distribution and
that satisfy inequality (8 ). If there are no such combinations, then there is no dominance and
the procedure stops. If there are such combinations, then select from them the combination of
ranks associated with the smallest sum of incomes, and compare this smallest sum of incomes
with that associated with the initial combination of ranks in the potentially dominating distri-
bution. If the comparison of the two sums violates Condition (7), then there is no dominance
and the procedure stops. Otherwise, the procedure continues for all m, in which case we con-
clude that there is CLI dominance.

3. main result

The main theorem proved in this article is the following.

Theorem 1. Let x and y be two distributions in D(I). Then the following four statements are
equivalent.
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(i) It is possible to go from y to x by a finite sequence of BTPIT and/or FIP.
(ii) x utilitarian dominates y for the class U∗.

(iii) x �OPG y.
(iv) x �CLI y.

The proof of this theorem proceeds in several steps. The first, establishing that (i) implies
(ii) and that (ii) implies (iii), is easy and quite well-known; see, for example, Ebert (1997) or
Gravel and Moyes (2012). It is formally stated as Proposition A.1 in Subsection A.2 in the
Appendix, where it is also proved for the sake of completeness. In Subsection A.3 in the Ap-
pendix we also state and prove the equivalence between (iii) and (iv).

The most difficult part of the proof is, however, the implication that statement (iii) implies
statement (i). This proof is lengthy and has been for the most part developed in the Appendix.
We find nonetheless useful to provide in this section an overall picture of the proof strategy.
Proving that statement (iii) implies statement (i ) amounts in effect to constructing an algo-
rithm for going from a distribution y to a distribution x by a finite sequence of either BTPIT
and/or FIP that is based solely on the information that x �OPG y. The difficulty of the con-
struction rides on the fact that, in every step of the algorithm, either a BTPIT or an FIP must
be performed in such a way that the result of the elementary transformation remains domi-
nated by distribution x. In so doing, it is important to identify, at each step of the algorithm,
which of the two transformations can be made. The main contribution of our proof strategy
is to propose a diagnostic tool, introduced in Subsection 3.1, that can be used for that pur-
pose. In a nutshell, our diagnostic tool checks whether there is some margin to make a trans-
fer whose beneficiary is the poorest individual in the lowest category. If the margin is there,
then a further refinement of the diagnostic tool enables us to choose to perform either a trans-
fer, or a permutation (see Propositions 1 and 2). If the margin is not there, then a permutation
is absolutely needed (see Proposition 3). Finally, in Subsection 3.2, we sketch how our algo-
rithm works and prove its finiteness.

3.1. Identifying Which Elementary Operation Is Possible: A Diagnostic Tool. Our diag-
nostic tool is based on the critical value vc

1 defined as follows:

vc
1 := inf

{
v1 > y1

1 : ∃v2, . . . , vk s.t. v = (v1, . . . , vk) ∈ V and Px(v) = Py(v)
}
.(9)

In words, vc
1 is the lowest poverty threshold above the smallest income in the lowest category

in the dominated distribution y that can be part of a collection of ordered poverty thresholds
for which the OPG in distributions x and y is the same. The quantity vc

1 is well-defined because
the set: {

v1 > y1
1 : ∃v2, . . . , vk s.t. v = (v1, . . . , vk) ∈ V and Px(v) = Py(v)

}
is not empty (it contains v(x, y)) and is also bounded from below (by v(x, y)). Two mutually
exclusive cases are possible:

(A) vc
1 > y1

1;
(B) vc

1 = y1
1.

As will be shown, if case (A) holds, there is some margin to make a strict BTPIT to the poor-
est agent in category 1 (endowed with y1

1) in such a way that the after-transfer distribution re-
mains dominated by x as per the OPG criterion. This however does not rule out the possibility
that an FIP involving an agent in category 1 can also be performed while preserving the OPG
dominance by x. If both an FIP and a BTPIT are possible, then our algorithmic procedure
will always choose to perform the FIP.4 If on the other hand case (B) holds, then we show the

4 We explain in Subsection 3.2 why we make this choice.
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possibility of involving the poorest agent of the lowest category in a FIP while preserving the
OPG dominance of x over the newly obtained distribution. Starting from vc

1, one can then re-
cursively define the quantities vc

h, for h = 2, . . . , k as

vc
h = min

{
vh ≥ v(x, y) : ∃vh+1, . . . , vk s.t. v = (vc

1 , .., vc
h−1, vh , .., vk) ∈ V, Px(v) = Py(v)

}
.(10)

We refer to vector vc := (vc
1, . . . , v

c
k) ∈ V as the critical vector. This vector can be thought of

as the lowest “relevant” ordered list of poverty lines that yield the same poverty in the two
distributions. The critical value vc

1, as well as the associated critical vector vc, are mathematical
diagnostic tools enabling us to identify the elementary transformation that can be performed
at every step of the algorithm. Given two distributions, it is easy to find this vector. Consider
for instance the distributions x and y in Table 1. Here y1

1 = 1300. We have:

Py(v) − Px(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v2 − v3 + v1 − 1300 > 0 if v1 ∈]1300, 1500]

v2 − v3 + 200 ≥ 200 if v1 ∈ [1500, 1600]
v2 + v3 + 1800 − v1 ≥ 100 if v1 ∈ [1600, 1700]

v2 − v3 + 100 ≥ 100 if v1 ∈ [1700, 1900]
v2 − v3 + 100 − (v2 − 1900)+ if v1 ∈ [1900, 2000].

Hence , in the relevant set {(v1, v2, v3) ∈ V : v1 > y1
1, v1 ≤ v(x, y)} the poverty difference

is equal to zero if and only if v1 = v2 = v3 = 2000. 2000 is therefore the only value of v1

which is both strictly larger than y1
1 and part of a poverty line vector v = (v1, v2, v3) for

which the poverty gap is the same in the two distributions. Consequently vc
1 = 2000, and vc =

(2000, 2000, 2000). An example where the critical value vc
1 is equal to y1

1 is provided later on,
see Figure 7.

3.1.1. Case (A) : vc
1 > y1

1. We establish in this case the following proposition which says
that, if x �OPG y holds, then it is possible to find a distribution x̂ that is OPG dominated by x
and that is obtained from y by a BTPIT.

Proposition 1. Let x and y be two distributions in D(I) such that x �OPG y. Suppose that
vc

1 > y1
1. Then, there exists a distribution x̂ ∈ D(I) such that:

• x �OPG x̂,
• x̂ is obtained from y by a BTPIT involving some agent i j ∈ N ( j) for some category j ∈

{1, . . . , k} and agent 1 ∈ N (1).

This proposition (proved in the Appendix, Subsection A.5) identifies a particular category
j ≥ 1 and a particular agent in that category (labeled i j) that can transfer a strictly positive
quantity of income to the poorest agent in category 1. Since we establish this proposition with
the objective of constructing a finite sequence of such transfers, it is important for the se-
quence not to be unduly long and, therefore, for each transfer in the sequence to be as large
as possible. This leads to the following notion of a maximal transfer that is exploited crucially
in the argument.

Definition 6. Let x and y be two distributions in D(I) such that x �OPG y. Suppose that x̂
is obtained from y by means of a BTPIT where agent ih ∈ N (h) transfers α0 ≥ 0 to agent ig ∈
N (g) (g ≤ h) and that x̂ �OPG x. We say that this transfer is maximal (with respect to x) if any
of the following conditions holds:

(MT1) Equalizing transfer: there exist i, i′ ∈ N (h) such that x̂h
i′ = xh

i or there exists some
i, i′ ∈ N (g) such that x̂g

i′ = xg
i (i.e., one of the two agents involved in the transfer ob-

tains the income that they will have in final distribution x).
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Figure 3

equalizing transfer

(MT2) Breaking transfer: for any α < α0, the transfer of amount α from agent ih ∈ N (h) to
agent ig ∈ N (g) is not equalizing. Additionally for any α > α0 the distribution ob-
tained by making a transfer of amount α from agent ih to agent ig is not dominated
by x as per the OPG dominance criterion.

(MT3) Half transfer: α0 = (yh
ih − yg

ig )/2 and, for any α < α0, the transfer of amount α from
agents ih ∈ N (h) to agent ig ∈ N (g) is not equalizing.

Observe that a maximal transfer in the sense of this definition is uniquely defined. We now
illustrate these three possible types of maximal transfers in a simple setting where k = 2.

Example 1 (Equalizing Transfer). Consider the distributions where N (1) = {1, 2} and
N (2) = {1} and where:

y1
1 = 0, y1

2 = 1, y2
1 = 7,

x1
1 = 2, x1

2 = 4, and x2
1 = 2.

It can be checked that x �OPG y and that vc
1 = 7 > y1

1.
One can see that it is possible for the unique agent in N (2) to transfer 2 units of income

to agent 1 without breaking any OPG inequalities. Such a transfer, depicted on Figure 3,
is equalizing. Observe that it could have been possible to transfer even more than 2 with-
out breaking the OPG inequality. Yet doing so in the algorithm would be unnecessary be-
cause after receiving 2 units of income, agent 1 of category 1 has the income of the target
distribution x.

Example 2 (Breaking Transfer). Consider the distributions where N (1) = {1, 2} = N (2)
and where:

y1
1 = 0 = y2

1, y1
2 = 7 = y2

2,

x1
1 = 5, x1

2 = 6, x2
1 = 1 and x2

2 = 2.

We have x �OPG y and, again, it turns out that vc
1 = 7 > y1

1. It is possible for agent 2 in cate-
gory 2 to transfer 3 units of income to agent 1 in category 1. Making this transfer changes the
distribution from y to x̂, where x̂ is defined by:

x̂1
1 = 3, x̂1

2 = 7, x̂2
1 = 0, and x̂2

2 = 4.
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Figure 4

breaking transfer

Figure 5

half transfer

As can be seen, x �OPG x̂. Yet, as shown in the proof provided in the Appendix, transferring
3 + ε (for any ε ∈]0, 1/2]) would destroy this OPG dominance relation. The breaking transfer
of this example is depicted in Figure 4.

Example 3 (Half Transfer). (see Figure 5 for an graphical depiction). Consider the distri-
butions where N (1) = {1, 2} = N (2) and:

y1
1 = 0 = y2

1, y1
2 = 6 = y2

2,

x1
1 = 4, x1

2 = 5, x2
1 = 1, and x2

2 = 2.

We have x �OPG y and vc
1 = 6 > x1

1 . It is possible for agent 2 in category 2 to transfer 3 to
the poorest agent in category 1—which is precisely half of their income difference—without
breaking any of the inequalities that define OPG dominance.

Proposition 1 shows that a BTPIT benefiting the poorest agent in category 1 in the domi-
nated distribution y can be performed in such a way that the distribution obtained after the
transfer remains dominated by x as per the OPG criterion. However this proposition does not
rule out the alternative possibility of performing an FIP between two individuals in such a
way as to preserve the OPG dominance of the distribution obtained after performing this op-
eration by x. In the next proposition, we identify a circumstance which also entails the possi-
bility of performing an FIP.
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Figure 6

agent 2 in category 2 can exchange income with agent 2 in category 1

Proposition 2. Let x and y be two distributions in D(I) such that x �OPG y. Suppose that
vc

1 > y1
1. Let h0 ∈ {1, . . . , k} be a category such that vc

h0+1 < vc
h0

= vc
1 (with the convention that

vc
k+1 = v(x, y)). Suppose also that

• ∀i ∈ N (1), x1
i > vc

1
• For any category h such that h0 ≥ h ≥ 2, we have yh

i �= vc
1 for every i;

Then there exists a distribution x̂ ∈ D(I) such that x̂ is obtained from y by an FIP and x �OPG

x̂.

This proposition, proved in Subsection A.5 of the Appendix, rides heavily on the technical
lemma A.3, stated and proved in the very same section of the Appendix, that provides gen-
eral conditions on distributions x and y under which an FIP can be done without breaking the
OPG dominance. A careful look at the proof of the proposition shows that the beneficiary of
the FIP in Proposition 2 is not the poorest individual in category 1. It is another agent in cate-
gory 1 whose income is equal to vc

1.
In order to illustrate the possibility, identified by Proposition 2, where both a BTPIT and

an FIP are possible when vc
1 > y1

1, consider the case where k = 2, N (1) = {1, 2, 3}, N (2) =
{1, 2, 3, 4} and y and x are defined by:

y1
1 = 2, y1

2 = y1
3 = 3, y2

1 = 0, y2
2 = y2

3 = y2
4 = 4

and:

x1
1 = x1

2 = x1
3 = 4, x2

1 = x2
2 = x2

3 = x2
4 = 2.

As can be seen, x �OPG y, vc
1 = vc

2 = 3, and y1
1 = 2. According to Proposition 1, agent 2 in cat-

egory 2 can transfer some income to agent 1 in category 1. However, Proposition 2 states that
an FIP is also possible. Indeed the conditions of this proposition are satisfied since x1

i = 4 > vc
1

for all i ∈ N (1). We also have that y2
i �= 3 for all i ∈ N (2). By virtue of Proposition 2, the dis-

tribution obtained after exchanging income 4 of agent 2 in category 2 with income 3 of agent 2
in category 1 remains dominated by distribution x. The situation is illustrated in Figure 6.

3.1.2. Case (B) : vc
1 = y1

1. Using crucially Lemmas 3 and 7 of the Appendix, we now es-
tablish, in the following proposition also proved in Subsection A.6 of the Appendix, the possi-
bility of performing an FIP on the initial distribution y while maintaining OPG dominance of
the newly created distribution by x.
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Figure 7

vc
1 = y1

1; an fip is possible

Proposition 3. Let x and y be two distributions in D(I) such that x �OPG y. Suppose that
vc

1 = y1
1. Then there exists a distribution x̂ ∈ D(I) such that x̂ is obtained from y by an FIP and

x �OPG x̂.

An illustration of Proposition 3 can be provided in the case where k = 2 and N (1) = N (2) =
{1, 2} by considering the distributions y and x defined, respectively, by:

y1
1 = 3, y1

2 = 7 y2
1 = 0, y2

2 = 4,

and:

x1
1 = 5, x1

2 = 6, x2
1 = 1, x2

2 = 2.

It can be verified that x �OPG y and vc
1 = 3 = y1

1. One can see (Figure 7) that agent i2 = 2 can
exchange his income with agent 1 in category 1 without breaking any of the OPG inequalities.

3.2. Proof of the Main Result (iii) ⇒ (i). We now use the diagnostic tool introduced in
the preceding subsection to prove the last implication of Theorem 1. For this sake, we let x
and y be two distributions that are as specified in Theorem 1. By a recursive argument on
the finite set of agents, proving the main implication of Theorem 1 amounts to showing that
x �OPG y implies the possibility of going from y to some distribution x ∈D(I) by a finite se-
quence of BTPIT and/or FIP in such a way that:

• x �OPG x,
• there exists h ∈ {1, . . . , k} for which xh

i = xh
i

for some i and i ∈ N (h).

Indeed, whenever one agent in one category has reached the income level that an agent
of this category has in final distribution x, we can remove that agent from that category and
restart the procedure. Since the numbers of agents and categories are finite, this completes
the proof. In order to construct our algorithm for moving from y to some distribution x as de-
scribed above by a finite sequence of BTPIT and/or FIP, we first set x(0) := y and we recur-
sively define x(n + 1) from x(n) through the following procedure, after defining vc

1(n) to be
the critical value defined as per (9) but applied to x(n) instead of to y.

(P1) If vc
1(n) = x1

1(n) then perform an FIP, which is possible according to Proposition 3.
(P2) If vc

1(n) > x1
1(n) and if ∀i ∈ N (1), x1

i > vc
1(n) and for any category h such that h0 ≥

h ≥ 2, we have xh
i (n) �= vc

1(n) where h0 is the category such that vc
1(n) = vc

h0
(n) >

vc
h0+1(n), then perform an FIP, as described by Proposition 2 (remembering that the

recipient of such an FIP is not the poorest individual in category 1 in that case).
(MT ) Otherwise perform the maximal transfer defined by Proposition 1 and Definition 6.
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By construction, x �OPG x(n) for any n. If there exists some n∗ ∈ N+ such that, for some
category h ∈ {1, . . . , k}, we have:

xh
i (n∗) = xh

j

for some i, j ∈ N (h) then the algorithm ends and is said to be finite. If it does not end, then
the algorithm generates an infinite (nonstationary) sequence. The only thing that remains to
be proved (Subsection 6.7 of the Appendix) is that the latter is impossible and that the algo-
rithm is indeed finite.

The danger of falling into an endless sequence of transfers starting from an OPG-
dominated distribution y and going to a dominating distribution x that we exclude by our al-
gorithmic procedure is a real one. It is the concern for avoiding this danger that makes us
choose an FIP in any step of the algorithm labeled as (P2) above, even though performing a
BTPIT transfer would also be possible in that case under Proposition 1. In order to illustrate
the danger, consider again the example discussed after Proposition 2 where k = 2, N (1) =
{1, 2, 3}, N (2) = {1, 2, 3, 4} and y and x are defined by:

y1
1 = 2, y1

2 = y1
3 = 3, y2

1 = 0, y2
2 = y2

3 = y2
4 = 4

and:

x1
1 = x1

2 = x1
3 = 4, x2

1 = x2
2 = x2

3 = x2
4 = 2.

If a BTPIT instead of an FIP were performed in this case, the maximal transfer would clearly
be a half transfer of 1/2. Performing this transfer would yield the distribution x̂ defined by:

x̂1
1 = x̂1

2 = 5/2, x̂1
3 = 3, x̂2

1 = 0, x̂2
2 = x̂2

3 = x̂2
4 = 4.

Note that the critical value vc
1(̂x) associated with x̂ is still 3 > x̂1

1 = 5/2. Proposition 1 indicates
that agent 3 in category 1 can make a transfer to one of the two poorest agents in that same
category. The maximal transfer that agent 3 of category 1 can transfer to either one of the two
poorest agents of category 1 is a half transfer of 1/4. If this transfer is performed, then distri-
bution ̂̂x is obtained, with ̂̂x defined by:

̂̂x1
1 = 5/2,̂̂x1

2 = ̂̂x1
3 = 11/4, ̂̂x2

1 = 0, ̂̂x2
2 = ̂̂x2

3 = ̂̂x2
4 = 4.

However, from this distribution ̂̂x, the critical value vc
1(̂x) is 11/4 and this would have allowed

a half transfer of 1/8 between either agent 2 or 3 in category 1 and the poorest agent 1 in this
category and so on. Systematically resorting to the transfer allowed by Proposition 1 in that
case would generate an infinite sequence of half transfers (with the “half” becoming smaller
and smaller). Choosing an FIP instead of a BTPIT in the situation described by Proposition 2
enables us to avoid falling into the trap of an infinite sequence of shrinking transfers.

4. extensions

The analysis of the two previous sections was restricted to distributions with the same num-
ber of agents in every category and the same total income. This restriction was motivated by
our objective of defining pure inequality reduction among unequals. We now indicate how the
analysis can be extended when the restrictions are removed. We first discuss the case where
the number of agents in each category is allowed to vary across distributions, keeping constant
both the total number of agents, n, and the total income to be distributed. We then indicate
how these two last restrictions can also be removed.
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Denote by Nx(h) the (now possibly empty) set of agents in category h for distribution x
and by nx(h) = #Nx(h) the number of those agents. We write x = {(xh

1, . . . , xh
nx(h))}k

h=1 with the

convention that, for every h, {(xh
1, . . . , xh

nx(h))} = ∅ if nx(h) = 0. As mentioned, we maintain
for the moment the assumption that:

k∑
h=1

nx(h) = n;
k∑

h=1

nx(h)∑
i=1

xh
i = I.

We call D(I) the set of all such distributions. In order to allow for the number of agents in a
given category to vary across distributions, we introduce the following elementary operation,
that will be added to the FIP and BTPIT discussed earlier.

Definition 7 (Categorical increments). Let x and y be two distributions in D(I). We say
that x is obtained from y by means of a categorical increment if there are categories g and h for
which g < h, nx(g) = ny(g) − 1, nx(h) = ny(h) + 1, as well as ig ∈ Ny(g) and ih ∈ Nx(h) such
that:

(i) xg
i = yg

i+1 for all i ≥ ig (if any).
(ii) xh

ih = yg
ig .

(iii) xh
i = yh

i−1 for all i ≥ ih + 1 (if any)
(iv) xl

i = yl
i for any other pair (i, l).

In words, x is obtained from y by means of a categorical increment if the only difference be-
tween x and y is that one agent in some category in y moves up a higher category in x while
keeping his/her income. The following result extends Theorem 1 to this new setting. This ex-
tension requires some modification of the notations and the definitions. In particular, the class
of utility functions over which utilitarian unanimity is now sought has to be restricted to those
utility functions that are increasing with respect to the agent’s type. This restricted class is de-
noted by U∗∗ and contains all lists of type-dependent (U 1, . . . ,U k) ∈ U∗ that satisfy, in addi-
tion, the property that:

U h′
(w) ≥ U h(w) ∀h′ ≥ h,(11)

and for every w. We can now establish the following Theorem.

Theorem 2. Let x and y be two distributions in D(I). Then the following four statements are
equivalent:

(i) It is possible to go from y to x by a finite sequence of categorical increments, BTPIT
and/or FIP,

(ii) x utilitarian dominates y for the class U∗∗,
(iii) x �OPG y:

k∑
h=1

nx(h)∑
i=1

max(vh − xh
i , 0) ≤

k∑
h=1

ny(h)∑
i=1

max(vh − yh
i , 0), ∀(v1, . . . , vk) ∈ V;(12)

(iv) x �CLI y, where the set of eligible definitions of the m poorest agents now writes

�(x, m) =
{

(r1, . . . , rk) : 0 ≤ rh ≤ nx(h),
k∑

h=1

rh = m, xh
rh+1 > xh′

rh′ ∀h′ > h

}
.
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Remark 1. If x dominates y with respect to any of the four equivalent statements of Theo-
rem 2, then we necessarily have

g∑
h=1

ny(h) ≥
g∑

h=1

nx(h), ∀g = 1, . . . , k.

Hence, first-order stochastic dominance of its marginal distribution of needs is a necessary
condition for x to dominate y for any of the four equivalent statements of Theorem 2.

Remark 2. When the number of agents in the different categories is allowed to vary across
distributions, OPG dominance is not equivalent to inequality (12) for lists of ordered poverty
lines of the subset V ′ defined in (A.17). Consider the following simple example involving 2
categories and 2 agents (all in category 1 in distribution x and split between the two categories
in distribution y). Incomes are: x1

1 = x1
2 = 1 and y1

1 = 0, y2
1 = 2. Then it is easy to check that x

OPG-dominates y if we restrict the poverty lines to 2 ≥ v1 ≥ v2 ≥ 0. Nevertheless x does not
dominate y for the criteria (i), (ii) and (iv). This nondominance can be seen by considering,
say, a poverty line of 3 in category 1 and 0 in category 2.

We stress that although Theorem 2 extends Theorem 1 to distributions with varying distri-
butions of n agents in the k categories, it does so only by recognizing the categorical incre-
ment as an appealing elementary operation. Although this intuitive appeal may be obvious
in contexts where the nonpecuniary source of differentiation of the agents is a clear positive
contributor to the agent’s welfare, such as health or education, it may not be in others. As
mentioned earlier, if agents are households without children that are divided between single
persons and couples, not everyone would consider a reduction in the fraction of couples in
the population as a significant social improvement. Furthermore, a categorical increment can
hardly be considered to be an “equalizing operation.” It is more about improving efficiency
than improving equality.

We now indicate how the results can be extended to the case where n (the total number
of agents) is the same but where the total income I to be distributed varies. To do so, we let
D = ⋃

I∈R++
D(I) denote the set of all income distributions x ={(xh

1, . . . , xh
nx(h))}k

h=1 such that

k∑
h=1

nx(h)∑
i=1

xh
i = Ix for some strictly positive real numberIx and list of integers (nx(1), . . . , nx(k)) ∈

{0, . . . , n}k (both depending upon the distribution) satisfying nx(1) + · · · + nx(k) = n.
There are at least two ways of extending Theorems 1 and 2 to this domain of distributions

with varying total income.
The first way would be to consider, in line with the literature on the measurement of rela-

tive inequality, a “scale-independance” property (see e.g., Cowell (2011)), that makes the mul-
tiplication of the n agents’ incomes by any common “scaling” factor a matter of indifference.
Such a property could be stated formally as follows.

Axiom 1 (Scale Independence). If x and y are two income distributions in D such that, for
all h = 1, . . . , k, (xh

1, . . . , xh
nx(h)) = (λyh

1, . . . , λyh
ny(h)) for some strictly positive real number λ,

then x and y are indistinguishable from the viewpoint of inequality.

If one accepts such an axiom—there are many reasons not to—then one can take any in-
come distribution x in D and make it indistinguishable, from the viewpoint of inequality, from
its total income share equivalent xs ∈ D(1) defined by:

(xh
1, . . . , xh

nx(h)) = (xh
1/Ix, . . . , yh

nx(h)/Ix)
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for all h = 1, . . . , k and for
k∑

h=1

nx(h)∑
i=1

xh
i = Ix. It then becomes possible to rank any two distribu-

tions x and y in D as per the ranking of their total income share equivalent xs and ys obtained
on the basis of applying either Theorem 1 to the set D(1) (in the case where the set of agents
belonging to every category is the same in x and y) or Theorem 2 to the set D(1) (in the other
case).

Another approach to comparing distributions with a variable total income would be to fol-
low Shorrocks (1983) and to recognize the social value of increasing the income of some, or
all, agents. The standard way of doing this is to introduce another elementary transformation,
which we call income increment and which we define as follows:

Definition 8 (Income increments). Let x and y be two distributions in D. We say that x is
obtained from y by means of an income increment if Nx(g) = Ny(g) for any g, and there exists
a category h, ih ≤ jh ∈ N (h) and a > 0 such that:

(i) xh
i = yh

i+1 for i = ih . . . jh − 1 (if any).
(ii) xh

jh
= yh

ih
+ a.

(iii) xl
i = yl

i for any other pair (i, l).

In words, x is obtained from y by means of an income increment if x and y only differ
by the fact that one agent in some category has an higher income in distribution x than in
distribution y. Recognizing the value of increasing the income of some agent by a dollars
in a utilitarian (or even more general welfarist) perspective obviously requires that the set
of type-dependent utility functions considered by this perspective be restricted to those lists
(U 1, . . . ,U k) ∈ U∗∗ satisfying the following additional property:

U h(w + a) ≥ U h(w) ∀h, ∀a ≥ 0.(13)

Denote by U∗∗∗ this set. We can then state the following theorem whose proof can easily be
worked out using standard results in one-dimensional dominance analysis—for instance, by
combining Quirk and Saposnik (1962) and Shorrocks (1983)—and the fact that the proof of
the equivalence between (iii) and (iv) in Theorem 1 does not assume anything about the sum
of income that is distributed. The proof is omitted here.

Theorem 3. Let x and y be two distributions in D. Then the following four statements are
equivalent.

(i) It is possible to go from y to x by a finite sequence of income increments, categorical in-
crements, BTPIT and/or FIP.

(ii) x utilitarian dominates y for the class U∗∗∗.
(iii) x �OPG y.
(iv) x �CLI y.

Of course, we could provide a similar theorem for the case where the two distributions of
Theorem 3 have the same set of agents in every category by simply removing the categori-
cal increments from the list of elementary transformations in Statement (i), and by consid-
ering instead of U∗∗∗ in Statement (ii) the set of lists of type-dependent utility functions in
(U 1, . . . ,U k) ∈ U∗ that satisfy Inequality (13).

Finally, the case where the total number of agents varies across distributions is handled
by applying the so-called Dalton principle of population replication (see, e.g., Dalton, 1920).
In the present setting, this principle says that replicating any finite number of times a dis-
tribution of income among agents in different categories is a matter of social indifference.
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Formally, consider a distribution x ={(xh
1, . . . , xh

nx(h))}k
h=1 with

k∑
h=1

nx(h)∑
i=1

xh
i = Ix for some strictly

positive real number Ix and list of integers (nx(1), . . . , nx(k)) ∈ {0, . . . , n}k satisfying nx(1) +
· · · + nx(k) = nx for some strictly positive (but now distribution-dependent) integer nx. For
any strictly positive integer m, one can then define the m-replicate of distribution x, denoted
xm, by:

xm={(xh
1, xh

1, . . . , xh
1︸ ︷︷ ︸

m-times

, . . . , xh
nx(h), xh

nx(h), . . . , xh
nx(h)︸ ︷︷ ︸

m-times

)}k
h=1.

Observe that the m-replicate of distribution x in which there are n agents is a distribution in
which there are nm agents. If one adopts the principle that any distribution x is indistinguish-
able, from the viewpoint of inequality, from its m-replicate xm for any m, then one can com-
pare the distribution x with n agents to the distribution y with m agents exactly in the same
way as one would compare the m-replicate of x to the n-replicate of y The comparison of the
two distributions xm and yn (both with the same number nm of agents) could then be made on
the basis of any of the criteria indicated in Theorems 1-3.

5. conclusion

In this article, we provide a workable definition of “income equalization” between agents
who are vertically differentiated with respect to some other characteristic. Such equalization is
defined as the transfer from a richer and more highly ranked agent to a poorer and less highly
ranked agent of an amount of income that does not exceed the income difference between the
two agents. If the transfer does not exceed half the income difference between the donor and
the receiver, it is called a BTPIT. If the transfer is larger than half the income difference, it
can be viewed as a combination of a BTPIT of less than half the income difference and an FIP.
The article has identified the normative foundations of this notion of equalization. Specifically,
it has shown that the smallest transitive ranking of distributions consistent with this notion of
equalization is the unanimity of all utilitarian planners’ rankings considering that the marginal
utility of income for every agent is decreasing with respect to both income and type. The ar-
ticle has also identified two empirically implementable criteria—the OPG criterion, and the
CLI criterion—that are both equivalent to this notion of equalization. Although Gravel and
Moyes (2012) showed that the OPG dominance of one distribution over another is equivalent
to the possibility of going from a phantom-augmented dominated distribution to a phantom-
augmented dominating one by a finite sequence of Pigou–Dalton transfers (between agents of
a given type) and/or FIP, these authors could not establish the equivalence without resorting
to dummy or phantom agents. The present article is therefore, to the best of our knowledge,
the first to provide an equivalence between a notion of normative dominance, an elementary
notion of equalization, and two empirically implementable criteria that applies to distribu-
tions of a cardinally meaningful attribute among vertically differentiated agents.

There are at least three directions in which the analysis of this article could be extended.
One of them concerns empirical applications of the dominance criteria. The OPG dominance
criterion has not been widely used in empirical analysis, even though some authors (e.g.,
Gravel et al., 2009) have shown that it is amenable to statistical inference techniques of the
kind suggested by Davidson and Duclos (2000). It is our hope that the arguments provided
in its —or in that of its CLI counterpart – will encourage its use in empirical work. Another
direction for future research would be to better appraise the performance of the two imple-
mentable criteria - OPG and CLI dominance—in terms of computational complexity. The
third direction for future research would be to identify inequality indices compatible with the
incomplete ranking of distribution characterized herein.
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a appendix

A.1 Formal Definitions of Section 2. We here provide the rigorously perfect definitions
of BTPIT and FIP that allow the rank of the agents in their categories’ income distributions
to be affected by the elementary transformations.

BTPIT: A rigorous definition. Let x and y be two distributions in D(I). We say that x is ob-
tained from y by means of a BTPIT if there are categories g and h for which g ≤ h, two agents

ig ∈ N (g) and ih ∈ N (h) for which yh
ih > yg

ig and a number α ∈]0,
yh

ih
−yg

ig

2 ] such that:

(i) xg
i = yg

i+1 for all i ∈ N (g) such that ig ≤ i < rg
+(α) (if any).

(ii) xg
rg
+(α)

= yg
ig + α.

(iii) xh
i = yh

i−1 for all i ∈ N (h) such that rh
−(α) < i ≤ ih (if any)

(iv) xh
rh−(α)

= yh
ih − α.

(v) xl
i = yl

i for any other pair (i, l) where l ∈ {1, . . . , k} and i ∈ N (l),

where rg
+(α) := max{i ∈ N (g) : yg

i < yg
ig + α}, rh

−(α) := min{i ∈ N (h) : yh
i > yh

ih − α}.

FIP: A rigorous definition. Let x and y be two distributions in D(I). We say that x is ob-
tained from y by means of an FIP if there are categories g and h for which g < h and two
agents ig ∈ N (g) and ih ∈ N (h) for which yh

ih > yg
ig such that:

(i) xg
i = yg

i+1 for all i ∈ N (g) such that ig ≤ i < rg(ih) (if any).
(ii) xg

rg(ih ) = yh
ih .

(iii) xh
i = yh

i−1 for all i ∈ N (h) such that rh(ig) < i ≤ ih (if any).
(iv) xh

rh(ig) = yg
ig .

(v) xl
i = yl

i for any other pair (i, l) where l ∈ {1, . . . , k} and i ∈ N (l),

where rg(ih) := max{i ∈ N (g) : yg
i < yh

ih} and rh(ig) := min{i ∈ N (h) : yh
i > yg

ig}.

A.2 Proof of (i) ⇒ (ii) ⇒ (iii).
Proposition A.1. Let x and y be two distributions in D(I). Then, in Theorem 1, Statement (i)

implies statement (ii) and statement (ii) implies statement (iii).

Proof. (i) ⇒ (ii) We must prove that both BTPIT and FIP increase the sum of utilities for
any collection of utility functions {U h}k

h=1 ∈ U∗.
BTPIT: Assume that x is obtained from y by a BTPIT. Then, using Definition 1, there are

categories g and h satisfying g ≤ h, agents ig ∈ N (g) and ih ∈ N (h) satisfying yg
ig < yh

ih and a
number α ∈ [0, (yh

ih − yg
ig )/2] for which we have:

k∑
j=1

n( j)∑
i=1

(
U j(x j

i

)
− U j

(
y j

i )
)

= U g
(

xg
rg
+(α)

)
− U g (yg

ig
) + U h

(
xh

rh−(α)

)
− U h (yh

ih
)

= U g (yg
ig + α

) − U g (yg
ig
) − [

U h (yh
ih ) − U h(yh

ih − α
)]

≥ 0 (if the functions U 1, . . . ,U k belong to U∗).

FIP: Assume that x is obtained from y by an FIP. Then, using Definition 2, there are cate-
gories g and h satisfying g < h, agents ig ∈ N (g) and ih ∈ N (h) satisfying yg

ig < yh
ih for which we
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have:

k∑
j=1

n( j)∑
i=1

(
U j(x j

i

)
− U j

(
y j

i

)
) = U g

(
xg

rg(ih )

)
− U g (yg

ig
) + U h

(
xh

rh(ig)

)
− U h (yh

ih
)

= U g (yh
ih
) − U g (yg

ig
) + U h (yg

ig
) − U h (yh

ih
)

= U g (yh
ih
) − U g (yg

ig
) − [

U h (yh
ih
) − U h (yg

ig
)]

≥ 0 (if the functions U 1, . . . ,U k belong to U∗).

Repeating the arguments (for the FIP and/or the BTPIT) for any finite sequence of distribu-
tions of income completes the proof of the first implication for the theorem.

(ii) ⇒ (iii). Let x and y be two distributions in D(I) for which the inequality:

k∑
h=1

n(t)∑
i=1

U h (xh
i

) −
k∑

h=1

n(t)∑
i=1

U h (yh
i

) ≥ 0(A.1)

holds for all lists of utility functions {U h}k
h=1 in U∗. Choose any vector v = (v1, . . . , vk) in the

set V and define the k functions U h : R−→R (for h = 1, . . . , k) by U h(w) = min[w − vh, 0].
Let us show that the collection of k functions {U h}h=1,...,k satisfies inequality (3) for any vec-
tor v = (v1, . . . , vk) in V , and therefore belongs to U∗. Consider any u ≥ 0, w ≤ w′ and h ≤ h′.
First note that the quantities U h(w + u) − U h(w) and U h′

(w′ + u) − U h′
(w′) belong to [0, u].

If w ≥ vh then w + u ≥ vh and w′ + u ≥ w′ ≥ vh′ . Thus, (3) holds with both sides equal
to zero.

If w ≤ vh then U h(w) = w − vh and U h(w + u) − U h(w) = min(u, vh − w). Note also that:

U h′
(w′ + u) − U h′

(w′) ≤ −U h′
(w′) ≤ vh′ − w′ ≤ vh − w.

Hence, U h′
(w′ + u) − U h′

(w′) ≤ min(u, vh − w) and inequality (3) holds for that case also. We
have therefore proved that the collection of functions {U h}h=1,...,k belongs to the class U∗ for
all v = (v1, . . . , vk) ∈ V . Since inequality (A.1) holds for all such functions so that we have:

k∑
h=1

n(h)∑
i=1

min
[
xh

i − vh, 0
] ≥

k∑
h=1

n(h)∑
i=1

min
[
yh

i − vh, 0
]

⇐⇒
k∑

h=1

n(h)∑
i=1

max
[
vh − xh

i , 0
] ≤

k∑
h=1

n(h)∑
i=1

max
[
vh − yh

i , 0
]

for all v = (v1, . . . , vk) ∈ V , as required by the OPG criterion. �

A.3 Proof of (iii) ⇔ (iv).
Proposition A.2. Let x and y be two distributions in D(I). Then x �OPG y if and only if

x �CLI y.

Proof. Assume first that x �CLI y, and consider any v ∈ V . We must show that Px(v) ≤
Py(v). Let the vector of ranks (r1, . . . , rk) be defined, for any h ∈ {1, . . . , k} by:

rh = max{i ∈ N (h) : xh
i ≤ vh}, if {i ∈ N (h) : xh

i ≤ vh} �= ∅

= 0 otherwise.
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Clearly, rh ∈ {0, . . . , nh} for any h. Let m = ∑
h rh. We first show that (r1, . . . , rk) ∈ �(x, m).

By contradiction, assume that (r1, . . . , rk) /∈ �(x, m). By definition of �(x, m) (Expression
(6)), there exist categories h and h′ satisfying h′ > h such that xh

rh+1 ≤ xh′
rh′ . By definition of rh,

we have that xh′
rh′ ≥ xh

rh+1 > xh
rh

≥ v(x, y) (at least under the convention that xh
0 = v(x, y)). This

means that xh′
rh′ = vh′

> vh = xh
rh

(if rh ≥ 1) and xh′
rh′ = vh′

> vh (if rh = 0 and vh < xh
1 ). But this

contradicts the fact that v ∈ V . Observe that:

Px(v) =
k∑

h=1

rhvh −
k∑

h=1

∑
i≤rh

xh
i .

Let (r′
1, . . . , r′

k) ∈ �(y, m) be any vector of ranks such that
∑h

g=1 r′
g ≥ ∑h

g=1 rg for any h

and
∑k

h=1

∑
i≤rh

xh
i ≥ ∑k

h=1

∑
i≤r′

h
yh

i . Such a vector of ranks exists because x �CLI y. We then
have:

Py(v) =
k∑

h=1

n(h)∑
i=1

max
{
0, vh − yh

i

} ≥
k∑

h=1

∑
i≤r′

h

max
{
0, vh − yh

i

}

≥
k∑

h=1

∑
i≤r′

h

(
vh − yh

i

) =
k∑

h=1

r′
hvh −

k∑
h=1

∑
i≤r′

h

yh
i .

Note that

k∑
h=1

r′
hvh =

k∑
h=1

rhvh +
k−1∑
h=1

(vh − vh+1)

⎛⎝ h∑
g=1

r′
g −

h∑
g=1

rg

⎞⎠ ≥
k∑

h=1

rhvh

(because
∑h

g=1 r′
g ≥ ∑h

g=1 rg and (vh − vh+1) ≥ 0 for any h). It follows that Py(v) ≥ Px(v),
as required.

Assume now that x �OPG y. Take any integer m ∈ {1, . . . , n} and any (r1, . . . , rk) ∈ �(x, m).
Define the set F (y, r1, . . . , rk) by:

F (y, r1, . . . , rk) =
⎧⎨⎩(i1, . . . , ik) ∈ �(y, m) :

h∑
g=1

ig ≥
h∑

g=1

rg ∀h,

k∑
g=1

ig = m

⎫⎬⎭.

This set is nonempty. Indeed, if m ∈ {∑h−1
g=1 ng + 1, . . . ,

∑h
g=1 ng} for some h = 1, . . . , k, then

the combination of ranks (i1, . . . , ik) := (n1, n2, . . . , nh−1, m − ∑h−1
g=1 ng, 0, . . . , 0) belongs to

�(y, m) by construction. Moreover, we have

ĥ∑
g=1

ig =
ĥ∑

g=1

ng ≥
ĥ∑

g=1

rg ∀ ĥ = 1, . . . , h − 1

and

̂̂h∑
g=1

ig = m ≥
̂̂h∑

g=1

rg ∀̂̂h = h, . . . , k.
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Hence (i1, . . . , ik) ∈ F (y, r1, . . . , rk). The nonempty set F (y, r1, . . . , rk) thus contains all ad-
missible (as per set �) lists of ranks for distribution y that satisfy Inequality (7) of Defi-
nition 5 vis-à-vis the list of ranks (r1, . . . , rk). Define now the vector of ranks (r′

1, . . . , r′
k) ∈

{0, . . . , n1} × . . . × {0, . . . , nk} by:

(r′
1, . . . , r′

k) ∈ arg min
(i1,...,ik )∈F (y,r1,...,rk )

k∑
h=1

∑
i≤ih

yh
i .(A.2)

Hence, the list of ranks (r′
1, . . . , r′

k) are those that define a set of m “poorest” agents in sit-
uation y, under the constraint that

∑h
g=1 r′

g ≥ ∑h
g=1 rg for any h. Consider now the vector of

poverty lines v defined as follows (for any h = 1, . . . , k)5:

vh := max

⎧⎨⎩{yl
rl

: l ≥ h} ∪ {yg
rg

: g < h and
j∑

e=1

r′
e >

j∑
e=1

re ∀ j = g, . . . , h − 1}
⎫⎬⎭.

This vector v is well defined because, for every h, at least one of sets {yl
rl

: l ≥ h} or {yg
rg :

g < h and
∑ j

e=1 r′
e >

∑ j
e=1 re ∀ j = g, . . . , h − 1} is not empty. Let us first check that v ∈ V .

This amounts to showing that if h and h′ are two categories such that h < h′, then vh ≥
vh′ . But this is an immediate consequence of the fact that, for any h and h′ such that h <

h′, set {yl
rl

: l ≥ h} ∪ {yg
rl : g < h and

∑ j
e=1 r′

e >
∑ j

e=1 re ∀ j = g, . . . , h − 1} contains set {yl
rl

: l ≥
h′} ∪ {yg

rl : g < h′ and
∑ j

e=1 r′
e >

∑ j
e=1 re ∀ j = g, . . . , h′ − 1} as a subset. As a result, the max-

imum taken over the larger set cannot be smaller than the maximum taken over the sub-
set. We now prove that, for any h = 1, . . . , k, we have vh ∈ [yh

rh
, yh

rh+1]. By definition of vh,
the only inequality that needs to be established is vh ≤ yh

rh+1. By contradiction, assume that

vh > yh
rh+1. Since (r′

1, . . . , r′
k) ∈ �(y, m), we have yj

r′
j
< yg

r′
g+1 for every two categories g and j

such that g < j. Hence the fact that vh > yh
rh+1 may only be due to the existence of a cate-

gory g < h such that
∑l

e=1 r′
e >

∑l
e=1 re ∀l = g, . . . , h − 1 and yg

r′
g
> yh

r′
h+1. Consider then the list

of ranks (r′′
1, . . . , r′′

k) ∈ {0, . . . , n1} × . . . × {0, . . . , nk} defined by r′′
e = r′

e for e �= g, h, r′′
h = r′

h + 1
and r′′

g = r′
g − 1 Observe that (r′′

1, . . . , r′′
k) ∈ F (y, r1, . . . , rk). Now:

k∑
h=1

∑
i≤r′′

h

yh
i =

k∑
h=1

∑
i≤r′

h

yh
i + yh

r′
h+1 − yg

r′
g
<

k∑
h=1

∑
i≤r′

h

yh
i(A.3)

(because yg
r′

g
> yh

r′
h+1). But this contradicts the definition of (r′

1, . . . , r′
k) provided by (A.2).

Since yh
r′

h+1 ≥ vh ≥ yh
r′

h
for all h, we have:

Py(v) =
k∑

h=1

∑
i≤r′

h

(vh − yh
i ) =

k∑
h=1

r′
hvh −

k∑
h=1

∑
i≤r′

h

yh
i .

5 Again with the convention that, if r′
h = 0, then yh

r′h
= v(x, y).



28 faure and gravel

and:

Px(v) =
k∑

h=1

n(h)∑
i=1

max
{
0, vh − xh

i

} ≥
k∑

h=1

∑
i≤rh

max
{
0, vh − xh

i

}

≥
k∑

h=1

∑
i≤rh

(
vh − xh

i

) =
k∑

h=1

rhvh −
k∑

h=1

∑
i≤ih

xh
i .

Now, as established above:

k∑
h=1

r′
hvh =

k∑
h=1

rhvh +
k−1∑
h=1

(vh − vh+1)

⎛⎝ h∑
g=1

r′
g −

h∑
g=1

rg

⎞⎠ .

Let h ≤ k − 1. By construction of the vector of poverty line v, if
∑h

g=1 r′
g >

∑h
g=1 rg then

vh = vh+1. Indeed let g0 be the category such that
∑g

e=1 r′
e >

∑g
e=1 re for g = g0, . . . , h and∑g0−1

e=1 r′
e = ∑g0−1

e=1 re. Then vh = vh+1 = maxg≥g0 yg
ig

. It follows that
∑k

h=1 r′
hvh = ∑k

h=1 rhvh.
By assumption, Py(v) ≥ Px(v). Hence

k∑
h=1

∑
i≤r′

h

yh
i =

k∑
h=1

r′
hvh − Py(v) ≤

k∑
h=1

rhvh − Px(v) ≤
k∑

h=1

∑
i≤rh

xh
i ,

which proves the result. �

A.4 Some Technical Lemmas. In this section, we prove some technical lemmas. Note that
we assume without loss of generality that, in the two distributions x and y under considera-
tion, we have xh

i �= yh
j for every type h = 1, . . . , k and every i, j ∈ N (h). In effect, if this con-

dition was not satisfied, that is, if there was a type h for which xh
i = yh

j for some i, j ∈ N (h),
these two agents could be removed and we could proceed with the remaining population.
Since the OPG criterion is additively separable, such a removal of agents with the same type
and income from distributions x and y would not affect their ranking as per the OPG crite-
rion.

The first auxiliary result of this section is the following lemma (proved, like all lemmas and
formal claims in the Appendix), which says that if x is a distribution that dominates y for the
OPG criterion, the poorest person in the worst category is weakly richer in x than in y and,
conversely, the richest person in the best category is poorer in x than in y.

Lemma A.1. Let x and y be distributions in D(I), for which x �OPG y. Then y1
1 < x1

1 and
yk

n(k) > xk
n(k).

Proof. For the first statement, assume by contraposition that y1
1 > x1

1. Consider then the
vector of poverty lines (y1

1, v(x, y), . . . , v(x, y)) ∈ V . One has:

Py (y1
1, v(x, y), . . . , v(x, y)

) = 0 and:

Px (y1
1, v(x, y), . . . , v(x, y)

) ≥ y1
1 − x1

1 > 0

so that x �OPG y does not hold, as required. The second statement holds by a mirror
argument. �
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The next lemma states that, if a distribution x dominates a distribution y by the OPG cri-
terion, then the sum of incomes held by agents in the h lowest categories must be larger or
equal in x than in y for any h.

Lemma A.2. Let x and y be two distributions in D(I) for which x �OPG y. Then∑h
h=1

∑n(h)
i=1 xh

i ≥ ∑h
h=1

∑n(h)
i=1 yh

i for all h = 1, . . . , k.

Proof. For any type h = 1, . . . , k, the vector of poverty lines vh ∈ Dk defined by:

vh = (v(x, y), . . . , v(x, y)︸ ︷︷ ︸, v(x, y), . . . , v(x, y)︸ ︷︷ ︸)

h k − h

clearly belongs to V . Hence, since x �OPG y, we have:

Px(vh) ≤ Py(vh)

⇐⇒
h∑

h=1

n(h)v(x, y) −
h∑

h=1

n(h)∑
i=1

xh
i ≤

h∑
h=1

n(h)v(x, y) −
h∑

h=1

n(h)∑
i=1

yh
i

⇐⇒
h∑

h=1

n(h)∑
i=1

xh
i ≥

h∑
h=1

n(h)∑
i=1

yh
i . �

We next state an important lemma that provides a sufficient condition for performing an
FIP from distribution y in such a way that the distribution obtained after making such an FIP
remains dominated by x as per the OPG criterion. For any income poverty threshold t ∈ R and
any distribution x, we also denote by Px

(h, t) and Px(h, t) the (possibly empty) sets of agents
of type h who are, respectively, weakly and strictly poor for threshold t in distribution x. These
sets are defined by:

Px
(h, t) = {

i ∈ N (h) : xh
i ≤ t

}
and Px(h, t) = {

i ∈ N (h) : xh
i < t

}
whereas the number of poor that these sets contain are denoted, respectively, by px(h, t) =
#Px

(h, t) and px(h, t) = #Px(h, t).

Lemma A.3. Let x and y be two distributions in D(I) such that x �OPG y. Assume that

• there exist w ∈ V , i1 ∈ N (1) and h0 ∈ {2, . . . , k} such that6

Py(w) = Px(w), y1
i1 = w1 = · · · = wh0 > wh0+1;

• there exists a category g0 such that: 2 ≤ g0 ≤ h0 and:

g0∑
h=l+1

py (h, y1
i1

)
<

g0∑
h=l+1

px (h, y1
i1

) ∀ l = 1, . . . , g0 − 1.(A.4)

Then there exists a distribution x ∈ D(I) such that x is obtained from y by an FIP and x �OPG

x.

6 With the convention that wk+1 = v(x, y)
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Proof. By inequality (A.4) there exists at least one agent with income strictly
larger than y1

i1
in one of the categories {2, . . . , g0}. Hence we can define y∗ :=

min
{

yg
i : 2 ≤ g ≤ g0, i ∈ N (g), yg

i > y1
i1

}
. We also define γ ∈ {2, . . . , g0} and iγ ∈ N (γ ) by

γ := min{g ≥ 2 : ∃i ∈ N (g) such that yg
i = y∗}, iγ := min{i ∈ N (γ ) : yγ

i = y∗}

Namely, yγ

iγ
corresponds to the smallest income in distribution y, among the incomes that are

strictly larger than y1
i1

. We now prove that for any v ∈ V , we have:

Py(v) − Px(v) ≥ min
{

yγ

iγ
, v1

}
− max

{
y1

i1 , vγ

} ;(A.5)

If either v1 ≤ y1
i1

or vγ ≥ yγ

iγ
, inequality (A.5) trivially holds (because min{yγ

iγ
, v1} −

max{y1
i1
, vγ } ≤ 0 in this case). Hence we suppose that v1 > y1

i1
and vγ < yγ

iγ
. We establish

the result by considering three different cases.

Case (i): y1
i1

≤ vg0 ≤ v1 ≤ yγ

iγ
.

By definition of yγ

iγ
, we have that that:

py(h,w) = py(h,w′)

for h = 2, . . . , g0 and any w and w′ ∈ [y1
i1
, yγ

iγ
]. Indeed, the number of poor in categories

2, .., g0 at distribution y does not change when we move the poverty line applicable to all these
categories from y1

i1
to yγ

iγ
). Combining this with inequality (A.4) we obtain that

g0∑
g=h

[py(g, vg) − px(g, vg)] ≤ −1, ∀h = 2, . . . , g0.

Thus, we have:

g0∑
g=2

n(g)∑
i=1

[
max

(
v1 − yg

i , 0
) − max

(
v1 − xg

i , 0
)]

≤
g0∑

g=2

n(g)∑
i=1

[
max

(
vg − yg

i , 0
) − max

(
vg − xg

i , 0
)]

+
g0∑

g=2

[py (g, vg) − px (g, vg)] (v1 − vg)

=
g0∑

g=2

n(g)∑
i=1

[
max

(
vg − yg

i , 0
) − max

(
vg − xg

i , 0
)]

+
g0∑

h=2

g0∑
g=h

[py (g, vg) − px(g, vg)] (vh−1 − vh)

≤
g0∑

g=2

n(g)∑
i=1

[
max

(
vg − yg

i , 0
) − max

(
vg − xg

i , 0
)] + vg0 − v1.
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Hence:

Py(v) − Px(v) = Py (v1, . . . , v1, vg0+1, . . . , vk) − Px (v1, . . . , v1, vg0+1, . . . , vk)

−
g0∑

g=2

n(g)∑
i=1

[
max(v1 − yg

i , 0) − max(v1 − xg
i , 0)

]

+
g0∑

g=2

n(g)∑
i=1

[
max(vg − yg

i , 0) − max(vg − xg
i , 0)

]
≥ Py(v1, . . . , v1, vg0+1, . . . , vk)

−Px(v1, . . . , v1, vg0+1, . . . , vk) + v1 − vg0

≥ v1 − vg0 (because (v1, . . . , v1, vs0+1, . . . , vk) ∈ V )

≥ v1 − vγ

= min
{

yγ

iγ
, v1

}
− max

{
y1

i1 , vγ

}
,

as required.

Case (ii): v1 > yγ

iγ
and vg0 ≥ y1

i1
. In this case, there exists some h ∈ {1, . . . , γ − 1} such that

v1 ≥ . . . ≥ vh > yγ

iγ
≥ vh+1 ≥ . . . ≥ vk. Let ṽ = (yγ

iγ
, . . . , yγ

iγ
, vh+1, . . . , vk). Then ṽ belongs to

case (i) and, consequently:

Py(ṽ) − Px(ṽ) ≥ ṽ1 − ṽγ = y1
i1 − vγ .

Moreover denoting v̂ := (v1, . . . , vh, v
c
h+1, . . . , v

c
k), we have, by definition of vc :

(Py(ṽ) − Px(ṽ)) − (Py(v) − Px(v)) = (Py(vc) − Px(vc)) − (Py(v̂) − Px(v̂))

= Px(v̂) − Px(v̂)

≤ 0.

Hence we have:

Py(v) − Px(v) ≥ Py(ṽ) − Px(ṽ) ≥ yγ

iγ
− vγ = min

{
yγ

iγ
, v1

}
− max

{
y1

i1 , vγ

}
as required.

Case (iii): vg0 < yi1 . (without any assumption on the relative standing of v1 vis-à-vis yγ

iγ
)

In this case, there exists some h < {1, . . . , g0 − 1} such that vh ≥ y1
i1

> vh+1 ≥ . . . ≥ vk. We first
note that:

k∑
g=h+1

n(g)∑
i=1

[
max

(
vg − yg

i , 0
) − max

(
v1 − xg

i , 0
)]

≥
k∑

g=h+1

n(g)∑
i=1

[
max

(
wg − yg

i , 0
) − max

(
w1 − xg

i , 0
)]
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because assuming otherwise would imply that:

Py(w1, . . . ,wh, vh+1, . . . , vk) − Px(w1, . . . ,wh, vh+1, . . . , vk) < Py(w) − Px(w)

= 0,

and this inequality contradicts the statement that x �OPG y (since the vector of poverty lines
(w1, . . . ,wh, vh+1, . . . , vk) belongs to V).

Let ṽ := (v1, . . . , vh,wh+1, . . . ,wk) ∈ V . Observe with care that the vector ṽ so defined
corresponds either to case (i) (if v1 ≤ yγ

iγ
) or to case (ii) (if v1 > yγ

iγ
). Observe also that

max{y1
i1
, ṽγ } ≤ max{y1

i1
, vγ }. Indeed if ṽγ ≤ y1

i1
there is nothing to prove. If on the other hand

ṽγ > y1
i1

, then ṽγ = vγ by definition of h and the inequality max{y1
i1
, ṽγ } ≤ max{y1

i1
, vγ } also

holds. Collecting these observations, we obtain that

Py(v) − Px(v) ≥ Py (̃v) − Px (̃v)

≥ min
{

yγ

iγ
, v1

}
− max

{
ṽγ , y1

i1

}
(by cases (i) or (ii))

≥ min
{

yγ

iγ
, v1

}
− max

{
y1

i1 , vγ

}
,

which proves (A.5) in that last case.
Let us now establish the existence of a distribution x ∈ D(I) that is obtained from y by an

FIP and that is such that x �OPG x. Let x be the distribution obtained from y by means of an
FIP from agent iγ ∈ N(γ ) to agent i1 ∈ N(1). Let us show that x �OPG x. Consider any vector
v ∈ V of ordered poverty lines. If vγ ≥ yγ

iγ or v1 ≤ y1
i1 , it is clear that Px(v) = Py(v) ≥ Px(v). If

on the other hand vγ < yγ

iγ and v1 > y1
i1 , by straightforward computations7:

Px(v) = Py(v) − max
{
yγ

iγ − vγ , 0
} − max

{
y1

i1 − v1, 0
}

+ max
{
y1

i1 − vγ , 0
} + max

{
yγ

iγ − v1, 0
}

= Py(v) − yγ

iγ + vγ + max
{
y1

i1 − vγ , 0
} + max

{
yγ

iγ − v1, 0
}

= Py(v) − (
yγ

iγ − max
{
yγ

iγ − v1, 0
}) + (

vγ − max
{
y1

i1 − vγ , 0
})

= Py(v) − min
{
yγ

iγ , v1
} + max

{
y1

i1 , vγ

}
.

Using the inequality (A.5) proved above, this implies that:

Px(v) − Px(v) ≥ Py(v) − Px(v) − min
{
yγ

iγ , v1
} + max{y1

iγ , vγ } ≥ 0,

which proves the result. �

Although this result is important, it is of limited immediate usefulness. There are actually
no obvious ways to identify the poverty lines vector w that is required by this lemma. We will
nonetheless use Lemma A.3 on two occasions in what follows.

A.5 Case (A): Proof of Propositions 1 and 2 .
We start by establishing the following important result: if an ordered list v ∈ V of poverty lines
is such that v1 > y1

1 and vh0 < vc
h0

for some h0 ∈ {2, . . . , k}, then Px(v) < Py(v). Specifically, we
prove the following result.

7 Some of them using the fact that max{a, b} = b + max{a − b, 0} and min{c, d} = c − max{c − d, 0}.
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Lemma A.4. Let x and y be two distributions in D(I) such that x �OPG y. Suppose that
vc

1 > y1
1. Then, if v ∈ V is such that v1 > y1

1 and vh0 < vc
h0

for some h0 ∈ {2, . . . , k}, we will have
Px(v) < Py(v).

Proof. Define the two vectors of poverty lines v− and v+ by:

v−
h = min(vh, v

c
h) and,

v+
h = max(vh, v

c
h).

It is clear that v− and v+ both belong to V . By definition of v− and v+, we have:

Px(v+) − Py(v+) + Px(v−) − Py(v−)

= Px(vc) − Py(vc) + Px(v) − Py(v)(A.6)

By definition of vc, we have Px(vc) − Py(vc) = 0. Assume therefore by contradiction that
Px(v) − Py(v) = 0 so that, using equality (A.6), we have:

Px(v+) − Py(v+) + Px(v−) − Py(v−) = 0.

As there exists h0 such that vh0 < vc
h0

, we must have v−
h0

= vh0 < vc
h0

. Moreover v−
1 =

min(v1, v
c
1) > y1

1. Consequently, by the recursive definition of vc, we must have that:

Px(v−) − Py(v−) < 0.

But this implies that:

Px(v+) − Py(v+) > 0

a contradiction of the fact that x �OPG y and that v+ belongs to V . �

We now state as a corollary of Lemma A.4 the following alternative definition of the critical
vector vc.

Corollary A.1. Let x and y be two distributions in D(I) such that x �OPG y. Suppose that
vc

1 > y1
1. Then, for every h = 2, . . . , k , we have:

vc
h = min

vh

{∃v−h ∈ [v(x, y), v(x, y)]k−1 : v1 > y1
1, v = (vh, v−h) ∈ V and Px(v) = Py(v)

}
.

Proof. Using the recursive definition of the vector vc provided by (4), it is clear that:

vc
h ≥ min

vh

{∃v−h : v1 > y1
1, v = (vh, v−h) ∈ V and Px(v) = Py(v)

}
.

for all h. In order to prove that:

vc
h ≤ min

vh

{∃v−h : v1 > y1
1, v = (vh, v−h) ∈ V and Px(v) = Py(v)

}
,

we simply note that, thanks to Lemma A.4, any vector v ∈ V such that v1 > y1
1 and Px(v) −

Py(v) = 0 must also satisfy vh ≥ vc
h for all h ∈ {2, . . . , k}. �
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The next lemma establishes an important comparative statement about adjacent sets of
strictly and weakly poor agents in x and y when these sets are defined with respect to the vec-
tor of ordered poverty lines vc where the poverty lines assigned to the adjacent categories are
the same. Specifically, the next lemma establishes the following:

Lemma A.5. Let x and y be two distributions in D(I) such that x �OPG y. Suppose that
vc

1 > y1
1. Then, for any h0 ∈ {1, . . . , k} and h ∈ {0, . . . , k − h0} such that vc

h0−1 > vc
h0

= vc
h0+h

>

vc
h0+h+1

8, we have, for any l = 0, . . . , h:

h0+l∑
h=h0

px (h, vc
h) ≤

h0+l∑
h=h0

py (h, vc
h)(A.7)

and:

h0+h∑
h=h0+l

px (h, vc
h) >

h0+h∑
h=h0+l

py (h, vc
h) .(A.8)

Proof. We first note that, for any sufficiently small strictly positive number ε, the vector of
poverty lines: (

vc
1, . . . , v

c
h0−1, v

c
h0

+ ε, . . . , vc
h0

+ ε︸ ︷︷ ︸, vc
h0

, . . . , vc
h0︸ ︷︷ ︸, vc

h0+h+1
, . . . , vc

k

)
l − h0 h − l

belongs to the set V . Hence, since x �OPG y, we have:

Px(vc) + ε

⎡⎣h0+l∑
h=h0

px (h, vc
h)

⎤⎦
= Px

(
vc

1, . . . , v
c
h0−1, v

c
h0

+ ε, . . . , vc
h0

+ ε, vc
h0

, . . . , vc
h0

, vc
h0+h+1

, . . . , vc
k

)
≤ Py

(
vc

1, . . . , v
c
h0−1, v

c
h0

+ ε, . . . , vc
h0

+ ε, vc
h0

, . . . , vc
h0

, vc
h0+h+1

, . . . , vc
k

)
= Py(vc) + ε

⎡⎣h0+l∑
h=h0

py(h, vc
h)

⎤⎦ ,

which, when combined with the fact that Px(vc) − Py(vc) = 0 by definition of vc, implies in-
equality (A.7). Similarly the vector of poverty lines:(

vc
1, . . . , v

c
h0−1, v

c
h0

, . . . , vc
h0︸ ︷︷ ︸, vc

h0
− ε, . . . , vc

h0
− ε︸ ︷︷ ︸, vc

h0+h+1
, . . . , vc

k

)
l − h0 h − l

8 Using if necessary the convention that vc
0 = v(x, y) and vc

k+1
= v(x, y).
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belongs to the set V for a small enough ε. By the recursive definition of vc, we have:

= Px
(
vc

1, . . . , v
c
h0−1, v

c
h0

, . . . , vc
h0

, vc
h0

− ε, . . . , vc
h0

− ε, vc
h0+h+1

, . . . , vc
k

)
< Py

(
vc

1, . . . , v
c
h0−1, v

c
h0

, . . . , vc
h0

, vc
h0

− ε, . . . , vc
h0

− ε, vc
h0+h+1

, . . . , vc
k

)
and, therefore:

Px(vc) − ε

⎡⎣ h0+h∑
h=h0+l

px (h, vc
h)

⎤⎦
= Px

(
vc

1, . . . , v
c
h0−1, v

c
h0

, . . . , vc
h0

, vc
h0

− ε, . . . , vc
h0

− ε, vc
h0+h+1

, . . . , vc
k

)
< Py

(
vc

1, . . . , v
c
h0−1, v

c
h0

, . . . , vc
h0

, vc
h0

− ε, . . . , vc
h0

− ε, vc
h0+h+1

, . . . , vc
k

)
= Py(vc) − ε

⎡⎣ h0+h∑
h=h0+l

py (h, vc
h)

⎤⎦ ,

which, when combined with Px(vc) − Py(vc) = 0, implies inequality (A.8). �

Lemma A.5 has the following important corollary, that will be quite useful in establishing
the possibility of making a nonzero BTPIT to the poorest individual in the worst category of
distribution y when critical value vc

1 is strictly larger than the income (y1
1) of this individual.

This corollary in fact establishes the existence of (potential donors) individuals in a weakly
larger category who have, in distribution y, an income of vc

1.

Corollary A.2. Let x and y be two distributions in D(I) such that x �OPG y. Suppose
that vc

1 > y1
1. Let h0 ∈ {0, . . . , k − 1} be such that vc

1 = vc
h0+1 > vc

h0+2 Then, there exists some j ∈
{1, . . . , h0 + 1} for which y j

i = vc
1, for some i ∈ N ( j).

Proof. If vc
1 > vc

2, we can apply Lemma A.5 to the case where h0 = 1 and h = 0 . In this
case, Inequalities (A.7) and (A.8 ) write:

px (1, vc
1) ≤ py(1, vc

1)

and:

px (1, vc
1) > py(1, vc

1) .

Hence, there must exist an agent i ∈ N(1) such that y1
i = vc

1. More generally, if vc
1 = vc

2 = · · · =
vc

k+1 > vc
k+2, one applies Lemma A.5 to the case where h0 = 1 (taking l = h in (A.7) and l = 0

in (A.8)), which gives

h+1∑
h=1

px (1, vc
1) ≤

h+1∑
h=1

py (1, vc
1)
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and:

h+1∑
h=1

px (1, vc
1) >

h+1∑
h=1

py (1, vc
1) .

One then obtains the existence of some j ∈ {1, . . . , h + 1} and some i ∈ N( j) such that yj
i =

vc
j = vc

1. �

The next lemma shows that, when critical value vc
1 is strictly larger than y1

1, we in fact have
some leeway to perform a BTPIT while preserving OPG dominance. Specifically, the follow-
ing lemma deals with ordered vectors of poverty lines that assign to the worst category a
poverty line only marginally above the lowest income observed in that category. This lemma
says, roughly, that for any such ordered vector of poverty lines, the poverty gap in the domi-
nated distribution must exceed that of the dominating one by an even larger margin. The pre-
cise statement of this lemma is as follows:

Lemma A.6. Let x and y be two distributions in D(I) such that x �OPG y. Suppose that vc
1 >

y1
1. Then, for some strictly positive but suitably small real number ε1, we have:

Py (y1
1 + ε1, v2, . . . , vk

) ≥ Px (y1
1 + ε1, v2, . . . , vk

) + ε1,

provided (y1
1 + ε1, v2, . . . , vk) ∈ V .

Proof. Given x and y two distributions, define the income support of these two distribu-
tions:

I(x, y) = {
a : ∃h ∈ {1, . . . , k} , i ∈ {

1, . . . , n(h)
}

such that xh
i = a or yh

i = a
}
.

Then choose the strictly positive number small enough as to satisfy:

ε1 < min
a,b∈I(x,y),a�=b

|a − b|(A.9)

and

ε1 < vc
1 − y1

1.(A.10)

Consider then any numbers v2, . . . , vk such that v = (y1
1 + ε1, v2, . . . , vk) ∈ V and let h0 ∈

{1, . . . , k} be such that vh > y1
1 for all h ∈ {1, . . . , h0} and vh ≤ y1

1 for all j ∈ {h0 + 1, . . . , k} (if
there are such j). One can then write the vector v as:

v = (y1
1 + ε1, y1

1 + ε2, . . . , y1
1 + εh0 , vh0+1, vh0+2, . . . , vk)

for some (possibly empty) list ε2, . . . , εh0 satisfying ε1 ≥ ε2 . . . ≥ εh0 > 0. Let us prove that:

Py(v) ≥ Px(v) + ε1.

Clearly, for ε1 satisfying (A.9) and (A.10), we have:

Py(v) = Py (y1
1, . . . , y1

1, vh0+1, vh0+2, . . . , vk
) +

h0∑
h=1

εh py (h, y1
1

)
,
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and:

Px(v) = Px (y1
1, . . . , y1

1, vh0+1, vh0+2, . . . , vk
) +

h0∑
h=1

εh px (h, y1
1

)
,

and, therefore:

Py(v) − Px(v) = Py (y1
1, . . . , y1

1, vh0+1, . . . , vk
) − Px (y1

1, . . . , y1
1, vh0+1, . . . , vk

)

+
h0∑

h=1

εh
[
py (h, y1

1

) − px (h, y1
1

)]
.(A.11)

If

Py (y1
1, . . . , y1

1, vh0+1, . . . , vk
)

> Px (y1
1, . . . , y1

1, vh0+1, . . . , vk
)
,

then there is nothing to prove. Indeed, from Lemma A.1 and the assumption that y1
i �= x1

i for
all i ∈ N (1), we have that py(1, y1

1) ≥ 1 and px(1, y1
1) = 0. Hence:

Py (y1
1, . . . , y1

1, vh0+1, vh0+2, . . . , vk
) − Px (y1

1, . . . , y1
1, vh0+1, vh0+2, . . . , vk

)
+ε1[py(1, y1

1) − px(1, y1
1)]

> ε1

for any ε1 satisfying (A.9) and (A.10). Because of this, we can choose ε1 sufficiently small so as
make the numbers ε2, . . . , εh0 sufficiently small for the inequality:

Py (y1
1, . . . , y1

1, vh0+1, vh0+2, . . . , vk
) − Px (y1

1, . . . , y1
1, vh0+1, vh0+2, . . . , vk

)
+ε1

[
py (1, y1

1

) − px (1, y1
1

)] +
h0∑

h=2

εh
[
py (h, y1

1

) − px (h, y1
1

)]
≥ ε1

to hold. Suppose now that:

Py (y1
1, . . . , y1

1, vh0+1, vh0+2, . . . , vk
) = Px (y1

1, . . . , y1
1, vh0+1, vh0+2, . . . , vk

)
.

In that case, it follows from (A.11) that:

Py(v) − Px(v) =
h0∑

h=1

εh
[
py (h, y1

1

) − px (h, y1
1

)]
.

This equality can equivalently be written as:

Py(v) − Px(v) =
h0∑

h=1

[εh − εh+1]
h∑

g=1

[
py (g, y1

1

) − px (g, y1
1

)]
(A.12)
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using the convention that εh0+1 = 0. Note that, by definition of vc
1, we must have Py(v) −

Px(v) > 0 if ε1 satisfies (A.10). Note also that, for all h ∈ {1, . . . , h0}, we have:

h∑
g=1

[
py (g, y1

1

) − px (g, y1
1

)] ≥ 1.(A.13)

Indeed, by definition of vc
1, we have for every strictly positive δ ≤ ε1 :

Py
(

y1
1 + δ, . . . , y1

1 + δ︸ ︷︷ ︸, y1
1, . . . , y1

1︸ ︷︷ ︸, vh0+1, vh0+2, . . . , vk

)
h h0 − h

> Px
(

y1
1 + δ, . . . , y1

1 + δ︸ ︷︷ ︸, y1
1, . . . , y1

1︸ ︷︷ ︸, vh0+1, vh0+2, . . . , vk

)
.

h h0 − h

Yet,

Py
(

y1
1 + δ, . . . , y1

1 + δ︸ ︷︷ ︸, y1
1, . . . , y1

1︸ ︷︷ ︸, vh0+1, vh0+2, . . . , vk

)
h h0 − h

= Py (y1
1, . . . , y1

1, vh0+1, vh0+2, . . . , vk
) + δ

h∑
g=1

py (g, y1
1

)
and:

Px
(

y1
1 + δ, . . . , y1

1 + δ︸ ︷︷ ︸, y1
1, . . . , y1

1︸ ︷︷ ︸, vh0+1, vh0+2, . . . , vk

)
h h0 − h

= Px(x1
1, . . . , x1

1, vh0+1, vh0+2, . . . , vk) + δ

h∑
g=1

px (g, y1
1

)
.

Hence, under the assumption that:

Py (y1
1, . . . , y1

1, vh0+1, vh0+2, . . . , vk
) = Px (y1

1, . . . , y1
1, vh0+1, vh0+2, . . . , vk

)
we have:

Py(y1
1 + δ, . . . , y1

1 + δ, y1
1, . . . , y1

1, vh0+1, vh0+2, . . . , vk)

−Px(y1
1 + δ, . . . , y1

1 + δ, y1
1, . . . , y1

1, vh0+1, vh0+2, . . . , vk)

= δ

h∑
g=1

[py (g, y1
1) − px(g, y1

1)] > 0,

which establishes Inequality (A.13). Together with (A.12), this leads to the conclusion that:

Py(v) − Px(v) ≥ ε1 − εh0+1 = ε1,
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as required. �

Proof of Proposition 1. There exists some h0 ∈ {1, . . . , k} such that vc
1 = vc

2 = · · · vc
h0

>

vc
h0+1 (using, if necessary, the convention that vc

k+1 = v(x, y)). Then, using Corollary A.2, we
conclude that there is some category j ∈ {1, . . . , h0} and some individual i j ∈ N ( j) such that
y j

i j = vc
1 and ∀h ∈ { j, j + 1, . . . , h0}, i ∈ N (h), yh

i �= vc
1 (i.e., j is the highest category in the set

{1, . . . , h0} for which there is an individual in distribution y whose income is equal to vc
1.). It

is important to note that we do not preclude the possibility that j = 1. Let us show that there
exists a distribution x̂ ∈ D(I) such that x �OPG x̂ and x̂ is obtained from y by a BTPIT. For
any strictly positive integer m, let x̂m be the distribution obtained from distribution y by per-
forming a BTPIT of an amount of 1/m from agent i j ∈ N ( j) to agent 1 ∈ N (1). We claim that
there exists some m sufficiently large that x �OPG x̂m. Assume by contradiction that no such m
exists. This implies the existence of a sequence of ordered poverty lines vectors vm ∈ V ′ such
that Px̂m

(vm) < Px(vm). Note that, for every strictly positive real integer m, and whatever the
ordered vector of poverty lines v ∈ V ′ is, we have:

Px̂m
(v) = Py(v) − 1/m if v1 ≥ y1

1 + 1/m and v j ≤ y j
i j − 1/m,(A.14)

= Py(v) − max
(
v1 − y1

1, 0
)

if v1 < y1
1 + 1

m
, v j ≤ y j

i j − 1
m

(A.15)

= Py(v) + min
(
v j − y j

i j , 0
)

if v1 ≥ y1
1 + 1

m
, v j > y j

i j − 1
m

.(A.16)

Because of this, we can assume without loss of generality that vm
1 ≥ y1

1 + 1/m and vm
j ≤ vc

1 −
1/m. By compactness of V ′, vm admits a subsequence that converges to some vector of or-
dered poverty lines v ∈ V ′. By continuity, we must have Py(v) = Px(v). Hence, by definition of
critical value vc

1, either: (i) v1 = y1
1 or (ii) v1 ≥ vc

1

• If case (i) holds, then we have:

Px̂m
(vm) ≥ Py(vm) − 1/m by (A.14)-(A.16)

≥ Px(vm) − 1/m + vm
1 − y1

1 by Lemma A.6, taking vm
1 − y1

1 = ε1

≥ Px(vm),

which is a contradiction.
• Now, if case (ii) holds and v1 ≥ vc

1 then by Corollary A.1, we must have vh ≥ vc
h for h =

2, . . . , k. In particular, since vm
j ≤ vc

1 − 1/m and vm admits a subsequence that converges
to v, we must have v j = vc

j = vc
1. We can actually assume without loss of generality that,

for every h = 1, . . . , h0, vm
h ∈ {vc

1 − 1/m, vc
1} (for large enough m, vc

1 − 1/m and vc
1 are

the only two incomes observed in distributions y, x̂m and x for poverty lines vm
h relevant

for categories h = 1, . . . , h0). Hence, for some g ∈ {1, . . . , j}, we have: vm
g = · · · = vm

j =
· · · vm

h0 = vc
1 − 1/m, vm

1 = vm
2 = · · · = vm

g−1 = vc
1. Since:

h0∑
h=g

px (h, vc
1) >

h0∑
h=g

py (h, vc
1) ,
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we have:

h0∑
h=g

∑
i∈Py(h,vm

h )

[
vm

h − yh
i

] −
h0∑

h=g

∑
i∈Px(h,vm

h )

[
vm

h − xh
i

] − 1/m

≥
h0∑

h=g

∑
i∈Py(h,vc

1 )

[
vc

1 − yh
i

] −
h0∑

h=g

∑
i∈Px(h,vc

1 )

[
vc

1 − xh
i

]
and, therefore:

Py(vm) − Px(vm) − 1/m

≥ Py(vc
1, . . . , v

c
1, v

c
h0+1, . . . , v

c
k) − Px(vc

1, . . . , v
c
1, v

c
h0+1, . . . , v

c
k) ≥ 0.

Finally Px̂m
(vm) ≥ Py(vm) − 1/m ≥ Px(vm), a contradiction.

�

Proof of the claim in Example 2. Consider distribution x̂ε defined by:

x̂ε1
1 = 3 + ε, x̂ε2

2 = 4 − ε, x̂ε1
2 = x̂1

2 = 7 and x̂ε2
1 = x̂2

1 = 0.

Then, using the ordered vector v = (3 + ε, 3 + ε) of poverty lines, we have:

Px̂ε

(3 + ε, 3 + ε) = max(3 + ε − (3 + ε), 0) + max(3 + ε − 7, 0)

+ max(3 + ε − 0, 0) + max(3 + ε − (4 − ε), 0)

= 3 + ε (if ε ∈]0, 1/2])

< Px(3 + ε, 3 + ε)

= max(3 + ε − 5, 0) + max(3 + ε − 6, 0)

+ max(3 + ε − 1, 0) + max(3 + ε − 2, 0)

= 3 + 2ε.

�

Proof of Proposition 2. We prove this proposition using Lemma A.3. We note first that,
since x1

i > vc
1 ∀i ∈ N (1), we must have vc

1 = vc
2. Suppose by contradiction that vc

1 > vc
2. This

means that, for any number ε such that vc
1 − vc

2 > ε > 0, we have that (vc
1 − ε, vc

2, . . . , v
c
k) ∈ V

and

Py (vc
1 − ε, vc

2, . . . , v
c
k) − Px (vc

1 − ε, vc
2, . . . , v

c
k)

= −εpy (1, vc
1) + εpx (1, vc

1) + Py (vc
1, v

c
2, . . . , v

c
k) − Px (vc

1, v
c
2, . . . , v

c
k)

= −εpy (1, vc
1)

< 0,

since px(1, vc
1) = 0 = Py(vc

1, v
c
2, . . . , v

c
k) − Px(vc

1, v
c
2, . . . , v

c
k) (by definition of vc) and

py(1, vc
1) ≥ 1. But this is a contradiction of the fact that x �OPG y. It then follows that h0 ≥ 2

and that the second bullet statement of the proposition (e.g., “For any category h such that
h0 ≥ h ≥ 2, we have yh

i �= vc
1”) is not empty. This fact and Corollary A.2 establish the existence
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of an agent i1 ∈ N (1) for which y1
i1

= vc
1. Hence vector of poverty lines vc is just like vector w

in the antecedent clause of Lemma A.3. It then follows from Lemma A.5 that:

h0∑
h=l+1

py (h, y1
i1

) =
h0∑

h=l+1

py (h, y1
i1

)
<

h0∑
h=l+1

px (h, y1
i1

) ≤
h0∑

h=l+1

px (h, y1
i1

)
for l = 1, . . . , h0 − 1, which implies that Inequality (A.4) in the antecedent clause of
Lemma A.3 holds. The existence of a distribution x̂ ∈ D(I) such that x̂ is obtained from y by
an FIP and x �OPG x̂ then immediately follows from this lemma. �

A.6 Case (B) Proof of Proposition 3.
We start the analysis of this case by observing that requiring (5) to hold for all lists of poverty
lines in the set V is equivalent to requiring this inequality to hold for the subset

V ′ = {(v1, . . . , vk) ∈ R
k : v(x, y) ≥ v1 ≥ v2 ≥ . . . ≥ vk ≥ v(x, y)}(A.17)

of such lists of poverty lines, which is compact.
We also observe that, by the very definition of critical value vc

1, there exists a sequence {wm}
of poverty lines vectors (with wm ∈ V ′ for every m) such that Py(wm) − Px(wm) = 0 and wm

1 =
y1

1 + εm
1 , for εm

1 > 0, and εm
1 → 0. By compactness of V ′ we can assume without loss of general-

ity9 that the sequence wm of ordered poverty lines vectors converges to some limit w ∈ V ′. By
continuity of the poverty gap function P, we have Py(w) − Px(w) = 0.

Taking this limit vector w ∈ V ′ of ordered poverty lines, we first establish the existence, in
initial distribution y, of some agent in a category strictly larger than 1 with an income strictly
larger than the lowest income observed in category 1. This agent will be a natural candidate
for exchanging his/her higher income with that of the poorest agent in category 1. A crucial
step for the identification of such an agent is the following lemma.

Lemma A.7. Let x and y be two distributions in D(I) such that x �OPG y. Suppose that vc
1 =

y1
1. Then, there exists h0 ≥ 2 such that y1

1 = w1 = w2 = · · · = wh0 > wh0+1. Moreover there exists
g0 ≤ h0 such that g0 ≥ 2,

g0∑
h=1

py (h, y1
1

) =
g0∑

h=1

px (h, y1
1

)
,

and:

l∑
h=1

py (h, y1
1

)
>

l∑
h=1

px (h, y1
1

)
for all l < g0.

Proof. Let w be the vector of ordered poverty lines that is the limit of the sequence
{wm} of ordered poverty lines vectors satisfying wm

1 = y1
1 + εm

1 with εm
1 → 0 and Px(wm) −

Py(wm) = 0 for all m that was mentioned in Case (B) of Subsection 3.1. We first show that
w1 = w2. By contradiction, suppose that w2 < w1. Then, there exists a large enough m for
which wm

2 < w1 = y1
1. Also, for a large enough m, we have that:

wm
1 px (1,wm

1 ) −
∑

i∈Px(1,wm
1 )

x1
i = w1 px(1, y1

1) −
∑

i∈Px(1,y1
1)

x1
i = 0

9 Taking a subsequence if necessary.
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thanks to Lemma A.1 and the fact that y1
1 �= x1

1. Moreover we have:

wm
1 py (1,wm

1 ) −
∑

i∈Py(1,wm
1 )

y1
i = (

εm
1 + y1

1

)
py (1, y1

1

) −
∑

i∈Py
(1,w1 )

y1
i

> y1
1 py (1, y1

1

) −
∑

i∈Py
(1,w1 )

y1
i = 0

because py(1, y1
1) ≥ 1. Hence:

Py(wm) − Px(wm) = wm
1 py (1,wm

1 ) −
∑

i∈Py (1,wm
1 )

y1
i +

k∑
h=2

Py (h,wm
h )

−

⎡⎢⎣wm
1 px (1,wm

1 ) −
∑

i∈Px
(1,wm

1 )

x1
i +

k∑
h=2

Px(h,wm
h )

⎤⎥⎦
= 0

> y1
1 py (1, y1

1

) −
∑

i∈Py
(1,w1 )

y1
i +

k∑
h=2

Py (h,wm
h )

−

⎡⎢⎣w1 px (1, y1
1

) −
∑

i∈Px(1,y1
1)

x1
i +

k∑
h=2

Px (h,wm
h )

⎤⎥⎦
= Py (y1

1,w
m
2 , . . . ,wm

k

) − Px (y1
1,w

m
2 , . . . ,wm

k

)
a contradiction. We now show that wm

2 > y1
1. Indeed, for m large enough, we have:

Py (wm) = Py (y1
1,w

m
2 , . . . ,wm

k

) + εm
1 py (1, y1

1

)
and:

Px (wm) = Px(y1
1,w

m
2 , . . . ,wm

k ) + εm
1 px (1, y1

1

)
Moreover, by Lemma A.1 and because,y1

i �= x1
i ,we have that

py (1, y1
1

) ≥ 1 > 0 = px (1, y1
1

)
.

Hence, we have:

Py (wm) − Px (wm) = 0

≥ Py (y1
1,w

m
2 , . . . ,wm

k

) − Px (y1
1,w

m
2 , . . . ,wm

k

) + εm
1 .

Because of this (and the fact that εm
1 > 0), assuming that wm

2 ≤ y1
1 and, therefore, that the

vector of poverty lines (y1
1,w

m
2 , . . . ,wm

k ) belongs to V would be contradictory with the fact
that x �OPG y. We also know that wm

h0+1 < y1
1. Let l := min{h ≥ 1 : wm

h ≤ y1
1} . As we have

just shown 3 ≤ l ≤ h0 + 1. For h = 1, . . . , l, we have wm
h = y1

1 + εm
h with εm

1 ≥ εm
2 ≥ . . . ≥ εm

l >
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0. We know already that py(1, y1
1) ≥ 1 > 0 = px(1, y1

1). Suppose that the main claim of the
lemma was false. In that case, we would have:

h∑
g=1

py (g, y1
1

)
>

h∑
g=1

px (g, y1
1

)
for all h = 1, . . . , h0. Yet:

0 = Py(wm) − Px(wm)

= Py (y1
1, . . . , y1

1,w
m
l+1, . . . ,w

m
k

) − Px (y1
1, . . . , y1

1,w
m
l+1, . . . ,w

m
k

)
+

l∑
h=1

[
py (h, y1

1

) − px(h, y1
1)
]
εm

h

= Py (y1
1, . . . , y1

1,w
m
s+1, . . . ,w

m
k

) − Px (y1
1, . . . , y1

1,w
m
l+1, . . . ,w

m
k

)
+

l−1∑
h=1

(εm
h − εm

h+1)
h∑

g=1

⎡⎣py (g, y1
1

) − px (g, y1
1

)
] + εm

l

l∑
g=1

[py (g, y1
1

) − px (g, y1
1

)⎤⎦
≥

s−1∑
h=1

(
εm

h − εm
h+1

) h∑
g=1

[
py (g, y1

1

) − px (g, y1
1

)] + εm
l

l∑
g=1

[
py (g, y1

1

) − px (g, y1
1

)]
≥ εm

l > 0

a contradiction. �

This lemma indeed identifies a category g0 strictly larger than 1 in which a “potential
donor” to the poorest agent in the worst category can be selected. As we now establish, this
donor can transfer to the poorest agent in category 1 the whole income difference, while
maintaining the dominance of distribution x over the distribution created by the FIP.

Proof of Proposition 3. We base the argument on Lemma A.3. We must therefore prove
that the limit vector of poverty lines w satisfies the conditions imposed on vector w of this
lemma. From Lemma A.7, we have that y1

1 = w1 = w2 = · · · = wh0 > wh0 + 1 for some h0 ≥ 2.
We also know from Lemma A.7 that there is a category g0 ≤ h0 satisfying g0 ≥ 2 for which we
have:

g0∑
h=1

py (h, y1
1

) ≤
g0∑

h=1

px (h, y1
1

)
,

and

l∑
h=1

py (h, y1
1

)
>

l∑
h=1

px (h, y1
1

)
for all l = 1, . . . , g0 − 1. As a consequence we have:

g0∑
h=l+1

py (h, y1
1

)
<

g0∑
h=l+1

px (h, y1
1

)
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for l = 1, . . . , g0 − 1. and the conclusion of the proposition follows from Lemma A.3. �

A.7 Proof of the Finiteness of the Algorithm of Subsection 3.2. Suppose by contradiction
that the algorithm defined in Subsection 3.2 generates an infinite sequence (x(n))n∈N. We pro-
ceed by first establishing the following claims.

Claim A.1. There exists some n0 ∈ N such that, for all n ≥ n0, either case (P2) or (MT ) of
Subsection 3.2 holds, so that x1

1(n) < vc
1(n).

Proof. Once an agent of a category higher than 1 has been involved in an FIP defined
as in Proposition 3, his/her income becomes weakly smaller than that of the poorest income
observed in category 1. Since the income of an agent in any category h ≥ 2 never increases
through the algorithm described above, and since the number of agents in categories higher
than 1 is finite, it follows that the the number of FIP of type (P1) in the algorithm is bounded
above by the number of agents in categories 2, . . . , k. �

An immediate consequence of this claim is that, for any n ≥ n0, we can also define the
quantities vc

h(n) through expression (10).

Claim A.2. Let n0 be the integer whose existence was established in Claim A.1. Then, for all
n ≥ n0 and all categories h = 1, . . . , k, we have vc

h(n + 1) ≤ vc
h(n).

Proof. By definition of the algorithm and the critical vector vc(n), we have Px(n)(vc(n)) =
Px(vc(n)) which directly implies that:

Px(n)(vc(n)) = Px(n+1)(vc(n)) = Px(vc(n)).(A.18)

We first observe that if the distribution x(n + 1) is obtained from x(n) through a maximal
transfer (MT), the donor’s income is equal to vc

1(n) and therefore the recipient being the
poorest agent in category 1, we necessarily have x1

1(n + 1) < vc
1(n). On the other hand, if

distribution x(n + 1) is obtained from x(n) through an FIP of type (P2), the recipient has
an income equal to vc

1(n) > x1
1(n), so that x1

1(n) = x1
1(n + 1) < vc

1(n). Hence, in either case,
we have x1

1(n + 1) < vc
1(n). Now by definition of vc

1(n + 1) as an infimum, identity (A.18)
and the fact that x1

1(n + 1) < vc
1(n), we have vc

1(n + 1) ≤ vc
1(n). Now combining Px(vc(n)) =

Px(n+1)(vc(n)) and Px(vc(n + 1)) = Px(n+1)(vc(n + 1)) on the one hand and Corollary A.1 on
the other, it follows that vc

h(n + 1) ≤ vc
h(n) holds for all h as well. �

In the next claim, we establish the existence of some step in the algorithm beyond which no
FIP occurs.

Claim A.3. There exists n1 ∈ N such that, for any n ≥ n1, the distribution x(n + 1) is ob-
tained from x(n) by means of a maximal transfer.

Proof. We first observe that px(n)(1, vc
1(n)) is weakly decreasing for n ≥ n0, where n0 is the

integer whose existence was established in Claim A.1. Indeed vc
1(n) is weakly decreasing for

n ≥ n0 and an agent in category 1 can be designated as the donor at step n only if the algo-
rithm prescribes a maximal transfer and his/her income is equal to vc

1(n). This proves that the
number of agents in category 1 of distribution x(n) whose income is weakly smaller than vc

1(n)
necessarily weakly decreases as n increases.

Assume now that at some stage n ≥ n0 we are in case (P2). In that case, the receiving
agent’s income is equal to vc

1(n). Hence px(n+1)(1, vc
1(n + 1)) < px(n)(vc

1(n)). As a result, there
can be at most n(1) operations of type (P2) in the algorithm after step n0. �
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We proved that, for any n ≥ n1, a maximal transfer of type (MT ) occurs at time n. Since
the algorithm is infinite, no transfer can be equalizing as per Definition 6. Hence, the maxi-
mal transfers at every step must be either a breaking or a half transfer of Definition 6. We
next claim that at every step after n1, if a breaking transfer is required by the algorithm, then
the donor involved in the transfer will never be the donor again in a subsequent transfer. Al-
though the proof of the claim is slightly cumbersome, the intuition behind it is relatively clear.
Indeed, by its very definition, a breaking transfer is such that the donor cannot give more at
this stage without breaking at least one of the OPG dominance inequalities. As n increases,
the (OPG) difference between distribution x(n) and distribution x gets smaller and smaller.
Hence it becomes harder and harder to make a transfer without breaking some of the OPG
inequalities.

Claim A.4. There exists n2 ∈ N such that, for any n ≥ n2, distribution x(n + 1) is obtained
from x(n) through a half transfer.

Proof. Let n1 be as in Claim A.3. We need to establish that there can only be finitely many
breaking transfers after stage n1. Consider any n ≥ n1 and suppose that x(n + 1) is obtained
from x(n) through a breaking transfer of amount α > 0 from agent jh ∈ N (h) (with h ≥ 1) to
agent 1 ∈ N (1). Let r1

+(α) ∈ N (1) and rh
−(α) ∈ N (h) be as in Definition 1. Hence, x1

r1+(α)
(n +

1) = x1
1(n) + α and xh

rh−(α)
(n + 1) = xh

jh
(n) − α.

Let δ > 0. By definition of a breaking transfer, there exists v(δ) ∈ V ′ such that:

Px(n+1)δ

(v(δ)) < Px(v(δ)),

where x(n + 1)δ denotes the distribution that would be obtained if the transfer at time n was
equal to α + δ instead of α. By compactness of V ′, we may assume without loss of generality
that limδ→0 v(δ) = v∗ ∈ V ′. By continuity, we then have Px(n+1)(v∗) = Px(v∗). Note that with-
out loss of generality, we can assume that v1(δ) ≥ x1

1(n) + α. This implies that v∗
1 ≥ x1

1(n) + α.
We now show that v∗

1 > x1
1(n + 1). By contradiction assume that v∗

1 ≤ x1
1(n + 1). Then, since

x1
1(n + 1) ≤ x1

1(n) + α, we necessarily have v∗
1 = x1

1(n) + α = x1
1(n + 1), that is, the poorest

agent in category 1 remains the poorest agent after receiving α at step n. Thus at next step
(step n + 1) the algorithm identifies him as the recipient again. Let h′ ≥ 1 and jh′ ∈ N (h′) be
the donor at next step n + 1 and suppose he/she transfers δ > 0. Since v∗

h′ ≤ v∗
1 = x1

1(n + 1) <

xh′
jh′ (n + 1), we have:

Px(n+2)(v(δ)) = Px(n+1)δ

(v(δ)) < Px(v(δ)),

a contradiction. Since v∗
1 > x1

1(n + 1), we must have vc
h(n + 1) ≤ v∗

h for any h by Corol-
lary A.1. By Claim 2, this implies that vc

h(m) ≤ v∗
h for any m ≥ n + 1.

We now claim that for m > n, if the donor at step m is in category h, his/her income can not
be equal to xh

rh−(α)
(n + 1). Given the finiteness of the population, this will conclude the proof,

because it will exclude the donor at stage n from donating again at a future step. Suppose, to
the contrary, that there exists m ≥ n + 1 and lh ∈ N (h) such that vc

1(m) = vc
h(m) = xh

lh
(m) =

xh
rh−

(n + 1), and that agent lh transfers δ0 > 0 to agent 1 ∈ N (1) at stage m. We then have:

x1
1(m) < xh

lh (m) = xh
rh−(α)(n + 1) = vc

1(m) ≤ v∗
1 .

Assume without loss of generality that δ0 is small enough so that x1
1(m) ≤ v1(δ0) − δ0. Then:

Px(m+1)(v(δ0)) − Px(m)(v(δ0)) = Px(n+1)δ0 (v(δ0)) − Px(n+1)(v(δ0))
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(both quantities are equal to −δ0 + max{0, vh(δ0) − (xh
rh−(α)

(n + 1) − δ0)} − max{0, vh(δ0) −
xh

rh−(α))
(n + 1)}). Since Px(m)(v(δ0)) ≤ Px(n+1)(v(δ0)), we have

Px(m+1)(v(δ0)) ≤ Px(n+1)δ0 (v(δ0)) < Px(v(δ0)),

a contradiction. �

We now establish that none of the donors involved in the half transfers that remain after all
breaking transfers have been performed can be in category 1.

Claim A.5. For any n ≥ n2, the distribution x(n + 1) is obtained from x(n) through a half
transfer whose donor is not in category 1.

Proof. Let n ≥ n2. We proved already that the operation at stage n is necessarily a half
transfer. Let h0 be the category such that vc

1(n) = vc
h0

(n) > vc
h0+1(n). Suppose by contradiction

that the algorithm designates i ∈ N (1) to be the donor at stage n. By Proposition 1, it implies
that ∀h ∈ {2, . . . , h0}, ∀i ∈ N (h), we must have xh

i (n) �= vc
1(n) because, otherwise, an agent in

category h > 1 would be the donor. Note also that, by the very definition of a maximal trans-
fer, we must have x1

i > vc
1(n) for any i ∈ N (1) because assuming otherwise would make the

transfer equalizing, which it can not be. Consequently the conditions of (P2) hold, which is a
contradiction. �

We are now ready to complete the proof that our algorithm is indeed finite. By Claim A.5, if
the algorithm is infinite, there is some n2 ∈ N such that, for n ≥ n2, x(n + 1) is obtained from
x(n) through a half transfer, the donor of which is not in category 1. Yet, once an agent in
category 1 has received a half transfer from an agent of a higher category, his/her income be-
comes equal to that of the donating agent. Hence, the donating agent cannot be selected again
by the algorithm to donate to that same receiving agent. Since the number of agents is finite,
this completes the proof.

Proof of Theorem 2. (i) ⇒ (ii) follows from the proof in the homogeneous settings, along
with the fact that U h′ ≥ U h for h′ ≥ h to handle the categorical increments.

(ii) ⇒ (iii) the proof of the corresponding implication in Subsection A.2 can be applied here
without any change.

(iii) ⇒ (i) This implication is not trivial. Suppose that (iii) holds:

	(v) ≤ 0 ∀v ∈ V,

where 	(v) :=
k∑

h=1

∑
i∈Nx(h)

max(vh − xh
i , 0) −

k∑
h=1

∑
i∈Ny(h)

max(vh − yh
i , 0). Then we claim that

g∑
h=1

ny(h) ≥
g∑

h=1

nx(h), ∀g = 1, . . . , k.

Let us prove this claim. Suppose that there exists some g∗ such that
∑g∗

h=1 ny(h) <
∑g∗

h=1 nx(h).
For any α ≥ v(x, y) let v(α) ∈ V be given by v(α)h := v(x, y) for h = g∗ + 1, . . . , k and v(α)h =
α for h = 1, . . . , g∗. We then have

k∑
h=1

nx(h)∑
i=1

max
(
v(α)h − xh

i , 0
) =

g∗∑
h=1

nx(h)∑
i=1

(
α − xh

i

) = α

g∗∑
h=1

nx(h) −
g∗∑

h=1

nx(h)∑
i=1

xh
i .
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As a consequence

	(v(α)) = α

( g∗∑
h=1

nx(h) −
g∗∑

h=1

ny(h)

)
+

g∗∑
h=1

⎛⎝ny(h)∑
i=1

yh
i −

nx(h)∑
i=1

xh
i

⎞⎠.

As α goes to +∞, the right-hand side term goes to +∞, which contradicts (iii), and proves
the claim.

If
∑g

h=1 ny(h) = ∑g
h=1 nx(h), ∀g = 1, . . . , k then there is nothing to prove. Let us assume that

this is not the case and let h∗ ∈ {1, . . . , k − 1} be the lowest category such that
∑g

h=1 ny(h) >∑g
h=1 nx(h). Let y be the distribution obtained from y through an increment of agent yh∗

ny(h∗) to
category h∗ + 1. We claim that y �OPG x. This will conclude the proof by induction. Let v ∈ V .
If vh∗ ≤ yh∗

ny(h∗) then Px(v) − Py(v) = Px(v) − Py(v) ≤ 0. If vh∗ > yh∗
ny(h∗) then

Py(v) − Py(v) = vh∗ − yh∗
ny(h∗) − max

{
0, vh∗+1 − yh∗

ny(h∗)

}
.

On the other hand, let ṽ := (v1, . . . , max{yh∗
ny(h∗), vh∗+1}, vh∗+1, . . . vk). Clearly ṽ ∈ V and

Py(v) − Px(v) ≥ Py(ṽ) − Px(ṽ) + (ny(h∗) − nx(h∗))(vh∗ − max
{

yh∗
ny(h∗), vh∗+1

}
)

≥ vh∗ − max
{

yh∗
ny(h∗), vh∗+1

}
= vh∗ − yh∗

ny(h∗) − max
{

0, vh∗+1 − yh∗
ny(h∗)

}
= Py(v) − Py(v).

Consequently Py(v) ≥ Px(v), which concludes the proof.
(iii) ⇔ (iv): the proof of the corresponding implication in Subsection 3.2 can be applied here

without any change. �
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