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Temporal patterning in neural progenitors: from Drosophila
development to childhood cancers

Cédric Maurange*

ABSTRACT

The developing central nervous system (CNS) is particularly prone to
malignant transformation, but the underlying mechanisms remain
unresolved. However, periods of tumor susceptibility appear to
correlate with windows of increased proliferation, which are often
observed during embryonic and fetal stages and reflect stereotypical
changes in the proliferative properties of neural progenitors. The
temporal mechanisms underlying these proliferation patterns are still
unclear in mammals. In Drosophila, two decades of work have revealed
a network of sequentially expressed transcription factors and RNA-
binding proteins that compose a neural progenitor-intrinsic temporal
patterning system. Temporal patterning controls both the identity of the
post-mitotic progeny of neural progenitors, according to the order in
which they arose, and the proliferative properties of neural progenitors
along development. In addition, in Drosophila, temporal patterning
delineates early windows of cancer susceptibility and is aberrantly
regulated in developmental tumors to govern cellular hierarchy as well
as the metabolic and proliferative heterogeneity of tumor cells. Whereas
recent studies have shown that similar genetic programs unfold during
both fetal development and pediatric brain tumors, | discuss, in this
Review, how the concept of temporal patterning that was pioneered in
Drosophila could help to understand the mechanisms of initiation and
progression of CNS tumors in children.

KEY WORDS: Drosophila, Pediatric cancer, Neural stem cell,
Temporal patterning, Medulloblastoma

Introduction: the developmental origins of CNS tumors

in children

It is now well accepted that the etiology of adult and childhood
cancers underlies different mechanisms and principles. Adult
cancer is mainly a disease of aging and incidence peaks after
65 years of age, with about one-fifth of the population expecting to
develop cancer in their adult lives. The progression of cancers in
adults relies on the progressive accumulation of genomic alterations
(single-nucleotide variants, copy number alterations or structural
rearrangements of the chromosome) and is an evolving process that
can span several years. In contrast, cancers in children (0-15 years of
age), also known as pediatric cancers, are much rarer, but develop
rapidly, despite exhibiting a much lower mutational burden than
adult cancers (Grobner et al., 2018). Interestingly, the spectrum of
cancers in children differs from the spectrum of cancers in adults.
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Carcinomas arising from epithelial tissues are largely dominant in
adults (Bray et al., 2018), but uncommon in children. In contrast,
cancers of the central nervous system (CNS) are over-represented in
children (25% of all cancers in children versus 2% in adults) (Arora
et al., 2009). There are now strong indications that the important
proportion of CNS cancers in children could be due to an increased
malignant susceptibility of neural tissues during embryonic and/or
fetal development.

Most pediatric CNS cancers are indeed initiated during pregnancy
while the CNS is being built. For example, the different types of
medulloblastoma, the most frequent CNS tumors in children, appear to
all originate from different fetal precursors of the cerebellum and dorsal
brain stem (Gibson et al., 2010; Vladoiu et al., 2019), while fetal glial-
committed progenitors could be at the root of pediatric high-grade
gliomas (Jessa et al, 2019; Pathania et al, 2017). Strikingly,
retinoblastoma and atypical teratoid rhabdoid tumors (ATRTSs) are
sometimes diagnosed at birth (Puisieux et al., 2018). Work on human
retinal progenitors has demonstrated that retinoblastomas originate from
cone photoreceptor precursors produced during fetal development (Xu
et al., 2014), whereas cells of the early neural crest, an embryonic
structure lying on the dorsal side of the neural tube, may be the cells of
origin of some ATRTs (Vitte et al., 2017). Interestingly, retinoblastomas
and ATRTs are induced by the inactivation of a single gene: RBI,
coding for retinoblastoma-associated protein, and SMARCBI, coding
for SWI/SNF-related matrix-associated actin-dependent regulator of
chromatin subfamily B member 1, respectively (Puisieux et al., 2018).
Despite such simple mutational landscapes, ATRTs and
retinoblastomas can be very aggressive, and there is so far no
effective treatment for ATRTs, leading to poor prognosis (Frithwald
etal., 2016). Taken together, these data lead to the hypothesis that neural
cells or progenitors, present during embryonic and fetal development in
the different regions of the developing CNS, exhibit transient periods of
malignant susceptibility during which they may be prone to initiate
tumorigenesis upon specific genomic alterations.

So far, it is unclear what defines a malignant susceptibility state in
a specific neural progenitor at a given time during development. Is it
an intrinsic and transient property of neural progenitors determined
by the progression of an intrinsic genetic program? Is it due to a
specific and transient microenvironmental context producing
specific cocktails of growth factors? Which gene networks in
cells of origin support oncogenic growth during early development?
Why and how do they become aberrantly expressed in neural
progenitors to initiate tumor growth?

These questions remain largely unanswered because neural
progenitors are rare, diverse and represent transient populations of
cells, which are, therefore, difficult to access and investigate at high
resolution. Understanding the developmental mechanisms controlling
neural progenitor proliferation in the embryo and fetus is, however, key
to deciphering the mechanisms supporting the initiation and growth of
tumors with early developmental origins (Azzarelli et al., 2018; Jessa
etal., 2019).
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The past few years have seen the advent of revolutionary
technologies that allow us to capture and manipulate the transient
nature of many neural precursor states during mammalian
development. In parallel, decades of meticulous and persistent
studies on simple model organisms, such as Drosophila, have led to
an unmatched understanding of the genetic mechanisms regulating
patterns of neural progenitor proliferation throughout the course of
development. Here, I summarize how the discovery of a dynamic
network of genes, known as temporal patterning, in Drosophila
neural progenitors, provides concepts to decipher the links between
development and pediatric CNS cancers. | also examine recent
single-cell transcriptomic studies in mammals in light of these
concepts.

Temporal patterning: a versatile system to coordinate cell

fates and numbers in neural lineages during development

Over the past 30 years, Drosophila neural progenitors, called
neuroblasts (NBs), have become a powerful model to explore neural
stem cell biology (Homem and Knoblich, 2012). Throughout
development, NBs divide asymmetrically to self-renew while
generating daughter cells with a more restricted cycling potential.
Type I NBs (most NBs in the Drosophila CNS), generate daughter
cells known as ganglion mother cells (GMCs). GMCs usually
divide once, giving rise to two post-mitotic progeny: neurons or glia
(Fig. 1A). A small subset of NBs producing larger lineages is
known as type II NBs. They generate daughter cells, called
intermediate progenitors (InPs), themselves able to undergo a few
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Fig. 1. Temporal patterning systems in Drosophila NBs. (A) Type | NBs divide asymmetrically to self-renew and generate GMCs. The latter divide usually once,
giving rise to two post-mitotic progeny: neurons or glia. Embryonic NBs in the ventral nerve cord sequentially express a series of ‘temporal’ transcription factors (tTFs)
(Hb—Kr—Pdm1—Cas—Grh). Progression throughout the sequence is driven by transcriptional cross-regulatory interactions between tTFs. Sequential expression of
tTFs ensures the production of daughter cells with different fates by the same NB. Co-expression of two temporal factors (e.g. Cas and Grh) can create novel temporal
windows. (B) A subset of NBs enters quiescence by the end of embryogenesis and resumes divisions in early larvae. Cas and Svp are sequentially expressed to

promote a switch in the expression of Imp and Syncrip, thereby creating two large post-embryonic temporal windows (Imp* and Syncrip™,

respectively). The late

Syncrip* window is subdivided into two subtemporal windows marked by the expression of Br and E93. (C) Type Il NBs in the central brain generate intermediate
progenitors (InPs) that divide a few times and exhibit their own temporal patterning system (D—Grh—Ey). Concomitant progression of two distinct temporal patterning
systems in larval NBs and their InPs increases neural diversity in large lineages. Ecdysone signaling facilitates the Imp-to-Syncrip transition and promotes the
expression of E93 (and possibly Br). (D) Medulla NBs are converted from a neuroepithelium in the larval optic lobes. They express another series of tTFs
(Hth—>Klu—Ey—SIp—D-TIl) to specify the identity of their progeny. GMC, ganglion mother cell; InP, intermediate progenitor; NB, neuroblast.
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rounds of asymmetric divisions (Fig. 1C). About two decades ago, it
was observed that type I NBs in the ventral nerve cord of Drosophila
embryos express a sequence of transcription factors able to endow
their differentiated progeny with different identities (Isshiki et al.,
2001; Kambadur et al., 1998). The concept of temporal patterning
was born. Since then, temporal patterning has been extended to NBs
in other regions of Drosophila CNS, which display different
sequences of temporal transcription factors (tTFs) (Box 1).
Temporal patterning driven by sequentially expressed transcription
factors appears to be a fundamental mechanism for producing

Box 1. Temporal patterning in Drosophila neuroblasts
Temporal patterning is the mechanism by which stem cells or progenitors
change their competence as development progresses in order to
generate different types of differentiated progeny. This concept has
been pioneered in Drosophila, with the observation that embryonic
neuroblasts (NBs) found in the ventral nerve cord (type | NBs)
sequentially express a series of transcription factors [Hunchback
(Hb)—Kruppel (Kr)—Pou-domain protein 1 (Pdm1; also known as
Nub)—Castor (Cas)—Grainyhead (Grh)] as they undergo successive
asymmetric divisions (Brody and Odenwald, 2002; Isshiki et al., 2001;
Kambadur et al., 1998). The so-called ‘temporal transcription factors’
(tTFs) are inherited by each newborn progeny, thereby specifying their
fate according to the order in which they arose. This mechanism leads to
stereotypical sequences of glial and neuronal identities being generated
by each NB (Fig. 1A). The combination of temporal patterning with spatial
patterning, that specifies NB identity according to their position along the
different body axes (e.g. antero-posterior, dorso-ventral), provides a
system to leverage the diversity of neurons and glia produced by a small
population of NBs (Erclik et al., 2017; Karlsson et al., 2010). A subset of
embryonic NBs persists to larval stages and sequentially expresses Cas
and another tTF, Seven up (Svp) (Benito-Sipos et al., 2011; Kanai et al.,
2005; Maurange et al., 2008). Svp expression triggers a switch in the
expression of two antagonistic RNA-binding proteins, IGF-Il mRNA-
binding protein (Imp) and Syncrip (Syp) (Fig. 1B). Imp and Syncrip post-
transcriptionally regulate multiple genes, including the transcription
factor Chronologically inappropriate morphogenesis (Chinmo), to switch
the fate of the progeny produced by late larval NBs (Liu et al., 2015;
Maurange et al., 2008; Ren et al., 2017). Syncrip* NBs also sequentially
express the transcription factors Broad (Br) and Ecdysone-induced
protein 93F (E93) that provides novel subtemporal windows in late larval
NBs (Fig. 1B). Type Il NBs found in the central brain produce InPs that
divide a small number of times and transit throughout their own temporal
sequence [Dichaete (D)—Grainyhead (Grh)—Eyeless (Ey)] (Bayraktar
and Doe, 2013) (Fig. 1C). This system combined with the Imp/Syncrip
temporal windows in larval NBs provides ‘combinatorial’ temporal
patterning to further expand neuronal diversity in large lineages
(Fig. 1C) (Ren et al., 2017). Another series of tTFs [Homothorax
(Hth)>Kumpfuss  (Klu)—Eyeless  (Ey)—Sloppy  paired  1/2
(Slp)—Dichaete (D)—Tailless (Tll)] has been uncovered in medulla
NBs that are converted from a neuroepithelium in the optic lobe region of
the larval brain (Fig. 1D) (Li et al., 2013). In ventral nerve cord and
medulla NBs, as well as in intermediate progenitors, progression of
temporal patterning is mainly driven by cross-regulatory interactions
between tTFs (sometimes involving feed-forward loops and chromatin-
remodeling factors), which ensures discrete temporal transitions and
unidirectionality (Fig. 1) (Abdusselamoglu et al., 2019; Averbukh et al.,
2018; Grosskortenhaus et al., 2005). Some temporal transitions appear
to require cell-cycle progression or high levels of oxidative
phosphorylation (Grosskortenhaus et al., 2005; van den Ameele and
Brand, 2019). Although temporal patterning progression in most NBs
appears to be mainly intrinsically driven, external cues, such as the
steroid hormone ecdysone, may also facilitate temporal transitions,
especially in type Il NBs (Fig. 1C) (Dillard et al., 2018; Syed et al., 2017).
Temporal patterning is also used to modulate the proliferative properties
of stem cells and their daughter cells, ensuring stereotypical patterns of
proliferation along lineage progression (see main text).

neuronal and glial diversity from a single neural stem cell.
Remarkably, beyond allowing the stereotypical generation of
progeny with distinct fates over time (Fig. 1), temporal patterning
is also used to regulate different aspects of neural progenitor
proliferation as these progress throughout development. For example,
during embryogenesis, temporal patterning instructs different modes
of GMC proliferation. GMCs typically undergo one division to
generate two post-mitotic progeny (neurons or glia). However, in
some lineages, temporal patterning can trigger transient switches in
their proliferation mode, leading them to directly differentiate into a
neuron or glia without dividing (Fig. 2A). This effect is mediated by
cell-cycle regulators, such as Dacapo (Dap) (a Cyclin-dependent
kinase inhibitor in the CIP/KIP family), the expression of which is
regulated by embryonic tTFs that are inherited in the GMC
(Baumgardt et al., 2014; Ulvklo et al., 2012). Alternatively,
temporal patterning can cooperate with the Notch signaling
pathway to program or prevent the death of one of the two post-
mitotic progeny born during a specific temporal window (Fig. 2A)
(Bertet et al., 2014). Temporal patterning can also schedule NB entry
into quiescence during the embryonic-to-larval transition by silencing
cell-cycle genes [e.g. E2F transcription factor 1 (E2f1), Cyclin E and
string/cdc25] (Bahrampour et al., 2017; Baumgardt et al., 2014).
Recently, it has been proposed that the sequential expression of two
proneural transcription factors, Asense (Ase) and Atonal (Ato), can
also schedule an NB asymmetric-to-symmetric division switch,
allowing a transient amplification of the NB pool in some regions of
the larval brain (Fig. 2B) (Mora et al., 2018).

Although tTFs are transiently expressed, they can induce
permanent transcriptional switches in aging NBs. For example,
Castor (Cas) can permanently silence the Sox family transcription
factor Dichaete (D), while permanently activating Grainyhead (Grh)
(Maurange et al., 2008) (Fig. 2C). The sequential permanent
transcriptional switches induced by embryonic Cas (D-to-Grh) and
early larval Seven up (Svp) [IGF-II mRNA-binding protein (Imp)-
to-Syncrip] progressively establish the competence for a subset of
NBs, in the abdominal region of the ventral nerve cord, to undergo
apoptosis during larval stages upon expression of the Hox gene
abdominal-A (abd-A) (Bello et al., 2003; Maurange et al., 2008)
(Fig. 2C).

The remaining NBs exhibit a limited self-renewing potential and
undergo cell-cycle exit and differentiation during metamorphosis
(Maurange et al., 2008; Truman and Bate, 1988). Therefore,
neurogenesis in adults is very sparse, and, if any, does not rely on
NB-like cells (Fernandez-Hernandez et al., 2013). The Svp-mediated
Imp-to-Syncrip switch is necessary to terminate NB divisions before
adulthood (Genovese et al., 2019; Yang et al., 2017). Early larval
NBs express Imp, which promotes a default self-renewing state
(Genovese et al., 2019; Samuels et al., 2020). Late larval NBs express
Syncrip, which installs a differentiation-permissive state and drives
the progressive exhaustion of NB self-renewing potential (Fig. 2D)
(Genovese etal., 2019; Yang etal., 2017). The Imp-to-Syncrip switch
is scheduled by the sequential expression of Cas and Svp in early
larval NBs (Ren et al., 2017; Syed et al., 2017). This switch always
operates around the mid-larval stage but is slightly asynchronous in
the various NBs denoting that temporal patterning progresses at
different speeds in each NB. Upon genetic manipulations, NBs that
fail to undergo the Imp-to-Syncrip transition because of temporal
patterning defects, do not stop dividing during metamorphosis and
remain able to continue dividing in adults (Genovese et al., 2019;
Yang et al., 2017). For example, NBs that are mutant for svp or that
aberrantly express cas fail to activate Syncrip (Ren et al., 2017; Syed
et al., 2017). As such, they retain characteristics of early larval NBs
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Fig. 2. Stereotyped regulation of neural progenitor
proliferation by temporal patterning. (A) Temporal regulation
of daughter cell divisions or apoptosis. Notch signaling in
GMCs gives rise to binary cell fate decisions in the two post-
mitotic progeny. The Notch®N state can trigger activation of pro-
apoptotic genes leading to the elimination of one of the
progeny. Some tTFs have the ability to repress Notch®N-
mediated apoptosis. tTFs can also block the division of GMCs
or promote NB quiescence by activating Dap and silencing cell-
cycle genes (string/cdc25, E2f1, Cyclin E), leading to their
terminal differentiation without division. (B) Temporal regulation
of an asymmetric-to-symmetric division switch. tTF progression
can also promote a switch in the NB mode of division. In the
larval optic lobe, a subset of NBs undergoes an asymmetric-to-
symmetric division switch triggered by the sequential
expression of Ase and Ato. (C) Temporal regulation of NB
apoptosis. Permanent transcriptional switches induced by tTFs
(embryonic expression of cas and larval expression of svp)
schedule the competence for NBs to undergo apoptosis upon
expression of abd-A. (D) Temporal regulation of NB self-
renewal. Sequential expression of cas and svp promotes the
Imp-to-Syncrip switch during mid-larval stages. NBs that fail to
undergo the Imp-to-Syncrip switch do not stop dividing during
pupal stages and continue dividing in adults. NBs lacking both
Imp and Syncrip exhibit a lower growth and proliferative
potential. (E) Imp, together with Chinmo, Lin-28 and Myc,
compose a self-renewing module in early larval NBs. Syncrip
and E93 are part of an antagonistic module that induces a
differentiation-permissive state in NBs and exhausts their self-
renewing potential. CB, central brain; wt, wild type.
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and remain mitotically active in the adult brain (Fig. 2D), thus
producing an excess of neurons with an early larval temporal identity
(Genovese et al., 2019; Maurange et al., 2008; Yang et al., 2017).
This phenotype is also observed in NBs in which Syncrip is knocked
down (Fig. 2D).

How do Imp and Syncrip respectively promote and restrict NB
self-renewal? These two RNA-binding proteins have many RNA
targets. Among them, Imp can bind to Myc and chinmo mRNAs to
post-transcriptionally promote their expression (Genovese et al.,
2019; Samuels et al., 2020). Myc is a well-known, evolutionarily
conserved proto-oncogene that sustains cellular growth and
proliferation. Chinmo is a transcription factor of the zinc finger
BTB protein family with no clear ortholog identified in mammals yet.
Like Myc, Chinmo is a potent proto-oncogene that promotes NB
growth and is required for the long-term self-renewing potential of
Imp" NBs (Genovese et al., 2019). Lin-28 is another evolutionarily
conserved RNA-binding protein and proto-oncogene that is co-
expressed with Imp in early larval NBs (Narbonne-Reveau et al.,
2016; Syed et al., 2017). Together, Imp, Chinmo, Myc and possibly
Lin-28 form an early self-renewing module that is active in early
larval NBs, and needs to be silenced in late larval NBs, upon Syncrip
expression, to ensure that NBs progressively exhaust their self-
renewing potential (Fig. 2D). Whereas Imp promotes chinmo mRNA
translation, Syncrip somehow blocks it (Genovese et al., 2019).
However, the molecular mode of action of Syncrip in NBs remains
unclear. In addition to restricting self-renewal, the Imp-to-Syncrip
transition also makes NBs competent to differentiate during
metamorphosis in response to high levels of ecdysone (Yang et al.,
2017). The zinc finger BTB transcription factor Broad (Br) and the
ligand-dependent nuclear receptor corepressor-like  protein
Ecdysone-induced protein 93F (Eip93F; herein referred to as E93)
are expressed in late larval NBs during the Syncrip* temporal window
(Maurange et al., 2008; Syed et al., 2017). Given the role of Br and
E93 in establishing a pro-differentiation chromatin landscape in other
tissues, it is likely that they contribute to timing the termination of NB
divisions during metamorphosis (Pahl et al., 2019).

In conclusion, a considerable amount of work in Drosophila has
shown that temporal patterning is a versatile system in neural
progenitors. Temporal patterning generates sequences of competence
windows endowing precursors with specific proliferative and
differentiation potentials. Thus, by coordinating fate with self-
renewing abilities, temporal patterning allows for an exquisite
regulation of the numbers of each neuron and glial type that will
constitute a final lineage.

Temporal patterning and the specification of tumor-prone
cells

The deterministic progression of temporal patterning driven by cross-
regulatory interactions between tTFs in Drosophila NBs can act as a
counting mechanism to limit self-renewal during development, thus
ensuring the termination of cell division before adulthood. However,
a large body of work has shown that NB lineages in the making are
particularly prone to tumorigenic overproliferation. For example,
inactivation of the transcription factor Prospero (Pros) in type I NBs
prevents the proper differentiation of their GMCs and the production
of post-mitotic progeny. Instead, GMCs revert to NB-like cells that
will continue to divide, leading to the exponential amplification of
cells with NB-like properties (Bello et al., 2006; Betschinger et al.,
2006; Choksi et al., 2006). If pros is inactivated in early Imp™ larval
NBs (also expressing chinmo and [lin-28), a subset of the
supernumerary NB-like cells fails to terminate divisions during
metamorphosis and continues to proliferate into adulthood (Fig. 3A),

rapidly generating large tumors that ultimately kill the fly (Narbonne-
Reveau et al., 2016). Such tumors can be transplanted in the abdomen
of adult flies for years without losing their ability to grow and
populate adjacent tissues (Caussinus and Gonzalez, 2005). In
contrast, inactivation of pros in late Syncrip” NBs and their GMCs
triggers transient NB-like amplification but fails to generate tumors in
the adults (Fig. 3A). Thus, the Imp* temporal window constitutes an
early developmental window of cancer susceptibility and Imp
appears to prime cells for tumorigenic self-renewal. Blocking
temporal progression in Imp" NBs (by inactivating svp in early
larval NBs, for example) extends the cancer susceptibility window by
preventing the Imp-to-Syncrip switch (Fig. 3B) (Narbonne-Reveau
et al., 2016). Interestingly, the inactivation of Snf3-related 1 (Snrl),
the Drosophila ortholog of human SMARCB]I (inactivation of which
causes ATRTs), in type II NBs also causes aggressive tumors,
showing that the tumor-suppressive activity of Snrl/SMARCBI in
neural progenitors is conserved throughout evolution (Eroglu et al.,
2014; Koe et al., 2014). The inactivation of other genes involved in
NB asymmetric divisions (miranda), in the maturation of InPs (e.g.
brat, numb, earmuff), or in the maturation of neurons (nerfin-1) can
also induce NB overproliferation and tumor growth (Froldi et al.,
2015; Hakes and Brand, 2019). In most, if not all cases, the cells of
origins of NB tumors are Imp* early larval NBs or their daughter cells
(GMCs or InPs), or Imp " maturing neurons (Narbonne-Reveau et al.,
2016). Thus, more than the cell type, it is the temporal identity of the
cell of origin that determines its malignant susceptibility.

Mutations or genetic manipulations that lead to Notch signaling
overactivity in the InPs of type II NBs lead to their tumorigenic
amplification (Bowman et al., 2008). InPs typically do up to six
asymmetric divisions and progress through the D—Grh—Ey temporal
patterning system (Bayraktar and Doe, 2013) (Fig. 1C and Box 1).
However, Ey seems to terminate a window of tumor susceptibility as
late Ey* InPs appear refractory to tumor transformation induced by
Notch overactivity (Farnsworth et al., 2015). Again, silencing this late
component of InP temporal patterning can extend the window of tumor
susceptibility.

These studies demonstrate that intrinsic temporal programs in
Drosophila neural stem cells can delineate specific windows of
malignant susceptibility. Moreover, this work establishes Drosophila
NB tumors as a relevant model to investigate neural tumors with
developmental origins and raises the possibility that similar temporal
mechanisms specify tumor-prone cells at the origin of childhood
CNS cancers.

Co-opted temporal patterning and the regulation of cellular
hierarchy and metabolic heterogeneity in tumors

The understanding of the mechanisms underlying the growth of
Drosophila NB tumors recently progressed further thanks to the use of
single-cell RNA sequencing (RNA-seq) approaches. Single-cell
RNA-seq studies are revolutionizing the field of developmental and
cancer biology, as they allow a more systematic description of the
cellular heterogeneity present within a tissue (Pennisi, 2018).
Moreover, specific algorithms can be used to infer transcriptional
trajectories operating within a cell population, reflecting cells
progressing through distinct transcriptional states (Tritschler et al.,
2019). When applied to single-cell transcriptomes of NB tumors, such
algorithms, known as pseudotime ordering, reveal that NB-like cells
composing tumors (hereafter referred to as tNBs) follow trajectories
recapitulating parts of larval temporal patterning (Genovese et al.,
2019). Together with in vivo lineage analysis and numerical
simulation, this study has demonstrated that NB tumors in adult
flies, induced by pros inactivation during early larval stages, are
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mainly composed of tNBs progressing through three distinct temporal
states that follow a fine-tuned hierarchical scheme (Fig. 3C). A ‘State
17 subpopulation of tNBs expresses Imp and other typical markers
associated with early larval NBs (Chinmo, Lin-28, etc). Imp* tNBs
continuously divide to self-renew, perpetuating themselves and
propagating tumor growth. However, with a low probability, Imp*
tNBs are able to undergo the Imp-to-Syncrip temporal transition,
giving rise to Syncrip® tNBs. The latter also express the transcription
factor E93, a marker for differentiation-prone NBs during development
(State 2). As such, ‘State 2° Syncrip” E93" tNBs resemble late L3
larval NBs. Syncrip* E93" tNBs can divide to self-renew but they have
a strong tendency to exit the cell cycle and overexpress Notch target
genes of the E(spl)/Hes family (State 3). It is unclear whether ‘State 3’
represents an ultimate temporal state during larval or pupal
development, because late Syncrip” E93" NBs differentiate during
metamorphosis before exiting the cell cycle, owing to a pupal burst of
ecdysone (Homem et al., 2014). However, E(spl)/Hes genes are
activated in late-embryonic NBs to silence cell-cycle genes (Bivik
et al., 2016), and they also counteract neuronal differentiation by
favoring quiescent neural stem cell states in vertebrates (Sueda et al.,
2019), suggesting that they could be important to induce and maintain
an inactive NB population in tumors. In tumors, as in development,
Syncrip” tNBs do not revert to the Imp* state. Thus, NB tumors are
hierarchical and Imp*Chinmo "Lin-28" tNBs exhibit the characteristics
of cancer stem cells (CSCs) as they can both perpetuate tumor growth
and promote cellular heterogeneity (Nassar and Blanpain, 2016).
Whereas Imp functions in a positive-feedback loop with Chinmo to
sustain the CSC population (Narbonne-Reveau et al., 2016), Syncrip
silences the Chinmo/Imp module to suppress the CSC state, therefore
acting as a tumor suppressor (Genovese et al., 2019). Consequently,
inactivation of Syncrip dramatically boosts the CSC population and
tumor growth (Fig. 3D). Thus, Imp and Syncrip have an antagonistic
role in controlling the CSC population. In this context, CSC properties
are conferred by the proto-oncogenic/self-renewing module —
composed of Imp, Chinmo, Lin-28 and Myc — that was active in the
cell of origin (an early larval GMC).

How does Syncrip restrict tNB self-renewing abilities? Interestingly,
Syncrip was found to trigger the downregulation of the expression of
metabolic genes (glycolysis and oxidative phosphorylation pathways)
(Genovese et al., 2019). This suggests that the tendency of Syncrip*
tNBs to rapidly exit the cell cycle could be a consequence of metabolic
exhaustion. This study demonstrates that co-option of the larval
temporal patterning program during early developmental stages induces
hierarchical tumors and provides a tumor-intrinsic mechanism that
creates metabolic heterogeneity to control the proliferative potential of
the various tumor cells. It also uncovers a central role for RNA-binding
proteins in governing tumor cell hierarchy.

Whereas the Imp-to-Syncrip switch is systematic in NBs during
larval development (promoted by tTF progression), which leads to
an absence of Imp* NBs in late larvae, this transition seems to be
regulated in a more stochastic manner in the tumor context, which
allows maintenance of the Imp* CSC-like population of tNBs
(Genovese et al., 2019). However, the molecular principles
underlying this stochastic regulation are unknown. Unravelling
the mechanisms controlling the Imp-to-Syncrip switch in the tumor
context could provide new perspectives to understand how CSC
populations are regulated in tumors.

Evidence of temporal patterning in mammalian neural
progenitors

Could co-option of temporal patterning in neural progenitors provide a
new conceptual framework to understand how pediatric CNS cancers

are induced and progress in humans? Until recently, the evidence of
temporal patterning in mammalian neural progenitors was sparse
(Jacob et al., 2008; Kohwi and Doe, 2013), largely because of the
inability to easily capture dynamic transcriptional profiles of single
neural progenitors over time. However, accumulating evidence now
suggests that many neural stem cells undergo stereotyped temporal
patterns of proliferative, neurogenic and gliogenic divisions during
early development, which are controlled by a combination of stem
cell-encoded programs and extrinsic cues. In particular, the advance
of single-cell transcriptomic technologies now allows for the
reconstruction of temporal trajectories in neural progenitors and the
identification of transcriptional programs governing neural stem cell
proliferative and neurogenic potentials.

The developing retina provides to date one of the most striking
examples of temporal patterning in mammalian neural progenitors.
Retinal progenitor cells (RPCs) are multipotent neural progenitor
cells that generate various types of neurons and glia in a stereotypic
sequence (Cepko, 2014). Pioneer studies have shown that the genes
Ikaros family zinc finger 1 (Zkzf1) and zinc finger protein castor
homolog 1 (Casz1), respective orthologs of Drosophila hb and cas,
are sequentially expressed and cross-regulate in mouse RPCs to bias
the generation of early (ganglion, horizontal and amacrine cells) and
mid-late (rod, bipolar cells) cell types, respectively (Elliott et al.,
2008; Konstantinides et al., 2015; Mattar et al., 2015). This suggests
a striking conservation of the Hb—Cas temporal module from
insects to mammalian neural progenitors. More recently, single-cell
transcriptomics has helped to identify two novel factors in this
series. The transcription factor forkhead box N4 (Foxn4) represses
the fate of ganglion cells, which constitute the earliest type of
neurons being generated in the retina, while promoting subsequent
fates (Liu et al., 2020). In addition, genes of the Nuclear factor I
(NFI) family (Nfia, Nfib and Nfix) specify both the fate of late-born
progeny (Miiller glia) and trigger the cell-cycle exit of RPCs (Clark
et al., 2019). Cross-regulatory interactions further strengthen the
hypothesis of an Ikfz1 —Foxn4—Casz1 —NF]I transcription factor-
driven temporal series that biases the sequential production of
different neuronal and glial fates as RPCs divide along fetal
development (Fig. 4). Similar to temporal patterning in type I NBs
(Maurange et al., 2008), this temporal patterning system coordinates
progression throughout various competence windows with
termination of proliferation (Fig. 4). Pseudotime ordering and
machine-learning strategies of these single-cell data also revealed
lists of more complex patterns of co-regulated genes expressed in
early and late RPCs (Clark et al., 2019). Lastly, evidence that Caszl
suppresses late gliogenesis by interacting with chromatin-
modifying complexes provides a mechanism by which tTFs
establish competence windows (Mattar et al., 2020 preprint).

Interestingly, the Ikfzl—Foxn4—Casz1—>NFI temporal series
appears to be paralleled with a temporal gradient of microRNAs (let-
7, miR-125 and miR-9) that progressively terminates the
competence window for generating ganglion cells (Fig. 4). These
microRNAs partly act by silencing the lin-28 homolog B (Lin28b)
Lin28b (La Torre et al., 2013). Thus, Lin-28 RNA-binding proteins
label and favor early temporal identities in Drosophila larval
NBs and mouse RPCs. However, unlike tTFs and RNA-binding
proteins in Drosophila NBs, it is unclear whether the
Ikfz1 »Foxn4—Caszl -NFI (TF series and the Lin28b/
microRNA gradients in mouse RPCs cross-regulate or represent
independent transcriptionally and post-transcriptionally controlled
temporal systems.

In other regions of the mammalian brain, temporal patterning is
being molecularly dissected. Cortical progenitors, known as apical
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Fig. 4. Temporal patterning in mouse retinal progenitors. Retinal progenitor cells (RPCs) are converted from a neuroepithelium (NE) during embryonic stages.
Together with genetic experiments, recapitulation of transcriptional trajectories by single-cell RNA-seq suggests that fetal RPCs transit throughout various
competence windows that bias the production of various neuronal and glial fates. A series of tTFs (Ikfz1—Foxn4—Casz1—NFl) is emerging to drive progression
throughout these competence windows. NFI coordinates the last glial fate with cell-cycle exit, thereby terminating the lineage. tTF progression is paralleled in
RPCs with a gradient of microRNAs that terminate the early competence to generate ganglion cells by silencing Lin28b. It is unclear whether the microRNA
gradient and the tTF series cross-regulate or constitute independent temporal systems. E, embryonic day; P, postnatal day.

progenitors (APs), also undergo a sequence of events from
proliferative symmetric divisions to neurogenic asymmetric
divisions (during which six layers of neurons are produced), to
gliogenic divisions and terminal differentiation (Greig et al., 2013).
The Svp orthologs COUP transcription factor 1 (NR2F1) and COUP
transcription factor 2 (NR2F2) have been proposed to promote a
temporal switch, allowing APs to switch from generating early types
of neurons (deep neuronal layers) to late types of neurons (superficial
neuronal layers) and gliogenesis (Faedo et al., 2008; Naka et al.,
2008). Moreover, NR2F1 has been shown to limit neural progenitor
self-renewal (Bertacchi et al., 2020). Single-cell transcriptomics have
now identified several transcriptional switches operating in mouse APs
along embryonic development. Some of them appear to promote the
early proliferative to neurogenic-division switch, whereas others are
likely involved in establishing transcriptional profiles that are
transmitted to neuronal progeny, specifying deep or upper-layer
neuronal fates (Telley et al., 2019). Temporal progression through the
transcriptional states that specify deep and upper-layer neuronal fates is
largely independent of cell-cycle progression but is less efficient in
cultured isolated cells (Okamoto et al., 2016). This suggests that
temporal transitions in cortical APs are governed by both cell-intrinsic
and -extrinsic mechanisms. Although the mechanisms of temporal
progression are unclear, early temporal identity in APs [embryonic day
(E)12-E13] was associated with high expression of cell-cycle regulators,
DNA replication, transcriptional and chromatin regulators (Telley et al.,
2019). Reminiscent of Drosophila early larval NBs, mouse Impl/
Igf2bp1 and Imp2/Igf2bp2, as well as Lin28a, are strongly expressed in
early APs and promote self-renewal (Nishino et al., 2013; Yang et al.,
2015). The transcriptome of late APs found at E14-E15 indicates an
over-representation of genes involved in ion transport, cell-cell and cell-
matrix interactions, suggesting that late APs may be more capable of
sensing their environment than early APs. Finally, glia-related genes
become activated at this stage, thus foreshadowing the later neurogenic-
to-gliogenic transition (Telley et al., 2019).

The cerebellum contains half of the neurons in the adult human
brain. This structure emanates from a neuroepithelium called the

rhombic lip. Previous genetic and lineage tracing studies have
proposed that cerebellar progenitors progress through various
temporal identities to produce specific neuronal subtypes at
different developmental times. For example, embryonic ventricular
zone (VZ) progenitors sequentially express the transcription factors
oligodendrocyte transcription factor 2 (Olig2) and GS homeobox 1
(Gsx1), allowing the sequential production of Purkinje cells and
GABAergic neurons (Seto et al., 2014) (Fig. 5). This suggests the
existence of a temporal patterning system in the VZ sublineage.
Recently, single-cell RNA-seq applied during the course of murine
cerebellar development has highlighted developmental trajectories
and complex transcriptional cascades possibly indicative of multiple
temporal patterning systems (Carter et al., 2018; Wizeman et al.,
2019). Interestingly, during the course of lineage progression, granule
cell precursors (GCPs) undergo a formidable phase of expansion to
generate the large number of granule cells responsible for the massive
foliation of the cerebellar surface of the adult cerebellum in mammals.
Whether the competence to amplify at this stage of lineage
progression is scheduled by a temporal patterning system remains
to be investigated. The unanticipated complexity of cerebellar
development revealed by single-cell RNA-seq analysis leaves open
the possibility that multiple temporal programs are concurrently
activated in the various branches of the cerebellar lineage to specify
the identities and numbers of the different types of progeny (Fig. 5).

Lastly, single-cell transcriptomics have also revealed neuronal
fates specified by the order in which cells arise in the developing
spinal cord (Delile et al., 2019; Sagner and Briscoe, 2019). In the
mouse embryonic cervical domain, three layers of neurons are
produced sequentially and can be labeled with different combinations
of transcription factors. As in the retina, NFI transcription factors
(Nfia, Nfib) specify late-born fates, possibly suggesting a general role
for NFI factors in terminating temporal cascades among some neural
lineages (Delile et al., 2019). Interestingly, NFI factors are also
required to initiate the neurogenic-to-gliogenic switch in spinal cord
progenitors (Deneen et al., 2006), therefore possibly linking the
neurogenic-to-gliogenic transition to the end of the neuronal temporal
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Fig. 5. Transcriptional trajectory during development and tumorigenesis in the cerebellum. Single-cell RNA-seq of the developing murine cerebellum
reveals the transcriptional trajectory along the different branches of the cerebellar lineage. As the developmental program unfolds, progenitors progress

throughout various competence states and produce diverse types of progeny.

Olig2 and Gsx1 have been proposed to regulate temporal identities in VZ

progenitors, suggesting that multiple temporal patterning systems may concurrently progress in the various branches of the lineage to regulate progenitor
competence and proliferative properties. Specific subparts of the transcriptional trajectory are recapitulated in Group 3, Group 4 and SHH MBs. An attractive
hypothesis is that distinct temporal patterning systems possibly coopted from different cells of origin may govern many aspects of tumor properties in the different
MB subgroups. GCP, granule cell precursor; MB, medulloblastoma; prog., progenitor; UBC, unipolar brush cell; uRL, upper rhombic lip; VZ, ventricular zone.

specification program. However, how temporal specification of spinal
cord neurons is established remains to be deciphered.

Such studies are revealing that neural stem cell-encoded temporal
patterning systems are probably widely used during the development
of the different regions of the mammalian CNS to coordinate the
mode of division and self-renewing potential of progenitors with
developmental competence. This leads to the production of large
repertoires of neurons and glia in defined numbers. The combination
of single-cell RNA-seq technologies associated with machine-
learning strategies pave the way for a comprehensive exploration
of the temporal patterning programs deployed in different types of
neural progenitors and their progeny. Further refinements of
transcriptional dynamics in progenitors supported by genetic
studies will be necessary to identify the core temporal patterns that
define various competence windows and the underlying cell-intrinsic
and -extrinsic mechanisms that promote temporal transitions. A future
challenge will be to investigate temporal patterning mechanisms
during human brain development and explore how their deregulation
could underlie neurodevelopmental disorders (Schafer et al., 2019).

Recapitulation of temporal patterning programs in CNS
pediatric tumors?

Since temporal patterning in mammalian neural progenitors remains
poorly explored, it is still hypothetical whether its co-option is

involved in the etiology of human childhood malignancies.
However, several observations suggest an important role. First,
the fact that many pediatric CNS tumors can only be induced during
very specific windows of development argues for the existence of
temporal mechanisms regulating transient tumor-prone cellular
states (Han et al., 2016; Pathania et al., 2017; Singh et al., 2018).
Second, as shown below, the comparison of single-cell
transcriptomes from human and mouse developing brains with
various pediatric CNS tumors supports the hypothesis that partial
recapitulation of fetal transcription programs is a characteristic of
CNS pediatric tumors.

The most spectacular example so far probably arises from recent
studies of cerebellar tumors, known as medulloblastoma, which
constitute the most frequent CNS tumors in children. They can be
divided into four subgroups — WNT, SHH, Group 3 and Group 4 —
presumably originating from different cells upon various genetic
insults (Northcott et al., 2017). Pseudotime reconstruction of single-
cell RNA-seq data from human medulloblastomas identified specific
transcriptional trajectories for each subgroup, recapitulating subparts
of the temporal trajectories observed during lineage progression in the
developing cerebellum. In particular, most medulloblastoma appears
to be locked in a specific developmental/temporal window
(Hovestadt et al., 2019; Vladoiu et al., 2019) (Fig. 5). For example,
SHH medulloblastomas recapitulate temporal progression throughout
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the prolonged clonal expansion of GCPs occurring during fetal and
early postnatal stages. Interestingly, these different temporal stages of
GCP differentiation elicit distinct responses to therapeutic treatments
(Ocasio et al., 2019), suggesting that knowledge on the co-opted
temporal patterning window could help to inform the therapeutic
strategy.

Group 3 medulloblastomas contain different types of progenitors
from the VZ and upper rhombic lip (uRL) sublineages, suggesting a
cell of origin with an early temporal identity possibly associated
with multipotency and high self-renewing potential. In contrast,
Group 4 medulloblastomas appear to be composed of more-
differentiated progenitors along the uRL lineage, mostly
reminiscent of unipolar brush cell progenitors, and more-
differentiated progeny (Hovestadt et al., 2019; Vladoiu et al.,
2019) (Fig. 5). The WNT group recapitulates a developmental
trajectory matching the mossy fiber neuron lineage generated in the
dorsal brain stem during fetal stages (Jessa et al, 2019).
Interestingly, Groups 3 and 4 highly express LIN28B (Hovestadt
etal., 2014), while the WNT group sometimes exhibits inactivating
mutations in the SYNCRIP gene (Northcott et al., 2017).
Overexpression of LIN28B and inactivation of SYNCRIP,
orthologs of two members of the temporal gene network in
Drosophila, are therefore oncogenic events conserved in CNS
developmental tumors from insects to humans. An attractive
hypothesis is that distinct temporal patterning systems co-opted

from different cells of origin may govern many aspects of tumor
properties, including cellular hierarchies, in the different
medulloblastoma subgroups.

Other pediatric CNS tumors also appear to partially recapitulate
the fetal development of some specific neural lineages, such as
embryonal tumors with multilayered rosettes or pediatric high-grade
gliomas (Jessa et al., 2019; Pathania et al., 2017).

Together, these single-cell RNA-seq studies demonstrate that
CNS childhood tumors consistently recapitulate portions of lineage-
specific fetal developmental programs and that such knowledge can
be used to effectively classify the tumor subtype and inform
treatment to target cells at the apex of the tumor hierarchy.

Conclusions and perspectives

The exploration of temporal patterning in mammals is still in its
infancy, but the underlying concepts uncovered in Drosophila
appear largely transposable, with sometimes conserved molecular
players (Table 1). Single-cell RNA-seq studies are revealing
complex transcriptional trajectories for different types of neural
progenitors with increasing accuracy. Genetic studies are now
required to understand how these transcriptional trajectories are
deployed in neural progenitors, and how the underlying temporal
gene network generates temporal windows and competence states to
coordinate the production of various fates with a specific
proliferation potential along a neural lineage. Does this process

Table 1. A representative subset of Drosophila genes involved in temporal patterning or in NB tumorigenesis, with their human orthologs

Drosophila gene  Function in the Drosophila CNS

Human gene

Function in the mammalian nervous system
and cancers

castor (cas) Embryonic and larval tTF (type | NBs).
(CASZ1)
Dichaete (D) Embryonic type | NB marker. Silenced by
Cas. Prevents precocious NB apoptosis.
tTF in InPs generated by type Il NBs.
Ecdysone- Transcription factor (late larval temporal
induced protein  marker) activated in a Syncrip-dependent
93F (E93) manner. Required for NB termination.
grainy head (grh) Expressed in late embryonic and larval NBs.
Activated by Cas. Promotes type | NB self-
renewal in larvae. tTF in InPs generated by
type Il NBs.
hunchback (hb)  Embryonic tTF (type | NBs).
IGF-Il mRNA- RNA-binding protein (early larval temporal
binding protein marker). Promotes NB self-renewal. CSC
(Imp) marker in NB tumors. Silenced by Svp.
lin-28 RNA-binding protein (early larval temporal
marker). CSC marker in NB tumors. LIN28B)
Myc Enriched in early larval NBs. Promotes NB

self-renewal.
prospero (pros)  Loss of function in type | NBs triggers
tumorigenesis.
Embryonic and larval tTF, also known as a
switching factor.

seven up (svp)
NR2F2)

Snf5-related 1
(Snr1)

Loss of function in type Il NBs triggers
tumorigenesis.

Zinc finger protein castor homolog 1

SOX transcription factor gene family

Grainyhead-like transcription factor
family (GRHL1, GRHL2, GRHLJ3)

Ikaros family zinc finger 1 (IKZF1)

Insulin-like growth factor 2 mRNA-
binding protein family (IGF2BP1,
IGF2BP2, IGF2BP3)

Lin-28 homolog family (LIN28A,

MYC proto-oncogene family (MYC,
MYCN, MYCL)

Prospero homeobox 1 (PROX1)
COUP transcription factor 1, 2 (NR2F1,
SWI/SNF-related, matrix-associated,

actin-dependent regulator of
chromatin, subfamily b, member 1

tTF in RPCs (Mattar et al., 2015).

Promotes stem cell self-renewal. Often
overexpressed in cancers (Grimm et al., 2019).

Ligand-dependent nuclear receptor
corepressor family (LCOR, LCORL)

GRHL1 acts as a tumor suppressor in
neuroblastoma (Fabian et al., 2014).

tTF in RPCs (Elliott et al., 2008).

Highly expressed in embryonic/fetal neural
progenitors. Promotes self-renewal.
Overexpressed in a number of pediatric cancers
(Degrauwe et al., 2016).

Highly expressed in embryonic/fetal neural
progenitors (Yang et al., 2015). Promotes self-
renewal. Overexpressed in a number of pediatric
cancers (Carmel-Gross et al., 2016).

Highly expressed in early neural progenitors.
Overexpressed in a number of pediatric cancers
(Hovestadt et al., 2014).

Tumor suppressor in neuroblastoma (Foskolou
etal., 2013).

Promotes temporal progression and refrains self-
renewal in forebrain progenitors (Bertacchi et al.,
2020; Naka et al., 2008).

Biallelic inactivation during embryonic/fetal
development causes atypical teratoid rhabdoid
tumors (Frihwald et al., 2016).

(SMARCB1)

RNA-binding protein (late larval temporal
marker). Promotes NB exhaustion.

Syncrip (Syp)

Synaptotagmin-binding cytoplasmic
RNA-interacting protein (SYNCRIP)

Mutated in some medulloblastoma types (Northcott
etal., 2017).

CSC, cancer stem cell; InP, intermediate progenitor; NB, neuroblast; RPC, retinal progenitor cell; tTF, temporal transcription factor.
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essentially result from cross-regulatory interactions between series
of transcription factors (as for Drosophila), or is it mainly driven by
extrinsic signals? More likely, a combination of both could account
for the stochasticity in cell-fate decisions that has been observed in
the retina or cerebral cortex, which contributes to both more-robust
patterning and flexibility for the generation of novel region-specific
lineages throughout evolution (Llorca et al., 2019; Mattar et al.,
2015).

Beyond the CNS, the concept of temporal patterning may apply
to other tissues, such as the hematopoietic or neural crest cell
lineages. Fetal hematopoietic stem cells and embryonic neural crest
cells generate large and complex lineages that are also susceptible to
malignant transformation during embryonic and fetal stages, giving
rise to leukemias and neuroblastoma, respectively (Marshall et al.,
2014).

Although the partial recapitulation of temporal programs appears to
be a common theme in CNS childhood tumors, it remains largely
unexplored how they control tumor hierarchy, cellular organization
and response to therapeutic treatment. Work on Drosophila has been
instrumental in understanding how an early window of the temporal
program operating in neural progenitors can be co-opted to drive
tumorigenesis and establish a cellular hierarchy. In this context, the
temporal hierarchy during development prefigures the tumor hierarchy,
and CSCs are defined by a proto-oncogenic module already active in
the cell of origin. It is likely that many characteristics attributed to
CSC:s (such as self-renewal, resistance to cell death and differentiation,
chemoresistance) are developmental traits. The characterization of
temporal patterning programs occurring in the various mammalian
neural progenitors could therefore help with predicting the gene
network defining CSCs and response to treatments.

During development, temporal patterning programs systematically
progress in all neural progenitors to ultimately ensure lineage
termination. In contrast, in pediatric tumors, temporal progression
seems incomplete, and a subset of progenitors appears stalled in an
early temporal state, perpetuating proliferation. In Drosophila NB
tumors, temporal transitions are altered, shifting from a systematic-to-
stochastic occurrence, locking neural lineages into ‘perpetual
development’. Understanding how the mechanisms regulating
temporal transitions are reconfigured during tumorigenesis could
open new therapeutic perspectives aiming at forcing temporal
progression and the subsequent exhaustion of the CSC pool.
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