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Article

Analytic energy, gradient, and hessian of electrostatic embedding
QM/MM based on electrostatic potential �tted atomic charges scaling
linearly with the MM subsystem size

Miquel Huix-Rotllanta) and Nicolas Ferré
Aix-Marseille Univ, CNRS, ICR, Marseille, France.

Electrostatic potential �tting method (ESPF) is a powerful way of de�ning atomic charges derived from
quantum density matrices �tted to reproduce a quantum mechanical charge distribution in the presence of
an external electrostatic potential. These can be used in the Hamiltonian to de�ne a robust and e�cient
electrostatic embedding QM/MM method. The original formulation of ESPF QM/MM contained two main
approximations, namely, the neglect of grid derivatives and the non-conservation of the total QM charge.
Here, we present a new ESPF atomic charge operator which solves these drawbacks at virtually no extra
computational cost. The new charge operators employ atom-centered grids and conserve the total charge
when traced with the density matrix. We present an e�cient and easy-to-implement analytic form for the
energy, gradient, and hessian that scale linearly with the MM subsystem size. We show that grid derivatives
and charge conservation are fundamental to preserve the translational invariance properties of energies and
its derivatives and exact conditions to be satis�ed by the atomic charge derivatives. As proof of concept,
we compute the transition state that leads to the formation of hydrogen peroxide during cryptochrome's
reoxidation reaction. Last, we show that the construction of the full QM/MM hessian scales linearly with the
MM subsystem size.

I. INTRODUCTION

Quantum mechanics/molecular mechanics (QM/MM)
methods are now a routine way to account for the elec-
trostatic interaction between a quantum system and an
environment that can be described as an electrostatic
scalar external potential.? ? ? ? ? Three main strategies
can account for this interaction: mechanical embedding,
electrostatic embedding, and polarizable embedding.? ?

In mechanical embedding, the interacting multipoles are
�xed both for the quantum and classical subsystems. In
electrostatic embedding, the interacting multipoles are
varying for the quantum subsystem and �xed for the
classical subsystem. In polarizable embedding, both the
quantum and classical multipoles are allowed to vary,
usually self-consistently.
The ElectroStatic Potential Fitting (ESPF) method

is a general method for the accounting of the QM and
MM electrostatic interaction that can be formulated in
any of the embedding strategies, from mechanical to
polarizable.? ? ? Indeed, ESPF is based on a multipo-
lar expansion of the quantum density of charges. At
the lowest order, it can be used to de�ne either classi-
cal atomic partial charges that interact with the classi-
cal charges (mechanical embedding)? or atomic charge
operators? ? ? that can be added in the one-electron op-
erators used to solve the QM problem (electrostatic em-
bedding). Being straightforwardly generalized to higher-
order multipoles, the ESPF formalism is formally com-
patible with any type of MM force �eld and systemati-
cally improvable.

a)Electronic mail: miquel.huixrotllant@univ-amu.fr

The main advantage of the ESPF method over other
QM/MM strategies is that the scaling of QM equations
is independent of the MM subsystem size.? This is pos-
sible by de�ning atomic multipole operators in the QM
subsystem based on the �tting of electrostatic integrals
computed on a QM-centered regular grid. This implies
that the QM subsystem only �knows� about the MM en-
vironment by means of its electrostatic potential. Conse-
quently, the QM equations avoid the scaling with the MM
atom number for the energy and its derivatives. Indeed,
the derivative of the ESPF operators due to a perturba-
tion of the MM environment only has a contribution from
the electron density polarization. We recently showed a
strategy to e�ciently obtain this contribution? , open-
ing the way to the �rst complete and e�cient calculation
of the full QM/MM energy, gradient and hessian in a
QM/MM electrostatic embedding framework.? ?

The original ESPF formulation in Ref. ? contained
two main approximations: (i) the charge of the QM sub-
system was not exactly conserved, inherent to the �nite
size of the grid on which electrostatic integrals are cal-
culated, and (ii) the grid derivative contributions were
missing for the energy derivatives. The computation of
grid-based atomic charges o�er not only an obvious com-
putational advantage for the calculation of electrostatic
integrals, but also the fact that atomic charges only de-
pend on the coordinates of the QM subsystem. The latter
property has been used several times to derive charges �t-
ted to the electrostatic potential calculated on a grid due
to the QM distribution of charges.? ? ? ? ? ? ? However,
depending how the grid is constructed and whether grid
derivatives (with respect to QM atom coordinates) are
included, it can have severe consequences for sum-rules
of atomic charges and the translational and rotational in-
variance of atomic charges.? In electrostatic embedding
QM/MM, this symmetry breaking is introduced in the
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Hamiltonian and the resulting energy derivatives, simi-
lar to what it was observed in density-functional theory
(DFT) exchange-correlation functional integration on nu-
merical grids.? ?

Here, we present a new ESPF formulation based on
atom-centered Lebedev grids with no approximations to
a given order of multipolar expansion. To the lowest
order of this expansion, we de�ne a new atomic charge
operator that conserve the total charge of the QM sub-
system without employing Lagrange multipliers, and in-
cludes grid derivative contributions for its derivatives. In
all formulas for constructing the gradient and hessian, we
avoid the derivative of the electrostatic kernel pseudoin-
verse. This boosts the e�ciency of the ESPF computa-
tions, allowing routine energy, gradient and hessian cal-
culations at the electrostatic embedding QM/MM level.

II. METHODOLOGY

A. Electrostatic Potential �tting method

The main equations of the electrostatic embedding
ESPF method were presented elsewhere.? ? ? ? ? For
completeness, we summarize the main equations for the
energy expression, �rst and second derivatives. In the
ESPF method, the electrostatic kernel (T) plays a cen-
tral role. To the lowest order, it is de�ned as a Coulomb
interaction kernel between a quantum atom B and a grid
point k around atom B,

Tk;B =
1

|rk − rB |
. (1)

This allows a simple de�nition of a charge operator based
on the on-grid electrostatic integrals to the same order
Vk;µν = 〈χµ| |r − rk|−1 |χν〉, in which χµ is an atomic or-
bital. The ESPF atomic charge operator is thus obtained
by solving the linear set of equations,?

Ngrid∑
k

NQM∑
A

TB;kwkTk;AQ̂A,µν =

Ngrid∑
k

TB;kwkVk;µν . (2)

Here w are the weights of the grid, Ngrid are the num-
ber of grid points and NQM are the number of atoms
treated at the quantum level of theory. Here, Q̂ corre-
spond to operator leading to the electronic net popula-
tion (for simplicity, hereafter it will be referred as atomic
charge operator). The electrostatic kernel forms a rect-
angular matrix, that can be inverted using the Moore-
Penrose inverse technique,? which allows us to write the
charge operator as,?

Q̂A,µν =

Ngrid∑
k

NQM∑
B

(TA;kwkTk;B)
−1

Ngrid∑
k′

TB;k′wk′Vk′;µν

:=

Ngrid∑
k

[T+
w ]A;kVk;µν . (3)

Hereafter, we use the common notation for pseudoinverse
matrices T+

w = (T†wT)−1T†w. Using this de�nition for
the charge operator, we can easily de�ne electronic net
populations centred on the quantum atoms A, by tracing
the charge operator with the density matrix (P),

QA =

NAO∑
µν

PµνQ̂A;µν = TrAO

[
PQ̂A

]
. (4)

These charges can interact with the classically de�ned
external potential φA, giving a total energy contribution

∆E =

NQM∑
A

(ZA −QA)φA = TrQM[qφφφ] , (5)

in which ZA is the nuclear charge and qA = ZA −QA is
the atomic partial charge of atom A. This energy can be
used to de�ne a mechanical embedding approach directly.
Alternatively, for an electrostatic embedding scheme in
which the density matrix is polarized by the electrostatic
environment, one can de�ne an ESPF operator

hµν =

NQM∑
A

φAQ̂A,µν , (6)

that can be added in the QM Fock operator.
a. Energy gradient: The �rst derivative of the ESPF

interaction energy? ? ? given in eq. 5 with respect to an
atom C can be easily written as

∆ExC = −TrQM[QxCφφφ] + TrQM[qφφφxC ] . (7)

Hereafter we use the derivative notation ∆ExC ≡
∂∆E/∂xC . Equation 7 has a simple physical interpre-
tation. The �rst term involves the charge �uctuations
due to the fact that the quantum density is polarizable.
The second term correspond to the �uctuations of the
external �eld at �xed atomic charges, and has a trivial
expression since the external �eld has a classical analytic
form. Here, we concentrate on the �rst term, involving
the derivative of the ESPF charge operator. Deriving eq.
4, we obtain

QxC

A = TrAO[PxC Q̂A] + TrAO[PQ̂xC

A ] . (8)

The �rst term corresponds to the dipole induced by the
�uctuations of the density matrix, while the second cor-
responds to the induced dipole operator at �xed density.
The �rst term requires the solution of the coupled per-
turbed self-consistent �eld equations (CPSCF). In gen-
eral, this has to be solved for all MM and QM atomic mo-
tions, although this can be avoided for the computation
of gradients.? The second term involves the �rst-order
derivative of the ESPF charge operator, which is given

Q̂xC = T+
w [VxC −TxCQ]

+
(
T†wT

)−1 [
T†w

]xC
[V −TQ] . (9)
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Thus, the derivative of the charge operator requires the
derivative of the on-grid electrostatic integrals and the
electrostatic kernel. On the one hand, the integral deriva-
tive have an easy expression

V xC

k;µν = 〈χxC
µ |

1

|r− rk|
|χν〉+ 〈χµ|

1

|r− rk|
|χxC
ν 〉 , (10)

in which the derivative of the electrostatic ker-
nel have been neglected. Here, χµ symbolizes an
atomic orbital, and the bra-ket notation for inte-
gral should be interpreted as 〈χµ||r− rk|−1|χν〉 =∫
drχ∗µ(r) |r− rk|−1 χν(r). On the other hand, the

derivative of the electrostatic kernel is given by

T xC

k;B = δBC
xk − xB
|rk − rB |3

. (11)

Here δ symbolizes a Kronecker's delta. Again, the grid
derivatives have been neglected.
b. Energy hessian: The second derivative of the

ESPF interaction energy? ? given in eq. 5 with respect
to an atom C and an atom D can be written as

∆ExCyD = −TrQM[QxCyDφφφ] + TrQM[qφφφxCyD ]

+ TrQM[QyDφφφxC ]− TrQM[QxCφφφyD ] . (12)

The �rst term corresponds to an induced quadrupole at
�xed external potential, the second term corresponds to
the second order variations of the external �eld at �xed
atomic charges, and the last two terms correspond to the
induced dipoles interacting with a �rst-order variation
of the external potential. The second term has an easy
analytic expression, while the third and fourth terms are
constructed with information from the energy gradient.
Therefore, here we concentrate on the expression of the
induced quadrupole, which can be expressed as

QxCyD
A = TrAO[PxCyDQ̂A] + TrAO[PQ̂xCyD

A ]

+ TrAO[PyDQ̂xC

A ] + TrAO[PxC Q̂yD
A ] . (13)

For constructing it, the �rst and second derivatives of
the density matrix and the charge operator are required.
Similar to the energy gradient, one can avoid the compu-
tation of the second derivative of the density matrix, but
the �rst derivative density matrix is required, for which a
set of CPSCF equations have to be solved to compute it.
For the ESPF hamiltonian, this can be e�ciently done
for the QM and MM perturbations, avoiding the solu-
tion of CPSCF for each MM atom (for further details see
Ref. ? ). The expression for the second derivative of the
atomic charge operator is given by

Q̂xCyD = T+
w [VxCyD −TxCQyD −TyDQxC −TxCyDQ]

+
(
T†wT

)−1 [
T†w

]xCyD
[V −TQ]

+
(
T†wT

)−1 [
T†w

]xC
[V −TQ]

yD

+
(
T†wT

)−1 [
T†w

]yD
[V −TQ]

xC , (14)

Similar to the gradient, the second derivative of the
atomic charge operator requires the information of the

�rst-derivative of the operator in addition to the second-
derivative of the electrostatic kernel pseudoinverse and
the on-grid integrals. On the one hand, the expression
for the second-derivative integrals is given by

V xCyD
k;µν = 〈χxCyD

µ | 1

|r− rk|
|χν〉+ 〈χµ|

1

|r− rk|
|χxCyD
ν 〉

+ 〈χxC
µ |

1

|r− rk|
|χyDν 〉+ 〈χyDµ |

1

|r− rk|
|χxC
ν 〉 , (15)

in which the grid derivatives have been neglected. On
the other hand, the second derivative of the electrostatic
kernel, which is given by

T xCyD
k;B = δCBδDB

(xk − xB)(yk − yB)− δxy |rk − rB |2

|rk − rB |5
.

(16)
Again, the grid derivatives have been neglected.

B. ESPF based on atom-centered grids

Here, we reformulate the original ESPF method by us-
ing atom-centered grids.? The expressions for the inter-
action energy (eq. 5) and its �rst (eqs. 7 and 8) and
second derivatives (eqs. 12 and 13) remain valid. There-
fore, here we concentrate on the expression of the �rst
and second derivatives of the ESPF charge operator and
the extra contributions that arise from the grid deriva-
tives. First of all, we de�ne a grid centred on the QM
atoms. We can rede�ne the previous grid points k by a
new grid de�nition of points of a Lebedev sphere centered
on quantum atoms A,

rk = rA + rl := rA,l . (17)

In this section, we consider all grid points contribute
equally, so that the grid weights are considered all equal
to 1. The advantage of using an atom-centred grid is
that we can compute the grid derivatives with respect to
a quantum atom B is simply given by rxB

A,l = δABex, in
which ex is the x-axis standard unit vector. Accordingly,
all grid derivatives can be expressed as QM atom position
derivatives. In this atom-centered grid, the electrostatic
kernel (eq. 1) can be re-expressed as

TA,l;B =
1

|rA,l − rB |
. (18)

Using this grid, one can re-write the atomic charge oper-
ator elements (eq. 4) as

Q̂A,µν =

NQM∑
B

NB,l∑
l

[
T+
w

]
A;B,l

VB,l;µν

:=
∑
B,l

[
T+
w

]
A;B,l

VB,l;µν . (19)

In the second equation, we de�ned the short-hand sum
over B and l for the grid. Indeed, these two sums do not
commute, since the number of Lebedev grid points per
atom (NB;l) is di�erent for each atom.
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a. Charge operator gradient: The �rst derivative of
the electrostatic kernels with respect to an atom C are
T xC

A,l;C = −T xC

C,l;A are non-zero for A 6= C, and zero
otherwise. It is worth noting that the �local� electro-
static kernel of atom A is independent of its position
TA,l;A = |rl|−1 and T xC

A,l;A = 0 for ∀ C. The �rst deriva-
tive kernel in eq. 11 can now be written as

T xC

A,l;B = (δBC − δAC)
xA,l − xB
|rA,l − rB |3

, (20)

including the grid derivatives, which introduces the sec-
ond delta function in the equation. The �rst derivatives
of the on-grid electrostatic integrals de�ned on atom-
centred grids is given by

V xC

B,l;µν = 〈χxC
µ |

1

|r− rB,l|
|χν〉+ 〈χµ|

1

|r− rB,l|
|χxC
ν 〉

+ δBC〈χµ|
(x− xB,l)
|r− rB,l|3

|χν〉 . (21)

The last terms both in eq. 20 and 21 arise from the grid
derivatives, and can be interpreted as the on-site induced
dipole moments due to the variations of atom C. Using
these de�nitions in eq. 9, one obtains the full expres-
sion for the gradient of the charge operator including grid
derivatives (see eq. S1 in the Supporting Information).
Equivalent expressions for the derivative of the charges
were obtained by ? using CHELPG charges.? ? However,
our formula avoid the pseudoderivative of the inverse of
the electrostatic kernel, which makes the derivative for
the charges and the implementation simpler and lessens
the computational cost for calculating charge derivatives.
While the di�erence is not large for the gradient, it be-
comes important for the hessian.

b. Charge operator hessian: The second derivative of the electrostatic kernel previously de�ned in eq. 16 can now
be written as

T xCyD
A,l;B = (δBC − δAC) (δBD − δAD)

(xA,l − xB) (yA,l − yB)− δxy |rA,l − rB |2

|rA,l − rB |5
,

thus including three extra terms due to the grid derivatives. The second derivatives of the electrostatic integrals on
a grid are given by

V xCyD
B,l;µν = 〈χxCyD

µ | 1

|r− rB,l|
|χν〉+ 〈χµ|

1

|r− rB,l|
|χxCyD
ν 〉+ 〈χxC

µ |
1

|r− rB,l|
|χyDν 〉+ 〈χyDµ |

1

|r− rB,l|
|χxC
ν 〉

+ δBD

[
〈χxC
µ |

(y − yB,l)
|r− rB,l|3

|χν〉+ 〈χµ|
(y − yB,l)
|r− rB,l|3

|χxC
ν 〉

]
+ δBC

[
〈χyDµ |

(x− xB,l)
|r− rB,l|3

|χν〉+ 〈χµ|
(x− xB,l)
|r− rB,l|3

|χyDν 〉

]

+ δBCδBD〈χµ|
(x− xB,l)(y − yB,l)− δxy |r− rB,l|2

|r− rB,l|5
|χν〉 . (22)

The last �ve terms both in 22 arise from the grid deriva-
tive. Using these de�nitions in eq. 14, one obtains the
full expression for the gradient of the charge operator in-
cluding grid derivatives (see eq. S2 in the Supporting
Information).

C. Charge conservation

The ESPF atomic charges have an error inherent to
the �nite size of the numerical grid. Usually, ESP-type
methods conserve the total charge by adding a simple
Lagrangian constraint in the solution of the ESP �t-
ting equations. However, this strategy introduces ex-
tra electrostatic kernel pseudoinverses in the de�nition
of the charges,? ? which increase the complexity of
equations and the computational cost of gradients and
hessians.? In addition, the least-square �tting of charges

with Lagrangian constraint is prone to rank de�ciency
problems.? To avoid this, we propose the de�nition of a
new atomic charge operator that exactly conserves total
charge without adding any extra pseudoinverses in the
de�nition,

Q̂′A,µν = Q̂A,µν + N−1QM

Sµν − NQM∑
B

Q̂B,µν

 . (23)

As we will show in the rest of this section, this operator
conserves the total charge, keeping the computational ef-
�ciency of its energy derivatives by rewriting the charge
conservation in the form of an average external poten-
tial. Hereafter, we use the primed charges as indication
of charge-conserved versions using the operator de�ned
in Eq. 23. In this new atomic charge operator, the �spuri-
ous charge� errors (i.e., the deviation of the ESPF charge
from the total charge) are equivalently shared between all
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atoms. For large grids, this di�erence is close to 0, and
the charge operator falls back to the original de�nition
in Eq. 3. The conservation of the total charge in the new
operator can be easily veri�ed by tracing this operator
with the AO density matrix, thus obtaining

Q′A = QA + N−1QM

Nel −
NQM∑
B

QB

 , (24)

using the de�nition of eq. 4 and noting that TrAO [PS] =
Nel, where Nel is the total number of electrons of the
QM subsystem. Therefore, the total charge conservation
condition is satis�ed exactly,

TrQM [Q′] = Nel . (25)

Using this atomic charge operator in the energy expres-
sion (eq. 5) leads to the new interaction energy expres-
sion

∆E′ = TrQM [qφφφ] + Φav (TrQM [Q]−Nel) , (26)

in which we de�ned the average external potential as
Φav = N−1QMTrQM [φφφ]. Similarly, the new de�nition of
the atomic charge operator leads to additional terms in
the ESPF hamiltonian (eq. 6),

h′µν =

NQM∑
A

(Φav − φA) Q̂A,µν − ΦavSµν . (27)

In principle, one could equivalently add last term as
a constant −ΦavNel in the energy. However, the
ΦavTrQM[Q̂] alone is large and would disrupt the wave-
function. The two terms together lead to a small con-
tribution in the interaction operator and a correct wave-
function.
a. First derivative: The �rst derivative of the

atomic charge-conserving operator is simply given by

Q̂′xC

A,µν = Q̂xC

A,µν + N−1QM

SxC
µν −

NQM∑
B

QxC

B,µν

 , (28)

in which the ESPF operator charge derivative is given in
eq. 9. The atomic charge-conserving operator derivative
now satis�es exactly the following condition for the full
atomic charge derivative,

TrQM [Q′xC ] =

NQM∑
A

TrAO

[
PxCQ′A + PQ′xC

A

]
= 0 . (29)

It is worth to note that the sum of atomic charges �rst
derivatives at �xed MO coe�cient is given by

TrQM

[
Q′(xC)

]
=

NQM∑
A

TrAO

[
PQ′xC

A

]
= TrAO[PSxC ] , (30)

thus di�erent from 0. For a translational invariant gra-
dient, the following conditions should be satis�ed,? ? ?

NQM∑
C

TrQM

[
Q′(xC)

]
= 0 , (31)

and,

NQM∑
C

TrQM

[
Q(xC)

]
= 0 . (32)

The former is trivially satis�ed, while the latter is only
satis�ed when grid derivatives are included (see below).
The previous expressions for the �rst derivatives of the

ESPF energy (eq. 7) and operator (eq. 6) have additional
terms due to the charge conservation. The �rst derivative
of the energy is given by

∆E′xC = TrQM [QxC (Φav −φφφ) + q′φφφxC ] . (33)

It is important to note that the main di�erence between
the charge-conserved gradient and the initial gradient in
Eq. 7 is only in the presence of the conserved charges q′

and the average potential, which are straightforwardly
calculated at virtually no additional computational cost.
In both gradients, the charge operator �rst derivative
is the same operator. The �rst derivative of the ESPF
operator is given by

h′xC
µν =

NQM∑
A

Q̂xC

A,µν (Φav − φA)− ΦavS
xC
µν (34)

+

NQM∑
A

Q̂A,µν (Φav − φA)
xC − ΦxC

av Sµν .

It is important to note that only the derivatives of the
classical external potential and the AO overlap are re-
quired for charge conservation.
b. Second derivative: Similarly, the second deriva-

tive of the atomic charge-conserving operator is given by

Q′xCyD
A,µν = QxCyD

A,µν +N−1QM

SxCyD
µν −

NQM∑
B

QxCyD
B,µν

 , (35)

in which the ESPF operator charge derivative is given in
eq. 14. The atomic charge-conserving operator derivative
now satis�es exactly the following condition,

TrQM [Q′xCyD ] = 0 . (36)

The second derivatives of the ESPF energy and operator
with charge-conserving operators are thus given respec-
tively by

∆E′xCyD = TrQM [QxCyD (Φav −φφφ) + q′φφφxCyD ] (37)
+ TrQM [QxC (Φav −φφφ)

yD ] + TrQM [QyD (Φav −φφφ)
xC ] ,
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and

h′xCyD
µν =

NQM∑
A

Q̂xCyD
A,µν (Φav − φA)− ΦavS

xCyD
µν (38)

+

NQM∑
A

Q̂yDA,µν (Φav − φA)
xC − ΦxC

av S
yD
µν

+

NQM∑
A

Q̂xC

A,µν (Φav − φA)
yD − ΦyDav S

xC
µν

+

NQM∑
A

Q̂A,µν (Φav − φA)
xCyD − ΦxCyD

av Sµν .

D. Derivatives with respect to MM-type atoms

Up to now, we concentrated exclusively on atomic
charge and energy derivatives induced by QM perturba-
tions. Although the energy is uniquely de�ned for MM or
QM atoms, the corresponding derivatives lead to di�erent
expressions. In Ref. ? , we showed the speci�c coupled-
perturbed (CP) equations for MM atom perturbations,
in order to construct the density derivatives with respect
to MM atoms, necessary to build up the full Hessian.
A new set of CP equations, dubbed Q-vector equations,
were constructed to avoid the scaling of CP with the MM
size (see Eq. 20 of Ref. ? ). The same Q-vector equa-
tions are satis�ed with the charge-conserving operator,
in which Eq. 23 is used as perturbation operator instead.
Hereafter, we show the energy gradient and hessian with
respect to MM perturbations. In order to distinguish
MM- from QM-type atom perturbations, a tilde is used
for the former.
a. First derivative: The full gradient at the

QM/MM level has two vectors, corresponding to the QM
and MM derivatives.? The QM �rst derivative is given
by Eq. 7, while the interaction energy gradient with re-
spect to an MM atom is simply given by

∆Ex̃C = TrQM

[
q′φφφx̃C

]
. (39)

This equation stems from the fact that QxC

A,µν = 0 for
any MM atom C, since the electrostatic kernel and the
electrostatic grid are independent of the MM atom po-
sitions. In addition, the trace of the density derivative
with the Fock operator, TrAO

[
Px̃CF

]
, is substituted by

the equivalent term −TrAO

[
WSx̃C

]
, in which W is the

energy-weighted matrix.? Since Sx̃C = 0 for MM atoms,
this terms cancel out exactly.
b. Second derivative: The full Hessian at the

QM/MM level has four blocks, corresponding to the QM-
QM, QM-MM, MM-QM and MM-MM derivatives.? ?

The QM-QM block is given by Eq. 12. The QM-MM and
MM-QM derivatives are equivalent due to Schwarz equal-
ity of partial derivatives (∆EỹCxD = ∆ExC ỹD ). The
MM-QM second derivative with charge conserving oper-

ators is thus given by

∆Ex̃CyD = TrQM

[
q′φφφx̃CyD + QyD (Φav −φφφ)

x̃C

]
, (40)

and the MM-MM second derivative by

∆Ex̃C ỹD = TrQM

[
q′φφφx̃C ỹD + QỹD (Φav −φφφ)

x̃C

]
. (41)

III. COMPUTATIONAL DETAILS

The new charge conserving and grid derivative includ-
ing ESPF model is capable of calculating the energy, its
gradient and hessian with respect to all, QM and MM,
degrees of freedom. This ESPF v2.0 is currently imple-
mented in a local development version of Gaussian16,?

interfaced with a modi�ed version of Tinker 8.7.1.? Un-
less otherwise stated, all calculations presented below are
performed at the B3LYP/6-31G* and Amber99 levels of
theory for QM and MM respectively.? ? ? ? ? The imple-
mentation has been tested by comparing numerical and
analytic, which lead to an average absolute di�erences
between 10−3 − 10−5 a.u. in all cases.
The atom-centered grids have been constructed from

Lebedev spheres, in which all weight has been set to
1 and the weight derivatives to 0. Each atom features
three spheres of 100 Lebedev points each, that have been
equally spaced using the van der Waals radius of the
atom. Each grid point inside the van der Waals radius of
any of the atom of the molecule is excluded. No scaling of
the QM-MM electrostatic interactions was applied, while
we maintained the standard scaling factors for the purely
MM electrostatic interactions.
The construction of the ESPF operator elements and

its derivatives requires the computation of on-grid elec-
trostatic integrals up to the second order in the interac-
tion kernel, as well as integral derivatives up to the �rst
order [see eqs. 21 and 22], which are already available in
Gaussian16. The derivatives of the electrostatic kernel
matrix T are formed on the �y and contracted with the
integrals and the pseudoinverse matrices. The pseudoin-
verse T+

w has been computed by means of a Cholesky
decomposition of (T†wT) before its inversion. The in-
termediate matrix BB,l =

∑NQM

A φA [T+
w ]A;B,l is stored

in memory and then contracted with the integrals with a
sum over grid points, leading directly to an energy con-
tribution.

IV. RESULTS AND DISCUSSION

A. Grid e�ect on the atomic charges

The grid type selected to derive atomic charges �t-
ted to the electrostatic potential largely impacts their
values and variations when the molecular geometry is
modi�ed.? This was clearly shown by ? in Ref. ? , who
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FIG. 1. ESPF partial atomic charges (in a.u.) along the O�
C2�N�H dihedral angle of N-methylacetamide using a paral-
lelepiped grid (1777 grid points) or a Lebedev grid (2572 grid
points) using charge conserving operators. For simplicity, the
charges of the methyl hydrogen atoms have been omitted.

computed atomic charges along one dihedral angle in N-
methylacetamide. In Figure ??, we take the same ex-
ample and apply it to ESPF charges with (ESPF v1.0)
parallelepiped and (ESPF v2.0) Lebedev grids. In this
case, no MM atom is present in the calculation. As it
can be clearly seen in Figure ??, the numerical values of
each atomic charge remain close whatever the grid type.
However, their variations with the φ =O�C2�N�H dihe-
dral angle are clearly di�erent. Using the Lebedev grid
leads to a rather continuous and smooth change of the
charges while the parallelepiped grid introduces an ap-
preciable numerical noise. In addition, the charge vari-
ation should be symmetric with respect to φ = 0◦, i.e.
qA(φ) = qA(−φ) for any atom A. This property is per-
fectly satis�ed by the Lebedev grid but not by the par-
allelepiped grid. The reason for these di�erences is es-
sentially rooted into the symmetry of the numerical grid.
Since a Lebedev grid is constructed from spheres centered
on nuclei, atomic displacements distort evenly the grid,

hence keeping a consistent overall molecular symmetry.
Conversely, a parallelepiped grid is de�ned using three
vectors from the most extreme atom Cartesian coordi-
nates in the three space directions. If the atoms at the
extremes of the molecule are kept �xed while other move,
the orientation of the grid does not change, thus intro-
ducing a numerical noise in the computation of charges
(or any other grid-dependent property).

B. Grid e�ect on the atomic charge derivatives

The consideration of the grid derivatives are important
in order to satisfy certain sum rules of the atomic charge
derivatives. The sum rule de�ned in eq. 29 ensures that
the total charge of the QM subsystem is kept constant
and no electron density spilling e�ect occurs between the
QM and MM subsystems. In Table ??, we computed
this sum rule for a QM/MM water dimer ( Figure ??)
using either a parallelepiped grid, hence excluding the
grid derivatives, or a Lebedev grid, hence including or
excluding the grid derivative terms.
Only the selection of Lebedev grids, including the grid

derivative contributions, is able to retain the transla-
tional invariance of the QM/MMHamiltonian. When the
grid derivatives are excluded, the corresponding charge
and gradient sum rules are only satis�ed approximately.
The magnitude of the spurious extra charge is indepen-
dent of the grid size. Indeed, these sum rule deviations
are still observed when using a �ner grid, with a similar
magnitude as for the coarser grids. This shows that the
grid derivatives are essential for satisfying the derivative
sum rules. If one compares the grid-derivative formu-
las (eqs. 20 and 21) with the formulas without these
contributions (eqs. 11 and 10), a physical interpretation
can be given. Grid derivative terms introduce dipolar
terms into the electrostatic integral derivatives, resulting
in extra dipole-charge type interactions between the per-
turbed atom and the rest of atomic charges of the QM
subsystem.
A consequence of not satisfying the charge derivative

sum rule is the breaking of the QM/MM Hamiltonian
translational invariance. When this condition is satis�ed,
it translates to

N∑
C

ExC = 0 . (42)

The sum over N runs over all atoms. Table ??(b) re-
ports values for the gradient translational invariance for
the di�erent numerical grids. One could think that the
use of atom-centred Lebedev grids, which are invariant
under translations by construction, su�ce to guarantee
the exact translational invariance of the QM/MM Hamil-
tonian. As it can be observed, this is not the case, irre-
spective of the grid size. A similar trend is observed for
parallelpiped grids. Only Lebedev grigds including grid
derivative terms lead to a clear translational invariance
of the QM/MM hamiltonian.
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Parallelpiped

FIG. 2. (a) (H2O)2 model used for the QM/MM calculations.
The QM atoms are numbered. (b) Parallelpiped and Lebedev
grids used to expand the electrostatic integrals. The QM and
MM water molecules are shown respectively in colored and
grey ball and sticks. For Lebedev grid with grid derivatives
(GD), the grid points are colored in magenta, green and blue
for grid points centred on O1, H1 and H2 respectively. When
all points are in magenta, no atom origin is speci�ed.

As an example of the e�ect of the grid derivatives,
we compare in Table ?? the 12 frequencies character-
izing the same water dimer (Figure ??) normal modes
obtained with a full QM calculation with those obtained
using QM/MM.

Whatever the grid type, most of the QM/MM frequen-

(a) Charge derivative conservation
Grid # Points x y z
Paral. (no GD)1 885 -0.180 -0.321 0.014

56385 0.012 0.071 0.120
Lebedev (GD)2 928 0.000 0.000 0.000

58895 0.000 0.000 0.000
Lebedev (no GD)1 928 0.057 -0.091 0.354

58895 0.133 -0.001 0.314

(b) Gradient translational invariance
Grid # Points x y z
Paral. (no GD)1 885 18.560 -16.289 20.693

56385 14.466 -7.813 22.430
Lebedev (GD)2 928 0.012 0.014 0.001

58895 0.012 0.014 0.001
Lebedev (no GD)1 928 9.535 -9.859 7.111

58895 10.067 -8.642 7.334
1 No grid derivative included 2 Grid derivative included

TABLE I. (a) Deviation from the ideal sum rule of the charge
derivatives (Eq. 32) for a QM/MM water dimer model (Fig-
ure ??) using di�erent numerical grids including or not the
grid derivative (GD) contributions. Units are 10−3 charge
a.u./Bohr. (b) Sum of each atom QM/MM energy gradient
contribution along one space direction. When the transla-
tional invariance is satis�ed, each sum should be 0 (eq. ??).
Units are meV/Å.

Mode QM Leb. Leb. Paral.
GD no GD no GD

1 -0.04 -30.43 -41.68 -23.94
2 0.01 -20.94 -21.41 -16.30
3 0.03 -6.98 -12.45 -11.71
4 2.55 4.22 -4.66 -7.65
5 2.63 20.09 -0.02 10.94
6 17.89 30.01 10.63 29.17
7 59.26 68.78 49.32 69.20
8 165.54 160.80 160.23 160.92
9 180.32 202.77 201.64 199.75
10 218.66 228.55 225.29 227.12
11 434.46 412.38 402.99 404.42
12 659.11 656.41 653.15 655.76
13 1671.71 1708.27 1712.72 1711.37
14 1705.11 2340.07 2340.10 2340.08
15 3698.50 3659.94 3663.02 3660.91
16 3801.66 3706.01 3707.46 3706.44
17 3880.08 3739.61 3739.55 3739.58
18 3903.38 3872.34 3871.81 3871.26

TABLE II. Comparison of the full spectrum of harmonic fre-
quencies for the water dimer ( Figure ??) at the minimum en-
ergy structure of the full QM model and the QM/MM ESPF
models using di�erent grids. The Cartesian coordinates of
each minimum energy structure can be found in supporting
information. The �rst 6 vibrations correspond to translations
and rotations and should be close to 0. Frequencies have been
computed at the B3LYP/6-31G(2d,2p) level. The frequencies
are given in cm−1.
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cies are very close to each other. Moreover, they are
similar to (but not perfectly matching) the QM spec-
trum. The �rst 6 vibrations correspond to translations
and rotations, and should be close to 0. In this case, the
inclusion of grid derivatives brings the translations close
to the 0 frequency, better than when grid derivatives are
not included. In all QM/MM cases, rotations are not
perfectly separated, since this would require the imple-
mentatino of a rotational invariant Lebedev grid.? For
the rest of frequencies, the di�erence with the QM cal-
culation can be attributed to the quantitatively di�erent
force constants in the selected classical force �eld. How-
ever, note that recent developments in polarizable force
�elds show a better comparison with respect to quantum
calculations of force constants.? ?

C. Reoxidation of fully reduced anionic �avin adenine
dinucleotide in cryptochrome

Cryptochromes (see Figure ??) are �avoproteins act-
ing as blue light receptors, potentially at the origin of
magnetoreception,? i.e., the sensing of the geomagnetic
�eld. This mechanism could be possibly happening in the
protein cavity upon blue light absorption, by generating a
biradical between a tryptophan triad and the �avin ade-
nine dinucleotide (FAD).? Alternatively, it has been pro-
posed that biradicals can be formed during the reoxida-
tion reaction of fully reduced �avin adendine dinucleotide
(FADH−) with molecular oxygen.? Recently, one of us
showed that such radicals can be stabilized in the protein
FAD pocket for a long time, due to strong electrostatic
interactions.? The complete reaction is complex, since
several electron transfers can occur between reduced FAD
forms and oxygen when the complex is activated with
light.? In the hypothesis of a mechanism featuring re-
active oxygen species, the biradical should be stable for
at least several milliseconds for the magnetoreception to
be e�ective. Here, we study the �nal step of the oxida-
tion reaction of reduced FAD by molecular oxygen in a
cryptochrome protein, namely, the formation of hydrogen
peroxide. This reaction step is irreversible, and thus, a
rapid formation of H2O2 could contradict the possibility
of oxygen-�avin-based magnetoreception.
The reaction mechanism considered in this study is

depicted in Figure ??. After having optimized the ge-
ometry of the reactant, we have been able to locate
the corresponding transition state, which corresponds
to the simultaneous proton transfer from the secondary
amine to one �OOH oxygen, and from the same oxy-
gen atom to the other one in �OOH. The QM/MM
imaginary frequency of this mode is 1476i cm−1 in the
protein. The activation free energy at standard condi-
tions of temperature and pressure is 48.58 kcal·mol−1,
leading to a reaction rate of 1.59·10−23 s−1. In the
gas phase, a similar transition state exists for lumi-
�avin (7,8,10-trimethylisoalloxazine) with an imaginary
frequency of 1356i cm−1 and a free energy of activation

Parameter Lumi�avin Cryptochrome
O2-O4 1.522 1.588
O4-C6 1.759 2.484
C6-C7 1.501 1.454
H1-N5 1.220 1.657
H1-O2 1.289 1.019
H3-O2 1.302 1.086
H3-O4 1.311 1.147

N5-H1-O2 76.537 82.387

TABLE III. Comparison of main geometrical parameters of
the transition states at the QM/MM level for cryptochrome
and at the QM level for lumi�avin. Distances are in Å and an-
gles in degrees. Atom numbering is shown in Figure ??. The
structures of the transition states can be found in Supporting
Information.

of 8.78 kcal·mol−1, leading to a reaction rate of 2.27·106
s−1. Indeed, this show that this reoxidation reaction is
forbidden, while in gas phase is fast. This shows that re-
oxidation reaction between oxygen and FAD should oc-
cur via a di�erent mechanism in protein (see Ref. ? ).
In Table ??, the geometries of the two transition states
for lumi�avin in gas phase and FAD in cryptochrome
are compared (for the Cartesian coordinates and the
ESPF charges, see Supporting Information). As it can
be seen, most geometrical parameters are similar. The
O-O distance is almost the same in both cases, close to
the equilibrium value of 1.45 Å for H2O2 (computed at
the MP2/cc-pVQZ level in the gas phase). In protein,
the oxygens are further apart from FAD (∼0.5 Å further
from carbon and ∼0.4 Å further from nitrogen) with re-
spect to gas phase. The increase of the C6−O4 distance
destabilizes the transition state complex, and can be at-
tributed to a redistribution of charge. The charge on O4
net changes by ∼-0.12 a.u. of charge between the min-
imum and the transition state, C6 by ∼-0.4 a.u., while
C7 is ∼+0.14. Other atoms in the ribitol moiety also
have a net positive charge increase (see Supporting In-
formation). In addition, the hydrogens are closer to the
equilibrium value of 0.97 Å for H2O2 (computed at the
MP2/cc-pVQZ level in the gas phase) than the gas phase
transition state.

D. Computational scaling: chignolin in water droplets

In Figure ??, we report the computational scaling of
the QM/MM Hessian with respect to the number of MM
atoms. As a test case, we have taken chignolin, a 10
aminoacid protein forming a double beta sheet. This
molecule, consisting of 138 atoms treated at the QM level
of theory. has been soaked in di�erent microscopic wa-
ter droplets with a radius of 10, 15, 20 and 25 Å around
any of chignolin atoms. For the sake of safe comparisons,
the complete geometries have been kept frozen. As it
can be seen from the trend line drawn in the graph of
Figure ??, the scaling is O1.22, hence close to linear scal-
ing. However, note that Figure ?? reports timings for
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FIG. 3. (top) Structure of Arabidopsis thaliana cryptochrome
3 used in the QM/MM model (PDBID: 2J4D). The QM sub-
system consists of �avin adenine dinucleotide (in ball and
stick), while the rest of the protein has been treated at the
MM level. The reduced form of FAD and the hydroperoxyl
molecules have been placed in a second step, also treated at
the QM level. (bottom) Reoxidation reaction considered in
this study. The important atoms are numbered in blue on the
representative structure of the transition state. The struc-
tures of the transition states can be found in Supporting In-
formation.

the building of all the QM/MM Hessian contributions.
In other words, the I/O timings are not considered. In-
deed, while the MM Hessian has a negligible computa-
tional cost with respect to the QM calculation, in our
current implementation, Tinker transfers huge amounts
of information to Gaussian16 by means of formatted text
�les. These I/O transfers increase the overall computa-
tional time to O1.85, ie. almost proportional to the size
of the Hessian. This is however a technical problem, that
could be solved by making the MM and QM programs
share the same physical memory thanks to a suitable Ap-
plication Programming Interface or by means of binary
�les. Finally, one should note that this scaling is pos-
sible thanks to the Q-vector method, which avoids the
scaling of the coupled perturbed equations with the MM
subsystem size.? ? ?

FIG. 4. Scaling of the QM/MM Hessian calculations with re-
spect to the MM atom size. (top) QM/MMmodel used for the
scaling calculations. The QM subsystem is formed by chig-
nolin (PDBID: 1UAO, depicted in magenta soaked in water
and its structure in the o�set) treated at the HF/3-21G* level
and spheres of water molecules around it are computed at the
MM level using Amber99. (bottom) Plot of the elapsed time
(in minutes) with respect to the number of MM atoms. From
these, we have substracted the elapsed time of the pure QM
hessian calculation, 15.5 min. Calculations have been per-
formed on 64 CPUs Intel(R) Xeon(R) Platinum 8280 CPU @
2.70GHz and 2800 Gb of RAM memory.

V. CONCLUSION

We have re�ned a QM/MM method based on new
Electrostatic Potential Fitted (ESPF) atomic charge op-
erators that are built to conserve the total molecular
charge. This ESPF v2.0 approach is capable of calcu-
lating QM/MM energy, gradient and full Hessian. When
interacting with any kind of external electrostatic poten-
tial, the ESPF operators can be added as expectation
values to the total energy in a mechanical embedding ap-
proach, or directly included into the Fock operator of any
self-consistent �eld procedure in an electrostatic embed-
ding approach.
The QM atomic charges are �tted to reproduce electro-

static integrals computed on a grid surrounding the QM
atoms. We showed that, unlike other grids, atom-centred
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grids are superior to produce correct atomic charge and
energy derivatives. Indeed, they avoid the numerical
instabilities which are frequently appearing with other
grid types when the QM geometry is distorted. In ad-
dition, the atomic charge derivative sum rules as well as
the translational invariance condition are retrieved when
atom-centred grids are used. Still, rotational invariance
of the QM/MM Hamiltonian is not completely satis�ed.
This would require, for example, the use of rotational
invariant Lebedev's grid.? However, this would require
the implementation of new types of integrals, beyond the
scope of the present work.

While some technical improvements are still possible
for achieving a better computational e�ciency (notably
in terms of I/O), we have been able to locate the transi-
tion state characterizing a complex two proton transfer
reaction occurring in a large cryptochrome protein.

The energy and analytic derivatives of the ESPF
method with grid derivatives and charge conservation
only a�ect the QM atomic charges, and thus they were
derived for a general MM force �eld. In our appli-
cations, we considered only non-polarizable force �elds
(�xed point charge representation). The extension to po-
larizable force �elds will change the analytic form for the
external potential φ as well as its derivatives, depending
on how polarization is introduced in the classical force
�eld (Drude particles, multipolar expansion, etc.), but
does not a�ect the ESPF expressions as long as the ex-

ternal MM �eld is independent of the QM charges.
To conclude, we formulated a general QM/MMmethod

based on ESPF charges without approximations besides
the truncation of the multipolar expansion. All the work-
ing equations shown here for the lowest order approx-
imation (i.e., atomic charges) can be straightforwardly
derived for higher-order terms.
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