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Abstract 18 

 It has been demonstrated that melatonin influences the developmental competence of both in vivo and in 19 

vitro matured oocytes. It modulates oocyte-specific gene expression patterns among mammalian species. Due to 20 

differences among study systems, the identification of the classifier orthologs—the homologous genes related 21 

among mammals that could universally categorize oocytes matured in environments with varied melatonin levels 22 

is still limitedly studied. To gain insight into such orthologs, cross-species transcription profiling meta-analysis 23 

of in vitro matured bovine oocytes and in vivo matured human oocytes in low and high melatonin environments 24 

was demonstrated in the current study. RNA-Seq data of bovine and human oocytes were retrieved from the 25 

Sequence Read Archive database and pre-processed. The used datasets of bovine oocytes obtained from culturing 26 

in the absence of melatonin and human oocytes from old patients were regarded as oocytes in the low melatonin 27 

environment (Low). Datasets from bovine oocytes cultured in 10-9 M melatonin and human oocytes from young 28 

patients were considered as oocytes in the high melatonin environment (High). Candidate orthologs differentially 29 

expressed between Low and High melatonin environments were selected by a linear model, and were further 30 

verified by Zero-inflated regression analysis. Support Vector Machine (SVM) was applied to determine the 31 

potentials of the verified orthologs as classifiers of melatonin environments. According to the acquired results, 32 

linear model analysis identified 284 candidate orthologs differentially expressed between Low and High 33 

melatonin environments. Among them, only 15 candidate orthologs were verified by Zero-inflated regression 34 

analysis (FDR ≤ 0.05). Utilization of the verified orthologs as classifiers in SVM resulted in the precise 35 

classification of oocyte learning datasets according to their melatonin environments (Misclassification rates < 36 

0.18, area under curves > 0.9). In conclusion, the cross-species RNA-Seq meta-analysis to identify novel 37 

classifier orthologs of matured oocytes under different melatonin environments was successfully demonstrated in 38 

this study- delivering candidate orthologs for future studies at biological levels. Such verified orthologs might 39 

provide valuable evidence about melatonin sufficiency in target oocytes- by which, the decision on melatonin 40 

supplementation could be implied. 41 

Keywords: Classifier orthologs; Melatonin; Oocytes; Cross-species RNA-Seq meta-analysis  42 
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1. Introduction 43 

 in vitro embryo production (IVP) is regarded as a well-established assisted reproductive technology 44 

(ART) in both humans and animal species [1]⁠. in vitro oocyte maturation (IVM) is one of the multiple steps of 45 

IVP that the oocytes are recovered directly from the follicles and are cultured in a specific condition. Despite its 46 

advancement, incomparable in vitro and in vivo environment is still a major problem contributing to the success 47 

of IVM performance [2,3]⁠. During in vivo oocyte development, several delicate substances and hormones are 48 

locally secreted in follicular fluid by ovarian and granulosa cells to nourish oocytes. This includes melatonin 49 

which was widely studied for its contribution to oocyte quality [2–5]. Melatonin was most recognized for its 50 

scavenging function on reactive oxygen species (ROS). Since ROS play a major role in impairing oocyte 51 

development [6,7], the lack of melatonin in conventional in vitro culture environments has contributed to ROS-52 

induced poor oocyte quality in several mammals [3,8,9]⁠. 53 

  Several factors also affect in vivo oocyte development. This includes reproductive aging—one of the 54 

most common causes of female infertility. It has been reported that reproductive aging induces a variety of 55 

physiological aberrations withering oocyte quality [9–12]⁠. One of them is melatonin deprivation, caused by 56 

reduced melatonin production from aging granulosa and ovarian cells. Melatonin deprivation was hereby blamed 57 

as a major contributor to aging oocyte’s incompetency [2,9]⁠. Aging also results in other diverse hormonal 58 

imbalances and assorted physiological changes [9,13]⁠. All these factors represent complex negative effects 59 

during in vivo oocyte aging. Therefore, it has been difficult to exclusively determine the melatonin deprivation 60 

effects on the oocyte during in vivo development in such circumstances. By means of this, it was difficult to 61 

exclusively determine the melatonin deprivation effect on in vivo oocyte in such circumstances. 62 

 Interestingly, similar aging aberrance also occurred with in vitro cultured oocytes in a time-dependent 63 

manner. in vitro-aging phenomenon also included ROS-induced quality deterioration due to the absence of 64 

melatonin in the conventional culture environment [2–5,9,11]⁠. In agreement with the protective effects of in 65 

vivo melatonin produced by ovarian follicles, in vitro melatonin supplement was evidenced to restore the oocyte 66 

developmental competency in several species [3–5,9]⁠. Unlike in vivo-aging condition divided effects of in vitro 67 

melatonin deprivation should be conveniently observed due to the simplicity of the culture environment. 68 

Through this, analysis of crossed effects between in vitro and in vivo melatonin deprivation due to aging should 69 

hereby contribute a novel insight into the universal melatonin effects independent from other factors. 70 

 With comparable reproductive physiology and embryogenesis, cattle are regarded as excellent study 71 

models for human IVP [10,14]⁠. Employing this, novel transcriptomic technologies including RNA sequencing 72 

(RNA-Seq) have been continuously applied with oocyte samples obtained from both species for studying their 73 
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universal transcriptome’s regulation. However, the application of standard RNA-Seq or bulk RNA-Seq with 74 

mammalian oocytes was not practical due to low oocyte numbers for cDNA library preparation [15,16]⁠. 75 

Moreover, oocytes were heterogeneous populations, and should thus not represented with average results. Since 76 

cell-to-cell variations are common among isolated oocytes, loss of real features among them in bulk analysis 77 

could bring about considerable bias in the analysis [15]. 78 

 Recently, low-input and single-cell RNA sequencing (RNA-Seq) methods have been implemented with 79 

oocytes acquired from various mammals [3,15,17]⁠. Since such technologies allow robust transcript profiling 80 

analysis down to a single cell, they enable researchers to explore biological variations among oocytes with 81 

reduced bias [3,16,18]⁠. Interestingly, an increase of such data among a variety of mammalian species even 82 

allowed cross-species meta-analysis of oocytes. Since cross-species transcription profiling meta-analysis of 83 

oocytes could imply universal orthologs regulated among the species in the environment of interest [19], 84 

implement of such analysis with RNA-Seq data of oocytes obtained from different in vitro and in vivo melatonin 85 

environments should imply us insight into such orthologs, as well. 86 

 In several transcription profiling studies, genomic classification or subtyping of unknown samples can 87 

be archived by various machine learning algorithms. Support vector machine (SVM) is a robust learning model 88 

widely implemented on a genome-wide scale to prioritize orthologs for sample classification [20,21]⁠. Novel 89 

classifier orthologs were identified by SVM in several topics including aging, cancers, infections, and metabolic 90 

disorders [22–25]. Regardless of its flexibility, SVM application in oocyte study was still limitedly demonstrated. 91 

It was noteworthy that the integration of SVM with cross-species meta-analysis of different melatonin 92 

environments could thus help us determining novel classifier orthologs for evaluating the melatonin sufficiency 93 

of oocytes. In other words, such cognition would preliminarily assess the beneficial effects of melatonin 94 

supplement on target oocytes presented in environments of interest. 95 

 To gain insight into universal classifier orthologs for melatonin environments, cross-species 96 

transcription profiling meta-analysis of in vitro matured bovine oocytes and in vivo matured human oocytes in 97 

low and high melatonin environments was performed in the current study. The pooled cDNA library based on 98 

human-bovine orthologs was constructed with bias correction. With restricted verification procedures and SVM 99 

classification, the universal classifier orthologs for melatonin environments of oocytes were successfully implied 100 

for the first time in this study. 101 

 102 

2. Materials and methods 103 

 104 
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2.1 Sample datasets 105 

 RNA-Seq data of bovine and human oocytes were retrieved from the sequence read archive (SRA) 106 

database (https://www.ncbi.nlm.nih.gov/sra) (Table 1). Both bovine and human RNA-Seq data were presented in 107 

NCBI with accession numbers GSE122738 [3]⁠ and GSE125300 [26]⁠ (https://www.ncbi.nlm.nih.gov/geo/). 108 

The sources of bovine [3]⁠ and human oocytes [26]⁠ utilized for data preparation were summarized in Table 1. 109 

In brief, bovine cumulus‐ oocyte complexes (COCs) were collected from slaughterhouses and cultured in the 110 

presence (In_vitro_MII+Mela) or absence (In_vitro_MII) of 10
-9

 M melatonin for 24 hours, respectively. 111 

Metaphase II (MII) oocytes were isolated from COCs and divided into 6 samples—each containing 7 oocytes of 112 

their groups. On the contrary, each human MII oocyte sample was retrieved directly from single follicles of 113 

young (In_vivo_young_MII), or old (In_vivo_old_MII) patients by ultrasound-guided technique. In this study, 114 

the term—melatonin environment was used to infer the amount of melatonin in the environment surrounding the 115 

target oocyte samples. Through this, the bovine oocytes matured in the absence of melatonin supplement, and 116 

human oocytes acquired from old patients were regarded as oocytes in the low melatonin environment. On the 117 

other hand, bovine oocytes matured in the presence of melatonin supplement, and human oocytes acquired from 118 

young patients were considered as oocytes in the high melatonin environment. 119 

 120 

2.2 Data pre-processing 121 

 Data pre-processing was performed with the process similar to that described in our previous study 122 

[27]⁠. In brief, all sequences were trimmed to remove contaminated adapter sequences and unqualified 123 

sequences (length < 25 nucleotides and mean Phred score < 25). Duplicated sequences removal, sequence 124 

alignments (>85%), and GC base-balance bias correction were accomplished prior to gene-level counting. In this 125 

study, the read counts were normalized by the trimmed mean of M-values (TMM). bovine-human orthologs were 126 

assigned with the previously reported procedure [19]⁠. Data quality control was carried out [28]⁠ along with 127 

cell-cycle effect removal to minimize the bias from within-cell-type heterogeneity [29]⁠. Count read numbers of 128 

all samples were > 14 x10
-6

, and none of them was prone to apoptosis (Fraction of mitochondrial reads < 1.5%). 129 

The mutual nearest neighbors (MNN) in ortholog expression space was identified for cross-species batch 130 

correction [30]⁠ of pooled cDNA library created from bovine and human oocyte count data using ‘scater’ 131 

package [31]⁠. 132 

 133 

2.3 Candidate ortholog selection for oocyte sample categorization based on melatonin environments 134 

https://www.ncbi.nlm.nih.gov/sra
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 Candidate orthologs for oocyte sample categorization by melatonin environment were selected using 135 

procedures as described in our previous study [19]. In brief, candidate bovine-human orthologs differentially 136 

expressed between oocytes in low and high melatonin environments were selected from 1,000 learning datasets 137 

using the linear model and empirical Bayes methods. In this study, we consider differentially expressed orthologs 138 

with importance value ≥ 2.5. Only orthologs declared significant both by intra-species and cross-species analyses 139 

would be selected as candidate orthologs. With expression values of the candidate orthologs, Partitioning around 140 

medoids (PAM) clustering (2-4 clusters) was performed, and clustering validation was determined by 141 

Connectivity, Dunn, and Silhouette scores.  142 

 143 

2.4 Verification of the candidate orthologs 144 

 Concerning about unrealistic mean-variance relationship produced by the batch-corrected data, the 145 

candidate orthologs were verified by Zero-inflated regression analysis with proper model matrix using raw count 146 

data to avoid the bias from the batch correction process with ‘MAST’ package [32]⁠. The same criteria of 147 

candidate ortholog selection was applied—by which the verified candidate orthologs must be differentially 148 

expressed between low and high melatonin environments both by intra-species and cross-species analyses (FDR 149 

≤ 0.05). 150 

 151 

2.5 Oocyte sample classification by Support Vector Machine 152 

 To determine the potential of the verified candidate orthologs as classifiers for melatonin environments, 153 

Support Vector Machine (SVM) with linear kernel classifier was performed. Different training data were 154 

generated by 5-fold cross-validation, Bootstrap, and Monte-Carlo-cross-validation strategies—1,000 iterations 155 

for each strategy. All procedures could be archived by class prediction functions using the ‘CMA’ package [20]⁠. 156 

 157 

2.6 Data visualization 158 

 Heatmap illustrating candidate orthologs was drawn using the “ComplexHeatmap” package [33]⁠. The 159 

silhouette width values acquired from PAM clustering were illustrated by the bar plot drawn by the ‘ggplot2’ 160 

packages. A bubble plot manifesting -log10FDR values and log2fold-change values of the verified candidate 161 

orthologs was drawn using the ‘ggplot2’ package. Probability plots and Receiver operating characteristic (ROC) 162 

curves were drawn to illustrate the classification accuracy of the verified candidate orthologs by the ‘ggplot2’ 163 

package. 164 

 165 
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3. Results 166 

 167 

3.1 Oocyte samples could be clustered by their melatonin environments using the candidate orthologs as 168 

features. 169 

 Analysis of bias-corrected data by linear model revealed 284 candidate orthologs differentially 170 

expressed between oocytes in low and high melatonin environments (importance value ≥ 2.5). According to PAM 171 

clustering results based on expressions of these candidate orthologs (Table 2 and Fig 1), oocyte samples were 172 

correctly categorized into 2 clusters corresponding to their melatonin environments regardless of the species (Fig 173 

2). 174 

 175 

3.2 All verified candidate orthologs were significantly expressed in oocytes in the high melatonin environment. 176 

  Zero-inflated regression analysis revealed 158 orthologs differentially expressed between oocytes in 177 

low and high melatonin environments (FDR≤0.05). However, only 15 orthologs were found intersected with the 178 

candidate orthologs acquired from the previous selections—AAMP, ADM, ATP6V0A2, BCL7B, CYB561D2, 179 

ENDOV, F2RL1, KIAA0586, LPCAT4, NR1H3, PLEKHM1, SLC47A1, SYT11, RFT1, and MRPS18C (Fig 3). 180 

While all oocytes in the high melatonin environment expressed these orthologs higher than those in the low 181 

environment, only ADM, CYB561D2, ENDOV, KIAA0586, NR1H3, PLEKHM1, SLC47A1, SYT11, RFT1, and 182 

MRPS18C rendered substantial fold-change values (≥ 1.5). According to our review of their biological functions, 183 

such orthologs were associated with a variety of cell metabolisms (Table 3).  184 

 185 

3.3 Verified candidate orthologs were potential classifiers for the melatonin environments of oocytes. 186 

 The verified candidate orthologs were used as classifier orthologs in SVM performance. Consistent 187 

results were acquired among learning datasets—by which all of them rendered Misclassification rates < 0.18, and 188 

their ROCs had Area Under Curves (AUCs) > 0.9 (Fig 4). 189 

 190 

4. Discussion 191 

 A cross-species transcription profiling meta-analysis of in vitro matured bovine oocyte data and in vivo 192 

matured human oocyte data to identify classifier orthologs for different melatonin environments was performed 193 

in this study. Despite the discreet procedures manifested, some limitations in result interpretation should be 194 

greatly concerned to avoid over-assumption. As described in the methodology, the in vitro and in vivo matured 195 

oocyte samples used in this study were procured from different studies with limited information about them. For 196 
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instance, melatonin concentrations in follicles containing in vivo matured human oocytes were not indicated, 197 

while the concentrations were clearly stated in bovine oocytes’ culture systems. Undetermined differences in 198 

melatonin concentrations between such environments should reduce the sensitivity of differential analysis in this 199 

study. With more available in vivo matured oocyte profiling data with well-defined melatonin environments in 200 

the future, the list of classifier orthologs could be improved for better generalization. 201 

 As expected, our previously reported procedures [19]⁠ were also applicable to the selection of 202 

candidate orthologs differentially expressed between low and high melatonin environments (Fig 2 and Table 2). 203 

While these orthologs could be used to annotate essential melatonin functions on in vivo and in vitro matured 204 

oocytes, this study aimed to identify the most reliable classifier orthologs among them. Due to such delegation, 205 

we further verified the candidate orthologs with the zero-inflated regression test to reduce the mean-variance bias 206 

(Fig 3). 207 

 Encoded products of the verified candidate orthologs were associated with in various oocyte 208 

metabolisms (Table 3). In detail, ADM encoded an angiogenic factor, adrenomedullin—an important 209 

vasorelaxant required during folliculogenesis and oocyte maturation processes [34,35]. CYB561D2 encoded a 210 

member of trans-membrane (TM) protein family involving stress defense and iron metabolism [36]. ENDOV 211 

encoded Endoribonuclease V—an enzyme involving with the DNA repair process of oocyte [37]⁠. KIAA0586 212 

encoded a conserved centrosomal protein required for sonic hedgehog/SHH signaling during the oocyte 213 

developmental process [38]. NR1H3-activating ligands helped with oocyte meiosis resumption [39]⁠. 214 

PLEKHM1 could regulate the autophagy process which was crucial in the regulation of oocyte metabolism [40–215 

42]⁠. SLC47A1 encoded an extrusion protein for drug and toxic metabolites [43]⁠. SYT11 encoded 216 

synaptotagmin-11 for exocytosis and endocytosis regulation [44]⁠. RFT1 encoded a major folate transporter 217 

[45], which helped to accumulate folate for normal oogenesis and early embryogenesis [46]⁠. Lastly, MRPS18C 218 

encoded a mitochondrial ribosomal protein and thus was required for other mitochondrial protein syntheses 219 

[47]⁠. 220 

 The high melatonin environment was shown to enhance expressions of all verified candidate orthologs 221 

(Fig 3 and Table 3). Supporting this notice, enhanced expression of KIAA0586 by melatonin was already 222 

notified in the other study [8]. Since functions of these orthologs were strongly associated with qualified oocyte 223 

development as previously mentioned, their diminished expressions in the low melatonin environment should 224 

thus adversely affect the oocyte development (Table 3). As far as we know, shreds of evidence of enhanced 225 

functions of most verified orthologs by melatonin were still not warranted in mammalian oocytes—by which 226 

future studies to confirm such effects were encouraged. 227 
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 In the current study, the classifying potential of the verified orthologs was determined by SVM to assess 228 

their reliability and reproducibility. According to the result, low misclassification scores and high AUCs 229 

manifested among tested learning datasets (Fig 4) hereby indicated such orthologs as potential classifiers for 230 

melatonin environments. Though utilization of cross-species data in this study partially suggested such classifier 231 

orthologs to be universally applicable among mammalian oocytes, further confirmation in other mammals with 232 

known melatonin environments were still required. Since overall expression levels of acquired classifier 233 

orthologs could imply sufficiency of melatonin, we, on a certain level proposed them as novel parameters to 234 

provide some clues about beneficial effects of melatonin supplement on target oocytes in any culture 235 

environments of interest. Such knowledge greatly relieved burdens for researchers to screen for universal 236 

melatonin effects on all ortholog expressions which were not possible by the conventional approach. It should 237 

however be noted that these classifier orthologs might not only be specific to the melatonin environment and thus 238 

required further classification tests with other possible oocyte environments. 239 

 240 

5. Conclusion  241 

 Novel classifier orthologs of oocytes matured under low and high melatonin environments were 242 

identified by cross-species transcription profiling meta-analysis in this study. Such an outcome not only offered 243 

us future melatonin research topics to evaluate classifying potentials of the verified orthologs at biological levels 244 

but also the complete process to acquire them from available RNA-Seq data. We would like to note that the 245 

analytical procedures demonstrated in the current study could be applied with other oocyte environments of 246 

interest—by which identification of other novel parameters of other oocyte culture environments was possible.  247 

  248 

Conflict of interest 249 

 We certify that there is no conflict of interest with any financial organization regarding the material and 250 

methods discussed in the manuscript. 251 

 252 

Acknowledgments 253 

 The current study was fully supported by the Thailand Research Fund (TRF) through New Research 254 

Scholar Program (Grant No. TRG5880003). We would like to show our gratitude to the Office of Academic 255 

Resource and Information Technology (ARiT), Rajamangala University of Technology Tawan-OK (RMUTTO) 256 

for the contribution of the server computer for the burden analysis. 257 

 258 



10 

revised 

References 259 

[1] Wang J, Sauer M V. in vitro fertilization (IVF): A review of 3 decades of clinical innovation and 260 

technological advancement. Ther Clin Risk Manag 2006;2:355–64. 261 

https://doi.org/10.2147/tcrm.2006.2.4.355. 262 

[2] Zhang M, Lu Y, Chen Y, Zhang Y, Xiong B. Insufficiency of melatonin in follicular fluid is a reversible 263 

cause for advanced maternal age-related aneuploidy in oocytes. Redox Biol 2020;28:101327. 264 

https://doi.org/10.1016/j.redox.2019.101327. 265 

[3] An Q, Peng W, Cheng Y, Lu Z, Zhou C, Zhang Y, et al. Melatonin supplementation during in vitro 266 

maturation of oocyte enhances subsequent development of bovine cloned embryos. J Cell Physiol 267 

2019;234:17370–81. https://doi.org/10.1002/jcp.28357. 268 

[4] Do LTK, Shibata Y, Taniguchi M, Nii M, Nguyen T V., Tanihara F, et al. Melatonin Supplementation 269 

During in vitro Maturation and Development Supports the Development of Porcine Embryos. Reprod 270 

Domest Anim 2015;50:1054–8. https://doi.org/10.1111/rda.12607. 271 

[5] Soto-Heras S, Catalá MG, Roura M, Menéndez-Blanco I, Piras AR, Izquierdo D, et al. Effects of 272 

melatonin on oocyte developmental competence and the role of melatonin receptor 1 in juvenile goats. 273 

Reprod Domest Anim 2019;54:381–90. https://doi.org/10.1111/rda.13378. 274 

[6] El-Raey M, Geshi M, Somfai T, Kaneda M, Hirako M, Abdel-Ghaffar AE, et al. Evidence of melatonin 275 

synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle. 276 

Mol Reprod Dev 2011;78:250–62. https://doi.org/10.1002/mrd.21295. 277 

[7] Jing T, Shile S, Sun Y, Li H, Li WP, Cong Z, et al. Melatonin levels in follicular fluid as markers for IVF 278 

outcomes and predicting ovarian reserve. Reproduction 2017;153:443–51. https://doi.org/10.1530/REP-279 

16-0641. 280 

[8] Lee S, Jin JX, Taweechaipaisankul A, Kim GA, Ahn C, Lee BC. Melatonin influences the sonic 281 

hedgehog signaling pathway in porcine cumulus oocyte complexes. J Pineal Res 2017;63. 282 

https://doi.org/10.1111/jpi.12424. 283 

[9] Igarashi H, Takahashi T, Nagase S. Oocyte aging underlies female reproductive aging: biological 284 

mechanisms and therapeutic strategies. Reprod Med Biol 2015;14:159–69. 285 

https://doi.org/10.1007/s12522-015-0209-5. 286 

[10] Malhi PS, Adams GP, Singh J. A bovine model to study reproductive aging. Biol Reprod 2005;73:45–53. 287 

https://doi.org/10.1095/biolreprod.104.038745. 288 

[11] Malhi PS, Adams GP, Mapletoft RJ, Singh J. Oocyte developmental competence in a bovine model of 289 

reproductive aging. Reproduction 2007;134:233–9. https://doi.org/10.1530/REP-07-0021. 290 

[12] Thouas GA, Trounson AO, Jones GM. Effect of Female Age on Mouse Oocyte Developmental 291 

Competence Following Mitochondrial Injury1. Biol Reprod 2005;73:366–73. 292 

https://doi.org/10.1095/biolreprod.105.040956. 293 

[13] George K, Kamath M. Fertility and age. J Hum Reprod Sci 2010;3:121–3. https://doi.org/10.4103/0974-294 

1208.74152. 295 

[14] Hansen PJ. Realizing the promise of IVF in cattle - An overview. Theriogenology 2006;65:119–25. 296 

https://doi.org/10.1016/j.theriogenology.2005.09.019. 297 

[15] Brayboy LM, Wessel GM. The double-edged sword of the mammalian oocyte - advantages, drawbacks 298 

and approaches for basic and clinical analysis at the single cell level. Mol Hum Reprod 2015;22:200–7. 299 

https://doi.org/10.1093/molehr/gav064. 300 



11 

revised 

[16] Chambers DC, Carew AM, Lukowski SW, Powell JE. Transcriptomics and single-cell RNA-sequencing. 301 

Respirology 2019;24:29–36. https://doi.org/10.1111/resp.13412. 302 

[17] Liu XM, Wang YK, Liu YH, Yu XX, Wang PC, Li X, et al. Single-cell transcriptome sequencing reveals 303 

that cell division cycle 5-like protein is essential for porcine oocyte maturation. J Biol Chem 304 

2018;293:1767–80. https://doi.org/10.1074/jbc.M117.809608. 305 

[18] Chitwood JL, Burruel VR, Meyers SA, Ross PJ. 131 RNA-Seq TRANSCRIPTOME PROFILING OF 306 

INDIVIDUAL RHESUS MACAQUE OOCYTES AND PRE-IMPLANTATION EMBRYOS. Reprod 307 

Fertil Dev 2014;26:179. https://doi.org/10.1071/rdv26n1ab131. 308 

[19] Chokeshaiusaha K, Puthier D, Nguyen C, Sananmuang T. Construction of pooled oocyte expression 309 

profiles of rhesus monkey and mouse for concurrent meta-analyses. Thai J Vet Med 2015;45:523–33. 310 

[20] Slawski M, Daumer M, Boulesteix AL. CMA - A comprehensive Bioconductor package for supervised 311 

classification with high dimensional data. BMC Bioinformatics 2008;9. https://doi.org/10.1186/1471-312 

2105-9-439. 313 

[21] Fernandes de Mello R, Antonelli Ponti M, Fernandes de Mello R, Antonelli Ponti M. Introduction to 314 

Support Vector Machines. Mach. Learn., 2018, p. 163–226. https://doi.org/10.1007/978-3-319-94989-315 

5_4. 316 

[22] Huang S, Nianguang CAI, Penzuti Pacheco P, Narandes S, Wang Y, Wayne XU. Applications of support 317 

vector machine (SVM) learning in cancer genomics. Cancer Genomics and Proteomics 2018;15:41–51. 318 

https://doi.org/10.21873/cgp.20063. 319 

[23] Wang HY, Chang SC, Lin WY, Chen CH, Chiang SH, Huang KY, et al. Machine learning-based method 320 

for obesity risk evaluation using single-nucleotide polymorphisms derived from next-generation 321 

sequencing. J Comput Biol 2018;25:1347–60. https://doi.org/10.1089/cmb.2018.0002. 322 

[24] Kumar A, Jeya Sundara Sharmila D, Singh S. SVMRFE based approach for prediction of most 323 

discriminatory gene target for type II diabetes. Genomics Data 2017;12:28–37. 324 

https://doi.org/10.1016/j.gdata.2017.02.008. 325 

[25] Arabfard M, Ohadi M, Rezaei Tabar V, Delbari A, Kavousi K. Genome-wide prediction and 326 

prioritization of human aging genes by data fusion: A machine learning approach. BMC Genomics 327 

2019;20. https://doi.org/10.1186/s12864-019-6140-0. 328 

[26] Zhang JJ, Liu X, Chen L, Zhang S, Zhang X, Hao C, et al. Advanced maternal age alters expression of 329 

maternal effect genes that are essential for human oocyte quality. Aging (Albany NY) 2020. 330 

https://doi.org/10.18632/aging.102864. 331 

[27] Chokeshaiusaha K, Puthier D, Nguyen C, Sudjaidee P, Sananmuang T. Factor Analysis for Bicluster 332 

Acquisition (FABIA)revealed vincristine-sensitive transcript pattern of canine transmissible venereal 333 

tumors. Heliyon 2019;5:e01558. https://doi.org/10.1016/j.heliyon.2019.e01558. 334 

[28] Luecken MD, Theis FJ. Current best practices in single‐ cell RNA‐ seq analysis: a tutorial. Mol Syst 335 

Biol 2019;15. https://doi.org/10.15252/msb.20188746. 336 

[29] Barron M, Li J. Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data. 337 

Sci Rep 2016;6. https://doi.org/10.1038/srep33892. 338 

[30] Shafer MER. Cross-Species Analysis of Single-Cell Transcriptomic Data. Front Cell Dev Biol 2019;7. 339 

https://doi.org/10.3389/fcell.2019.00175. 340 

[31] Haghverdi L, Lun ATL, Morgan MD, Marioni JC. Batch effects in single-cell RNA-sequencing data are 341 

corrected by matching mutual nearest neighbors. Nat Biotechnol 2018;36:421–7. 342 

https://doi.org/10.1038/nbt.4091. 343 



12 

revised 

[32] Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: A flexible statistical 344 

framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA 345 

sequencing data. Genome Biol 2015;16. https://doi.org/10.1186/s13059-015-0844-5. 346 

[33] Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional 347 

genomic data. Bioinformatics 2016;32:2847–9. https://doi.org/10.1093/bioinformatics/btw313. 348 

[34] Malamitsi-Puchner A, Sarandakou A, Baka SG, Tziotis J, Rizos D, Hassiakos D, et al. Concentrations of 349 

angiogenic factors in follicular fluid and oocyte-cumulus complex culture medium from women 350 

undergoing in vitro fertilization: Association with oocyte maturity and fertilization. Fertil Steril 351 

2001;76:98–101. https://doi.org/10.1016/S0015-0282(01)01854-4. 352 

[35] Manau D, Balasch J, Jiménez W, Fábregues F, Civico S, Casamitjana R, et al. Follicular fluid 353 

concentrations of adrenomedullin, vascular endothelial growth factor and nitric oxide in IVF cycles: 354 

Relationship to ovarian response. Hum Reprod 2000;15:1295–9. 355 

https://doi.org/10.1093/humrep/15.6.1295. 356 

[36] Asard H, Barbaro R, Trost P, Bérczi A. Cytochromes b561: Ascorbate-mediated trans-membrane electron 357 

transport. Antioxidants Redox Signal 2013;19:1026–35. https://doi.org/10.1089/ars.2012.5065. 358 

[37] Cao W. Endonuclease V: An unusual enzyme for repair of DNA deamination. Cell Mol Life Sci 359 

2013;70:3145–56. https://doi.org/10.1007/s00018-012-1222-z. 360 

[38] Lee S, Jin JX, Taweechaipaisankul A, Kim GA, Ahn C, Lee BC. Sonic hedgehog signaling mediates 361 

resveratrol to improve maturation of pig oocytes in vitro and subsequent preimplantation embryo 362 

development. J Cell Physiol 2018;233:5023–33. https://doi.org/10.1002/jcp.26367. 363 

[39] Steffensen KR, Robertson K, Gustafsson JÅ, Andersen CY. Reduced fertility and inability of oocytes to 364 

resume meiosis in mice deficient of the Lxr genes. Mol Cell Endocrinol 2006;256:9–16. 365 

https://doi.org/10.1016/j.mce.2006.03.044. 366 

[40] Sagrillo-Fagundes L, Bienvenue-Pariseault J, Vaillancourt C. Melatonin: The smart molecule that 367 

differentially modulates autophagy in tumor and normal placental cells. PLoS One 2019;14. 368 

https://doi.org/10.1371/journal.pone.0202458. 369 

[41] Lin FH, Zhang WL, Li H, Tian XD, Zhang J, Li X, et al. Role of autophagy in modulating post-370 

maturation aging of mouse oocytes article. Cell Death Dis 2018;9. https://doi.org/10.1038/s41419-018-371 

0368-5. 372 

[42] Shen XH, Jin YX, Liang S, Kwon JW, Zhu JW, Lei L, et al. Autophagy is required for proper meiosis of 373 

porcine oocytes maturing in vitro. Sci Rep 2018;8. https://doi.org/10.1038/s41598-018-29872-y. 374 

[43] Yonezawa A, Inui KI. Importance of the multidrug and toxin extrusion MATE/SLC47A family to 375 

pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. Br J Pharmacol 376 

2011;164:1817–25. https://doi.org/10.1111/j.1476-5381.2011.01394.x. 377 

[44] Wang C, Wang Y, Hu M, Chai Z, Wu Q, Huang R, et al. Synaptotagmin‐ 11 inhibits clathrin‐ mediated 378 

and bulk endocytosis. EMBO Rep 2016;17:47–63. https://doi.org/10.15252/embr.201540689. 379 

[45] Umapathy NS, Gnana-Prakasam JP, Martin PM, Mysona B, Dun Y, Smith SB, et al. Cloning and 380 

functional characterization of the proton-coupled electrogenic folate transporter and analysis of its 381 

expression in retinal cell types. Investig Ophthalmol Vis Sci 2007;48:5299–305. 382 

https://doi.org/10.1167/iovs.07-0288. 383 

[46] Meredith M, MacNeil AH, Trasler JM, Baltz JM. Growing Mouse Oocytes Transiently Activate Folate 384 

Transport via Folate Receptors As They Approach Full Size1. Biol Reprod 2016;94. 385 

https://doi.org/10.1095/biolreprod.115.137687. 386 

https://doi.org/10.1095/biolreprod.115.137687


13 

revised 

[47] Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental 387 

competence. Mitochondrion 2011;11:797–813. https://doi.org/10.1016/j.mito.2010.09.012. 388 

  389 



14 

revised 

Figure 1. Silhouette plot of PAM clustering. The average silhouette width was 0.395 when dividing oocyte 390 

samples into 2 clusters. 391 

 392 

Figure 2. Heatmap of PAM clustering results. Rows of heatmap represented scaled expression values of the 393 

candidate orthologs clustered by k-means clustering, while the columns represented oocyte samples clustered by 394 

PAM. 395 

 396 

Figure 3. Bubble plot of the verified candidate orthologs. The blue and red colors indicated scaled expression 397 

levels of target orthologs expressed by oocytes in the low melatonin environment comparing to those obtained 398 

from the high melatonin environment. The color intensities were corresponded to the -log10FDR values, while 399 

the dot sizes were proportional to the absolute log2fold-change values of differentially expressed orthologs. 400 

 401 

Figure 4. Predicted probability plots and ROC curves. Predicted probabilities plots were displayed by colored 402 

dots, where red dots corresponded to class 0—low melatonin environment, and green dots for class 1—high 403 

melatonin environment. The misclassification rate acquired from each learning dataset was shown under the plot 404 

(5-fold cross-validation, Bootstrap, and Monte-Carlo-cross-validation). Adjacent to each predicted probability 405 

plot, the ROC curve generated from its same learning dataset was drawn with AUC value demonstrated. 406 


