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Abstract 33 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged in Chinese 34 

people in December 2019 and has currently spread worldwide causing the COVID-19 35 

pandemic with more than 150,000 deaths. In order for a SARS-CoV like virus circulating in 36 

wild life for a very long time to infect the index case-patient, a number of conditions must be 37 

met, foremost among which is the encounter with humans and the presence in homo sapiens 38 

of a cellular receptor allowing the virus to bind. Recently it was shown that the SARS-CoV-2 39 

spike protein, binds to the human angiotensin I converting enzyme 2 (ACE2). This molecule 40 

is a peptidase expressed at the surface of lung epithelial cells and other tissues, that regulates 41 

the renin-angiotensin-aldosterone system. Humans are not equal with respect to the 42 

expression levels of the cellular ACE2. Moreover, ACE2 polymorphisms were recently 43 

described in human populations. Here we review the most recent evidence that ACE2 44 

expression and/or polymorphism could influence both the susceptibility of people to SARS-45 

CoV-2 infection and the outcome of the COVID-19 disease. Further exploration of the 46 

relationship between the virus, the peptidase function of ACE2 and the levels of angiotensin II 47 

in SARS-CoV-2 infected patients should help to better understand the pathophysiology of the 48 

disease and the multi-organ failures observed in severe COVID-19 cases, particularly heart 49 

failure. 50 
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Introduction 62 

Over the past 20 years, seven coronaviruses responsible for more or less severe respiratory 63 

diseases have emerged in humans. Several of them, including SARS-CoV-2 (a 64 

Betacoronavirus lineage b/Sarbecovirus), can cause patients lung injury and sometimes multi-65 

organ failure with adverse myocardial remodeling, myocardial stress, and cardiomyopathy 1,2 . 66 

Recently, SARS-CoV-2 was reported to be a human angiotensin I converting enzyme 2 67 

(ACE2)-tropic virus 3,4 able to bind the alveolar pneumocytes which express ACE2 at their 68 

surface 5,6. Yet, in humans the ACE2 mRNAs were found expressed in virtually all organs 69 

including the heart, blood vessels, kidney and testis, opening the possibility for this virus to 70 

infect other tissues beside lung 7,8. ACE2 is a known peptidase that regulates the renin-71 

angioten-aldosterone system (RAAS), thus controlling blood pressure. Therefore, it is not 72 

surprising that initials reports suggested that hypertension, diabetes and cardiovascular 73 

diseases were the most frequent comorbidity in COVID-19 disease 9. 74 

 75 

 76 

The human coronaviruses 77 

Coronaviruses (CoV) circulate in bats and generally pass over an intermediate animal host 78 

before crossing species barrier to infect humans10. Different species of bats in China carry 79 

genetically diverse coronaviruses, some of which are direct ancestors of SARS-CoV 11-13. 80 

Indeed, the first SARS-CoV that caused a human outbreak derived from SARS-like CoV 81 

circulating in Chinese horseshoe Rhinolophus bats which apparently adapted to wild 82 

Himalayan palm-civet before spreading in humans 14. The MERS-CoV originated from a 83 

Pipistrellus bat CoV and was probably transmitted to humans through contact with infected 84 

camels 15-17. Soon after the first outbreak of SARS-CoV-2 in humans, it was reported that this 85 

new virus was related to a bat-borne coronavirus (BatCoV RaTG13) present in the 86 

Rhinolophus affinis bat species18. The identification of an intermediate animal hosts has been 87 

the subject of intense research and it was claimed that a pangolin (Manis javanica) was the 88 

intermediate host for SARS-CoV-2 19. The SARS-CoV-2 receptor ACE2 from bat and 89 

pangolin and several other species, were found to resemble that of human 20. 90 

Before 2003, although human coronavirus 229E (HCoV-229E) (Alphacoronavirus) and 91 

HCoV-OC43 (Betacoronavirus lineage a) described in the 1960s were known to be agents of 92 

respiratory infections, they lent little attention. In the early 2000s, two other coronaviruses 93 

responsible for similar diseases were identified, the HCoV-NL63 (Alphacoronavirus) and 94 



HCoV-HKU1 (Betacoronavirus lineage a). Even if the health authorities pay little attention to 95 

these viruses, sometimes they can cause deaths in people with fragile health. A study in 96 

Switzerland reported that among 279 subjects who had bronchoalveolar lavage for 97 

investigation of respiratory symptoms, 29 were tested positive for HCoV (detection rate: 98 

10.4%) 21. A large-scale polymerase chain reaction (PCR) screening of 11,661 nasal samples 99 

from European patients with respiratory disease, found 35 HCoV-229E (0.30%), 61 HCoV-100 

HKU1 (0.52%), 75 HCoV-NL63 (0.64%), and 111 HCoV-OC43 (0.85%) 22. A similar study 101 

in Africa on 5,573 nasal samples from child hospitalized for pneumonia found 114 HCoV-102 

229E (2.05%), 163 HCoV-NL63 (2.93%), and 111 HCoV-OC43 (1.99%) 23. Two Chinese 103 

studies involving almost 25,000 throat and nasal swab samples from patients with acute 104 

respiratory tract infections revealed 114 HCoV-229E (0.37%-0.57%), 61 HCoV-HKU1 105 

(0.18%-0.33%), 104 HCoV-NL63 (0.33%-0.52%), and 523 HCoV-OC43 (1.36%-3.04%), 106 

respectively 24,25. The fatality rate of the coronaviruses causing the common winter cold was 107 

estimated 0.5% to 1.5% 26. 108 

Coronaviruses strongly gained in notoriety when SARS-CoV (Betacoronavirus lineage b) 109 

emerged in China in March 2003 and was proven responsible for the severe acute respiratory 110 

syndrome (SARS) outbreak in humans 27. The SARS-CoV adapted to humans and became 111 

able to spread from person-to-person leading to a fatality rate of 9.6% in infected patients, 112 

causing global concern. The Middle East Respiratory Syndrome (MERS) caused by the 113 

MERS-CoV (Betacoronavirus lineage 2c), was reported in Saudi Arabia in 2012. This 114 

epidemic which has been one of the least deadly in absolute number of deaths, was the one 115 

which has created the most fears in health authorities and the most important panic in the 116 

populations due to its high fatality rate (case fatality rate of 34.7%) 28. The SARS-CoV-2 that 117 

emerged in China at the end of 2019, is responsible for respiratory infections including 118 

pneumonia with a mortality rate estimated about 1%-2.5% 2, increasing with age and the 119 

existence of underlying diseases. Under chest computerized tomography (CT) scans, the 120 

majority of patients show bilateral ground glass-like opacities and subsegmental areas of 121 

consolidation indicative of SARS-CoV-2 induced pneumonia.  122 

 123 

 124 

The MERS-CoV, SARS-CoV, SARS-CoV-2 and their cellular receptors 125 

Already for SARS-CoV, it was demonstrated that this virus used the angiotensin I converting 126 

enzyme 2 (ACE2) to enter human cells 29. The novel Betacoronavirus SARS-CoV-2 127 

(formerly 2019-nCoV), that cause COVID-19 disease, has 79.5% nucleotide identity with 128 



SARS-CoV 1. It is worth noting that HCoV-NL63, SARS-CoV and SARS-CoV-2 spike 129 

proteins bind ACE2 30 expressed at high levels in type I and II alveolar cells in the lung, 130 

whereas MERS-CoV bind the dipeptidyl peptidase 4 (DPP4)/CD26), a multifunctional serine 131 

peptidase known involved in T cell activation 31. The analysis of SARS-CoV-2 spike (S) 132 

protein and ACE2 three-dimensional (3-D) structures allowed identification of regions in the 133 

peptidase domain of ACE2 required for viral spike binding 3. Three very elegant papers 134 

published in the recent weeks characterized SARS-CoV-2 entry in target cells through 135 

interactions with ACE2 and serine protease TMPRSS2 priming as well as the 3-D structures 136 

involved in these interactions 3,32,33.  137 

The human monocarboxypeptidase ACE-2 was originally cloned from human heart failure 138 

and lymphoma cDNA libraries 7. Although the ACE2 gene is usually considered silent in 139 

immune cells, the expression of ACE2 mRNAs was reported in a subset of CD14+ CD16- 140 

human monocytes 34. ACE2 is also expressed by enterocytes of the small intestine and 141 

expected to regulate the expression of the gut antimicrobial peptides 35 . Moreover, this 142 

peptidase is also present on the arterial and venous endothelial cells, and arterial smooth 143 

muscle 36. In normal human lung, the ACE2 protein is found on type I and II alveolar 144 

epithelial lung cells 37. High expression of ACE2 was also reported on the epithelial cells of 145 

oral mucosa 38. Single-cell RNA-seq analysis indicated that Asian men have a higher ACE2 146 

mRNA expression in lung than women and that Asian people express higher amount of ACE2 147 

than Caucasian and African American populations 39, but this observation remains 148 

controversial 40. Until recently, the genetic basis of ACE2 expression in different populations 149 

remained largely unknown 41. 150 

 151 

 152 

ACE2 structure and function 153 

The ACE2 gene span 39.98 kb of genomic DNA and contains 18 exons. It maps to 154 

chromosome X at position Xp22 8. It encodes a type I cell-surface glycoprotein of about 155 

100kDa, composed by 805 amino acids and characterized by a N-terminal signal peptide of 17 156 

amino acid residues, a peptidase domain (PD) (residues 19-615) with its HEXXH zinc 157 

binding metalloprotease motif, a C-terminal Collectrin (a regulator of renal amino acid 158 

transport and insulin)-like domain (CLD) (residues 616-768) that includes a ferredoxin-like 159 

fold "Neck" domain (615-726), that end with an hydrophobic transmembrane hydrophobic 160 

helix region of 22 amino acid residues followed by an intracellular segment of 43 amino acid 161 



residues 7, 42. The histidine motif HEXXH identified as an important component in a wide 162 

variety of zinc-dependent metalloproteases consists of five residues, the first histidine 163 

followed by glutamic acid being conserved, then the two variable amino acids and a final 164 

histidine 43. Crystal structure analysis have suggested the presence of several hinge regions 165 

and N-glycosylations 44. 166 

ACE2 belongs to the family of ACE members which have a wider tissues distribution. The 167 

juxtamembrane, transmembrane and cytoplasmic tail of ACE2 do not resemble ACE but these 168 

two proteins share the CLD region, a 220 amino-acid domain. Angiotensin converting 169 

enzymes (ACE) are zinc metallopeptidases. ACE, is a widely distributed protein of 170 kDa 170 

encoded by a 21 kb gene located on chromosome 17 (17q23) 45,46, that converts the inactive 171 

decapeptide, angiotensin (Ang) I to an active vasoconstrictor octapeptide Ang II [Asp-Arg-172 

Val-Tyr-Ile-His-Pro-Phe] that controls the blood pressure 47-50, and through inactivation of 173 

bradykinin vasodilatator 51. AngII also triggers the release of aldosterone that regulates the 174 

capacity of kidney to absorb sodium and water 52. Moreover, Ang II stimulates DPP4 activity 175 

likely via the seven-transmembrane receptor (7TM) angiotensin II type A receptor (AT1R)-176 

mediated transactivation of epidermal growth factor receptor 53 and DPP4 inhibitors are 177 

described as a new class of anti-diabetic treatments the cardiovascular safety of which has 178 

been confirmed whereas their impact on hypertension is under evaluation 54. Ang II also 179 

mediates cell proliferation by stimulating various cytokines 55. ACE2, known for its diverse 180 

biological functions, including regulation of blood pressure through the renin-angiotensin-181 

aldosterone system (RAAS), converts the octapeptide AngII to the heptapeptide Ang(1-7) by 182 

hydrolysis of the C-terminal residue. Ang(1-7) is expect to exert its action through the MAS-183 

related (MAS1) G protein-coupled receptor (GPGR) 56,57. In the pancreas ACE2 play an 184 

important glycemia-protective role 58. Low ACE2 expression in the kidney is also associated 185 

with progressive renal diseases including diabetic nephropathy 59. A soluble form of the 186 

catalytic ACE2 ectodomain can be released in the circulation following cleavage between 187 

amino acids 716 and 741 by sheddase ADAM10 and ADAM17 60-62 . The transcriptional 188 

regulation of ACE2 is under the control of DNA-binding protein such as Sirtuin 1 (SIRT1) 63. 189 

(Figure 1A). 190 
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ACE2 polymorphism and diseases 195 

ACE2 limits the adverse vasoconstrictor and profibrotic effects of AngII. The hydrolysis of 196 

AngII into Ang (1-7) reduces the oxidative stress of AngII on endothelial cerebral arteries 64. 197 

Ang(1-7) was reported to have vasodilatory and antifibrotic actions 65. Disruption of ACE2 198 

results in increased AngII levels and impaired cardiac function 66. Reduced levels of cardiac 199 

ACE2 have been reported in hypertension (HT) and diabetic heart disease 67,68. Low 200 

expression of ACE2 mRNA was associated to HT, dyslipidemia and/or heart failure 69.  201 

A polymorphism of ACE2 gene was first documented in the Chinese population with three 202 

ACE2 variants (rs4240157, rs4646155, and rs4830542) associated with HT 70-74, in a Nicotine 203 

Dependence in Teens Canadian cohort rs2074192, rs233575, and rs2158083 mutations were 204 

significantly associated with pathological variations of blood pressure 75. ACE2 rs21068809 205 

mutation (C>T) has been reported associated with clinical manifestations of HT 76. In Indian 206 

the study of 246 HT patients and 274 normotensive people indicated an association of HT 207 

with ACE2 rs21068809 mutation 77. In Brazilian patients, the combination of ACE I/D and 208 

ACE2 G8790A polymorphisms revels susceptibility to HT 78. The RAAS pathway can also be 209 

regulated by a polymorphism in ACE. In African-American with hypertension an ACE 210 

polymorphism was reported 79.  211 

Very recently, Cao and colleagues reported the results of a large investigation (1700 variants) 212 

of coding sequences variants in ACE2 and the allele frequency differences between 213 

populations in ACE2 gene from the China Metabolic Analytics Project and 1000 Genome 214 

Project database and other large scale genome databases 41. They found one variant with a 215 

truncation Gln300 in China. In addition, they reported 32 variants among which seven hotspot 216 

variants in different populations. 217 

 218 

 219 

Viral ACE2 receptor polymorphism and coronaviruses infection 220 

It remains possible that ACE2 gene polymorphism, human ACE2 mRNA expression and 221 

human ACE2 protein polymorphism influence SARS-CoV-2 susceptibility and COVID-19 222 

disease outcome.  223 

For more than two decades, in the field of the human immunodeficiency virus (HIV), a 224 

retrovirus transmitted by sexual intercourse, it was demonstrated that the binding of the gp120 225 

viral envelope glycoprotein to the CD4 receptor 80,81, to CXCR4 82,83 or CCR5 coreceptor 84, 226 



triggers cell signaling. These molecules play a crucial role in the permanent molecular 227 

crosstalk between the cell and its environment. In this viral model, the study of the CCR5 co-228 

receptor polymorphism clearly showed that a natural ∆32 deletion prevented the infection by 229 

HIV of homozygous people carrying this genotype 85, 86. For the MERS-CoV, attachment of 230 

the spike (S) glycoprotein to human cells require the host cell typeII transmembrane protein 231 

dipeptidyl peptidase 4 (DPP4/CD26) 87,88. Following interaction with DPP4, the S protein of 232 

MERS-CoV undergoes proteolytic activation through the cellular serine protease TMPRSS2 233 

and cysteine protease cathepsin L once inside endosomes 89. Soluble forms of DPP4 can be 234 

released in the blood circulation after cleavage by the kallikrein-related peptidase 5 (KLK5) 235 

90. It was recently reported that among fourteen characterized mutants forms of DPP4, four 236 

polymorphisms (K267E, K267N, A291P and ∆346-348) strongly reduce the binding and 237 

penetration of MERS-CoV into target cells and the viral replication 91.  238 

Regarding SARS-CoV, the S1 domain of the spike protein mediates ACE2 receptor binding 239 

whereas the S2 domain is a membrane-associated portion that likely undergoes post-binding 240 

transconformational modifications allowing membrane fusion. The viral receptor binding 241 

domain (RBD) located in S1 has been narrowed down to amino acid residues 318 to 510 92. A 242 

co-crystal structure of ACE2 to the RBD revealed that residues 424 to 494 are involved in 243 

direct contact with the first α-helix and Lys353 and proximal residues at the N-terminus of β-244 

sheet 5 of ACE2 93. By altering the His353 amino acid in rat ACE2 and modifying a 245 

glycosylation site (Asp 90) that may alter the conformation of the α-helix 1 of ACE2, Li and 246 

colleagues 93 converted the rat ACE2 into an efficient receptor for SARS-CoV. A point 247 

mutation Leu584Ala in ACE2, markedly attenuated the shedding of the enzyme and 248 

facilitated SARS-CoV entry into target cells 61. A soluble form of ACE2 lacking the 249 

cytoplasmic and transmembrane domain of the molecule was reported capable of blocking 250 

binding of SARS-CoV spike protein to ACE2 94. Expression of ACE2 was found down 251 

regulated in cells infected by SARS-CoV 95. A recombinant SARS-CoV spike protein was 252 

found to down regulated ACE2 expression through release of sACE2 and thereby promotes 253 

lung injury 96. Among other antiviral effect of Chloroquine on SARS-CoV in vitro one could 254 

be attributable to a deficit in the glycosylation of the ACE2 virus cell surface receptor 97, 98. 255 

Regarding the HCoV-NL63 that also employ ACE2 for cell entry a recombinant SARS-256 

CoV/HCoV-NL63 spike protein trigger shedding of sACE2 99.  257 

Very recently, investigation of SARS-CoV-2 cell entry through ACE2 binding showed 258 

important commonalities between SARS-CoV and SARS-CoV-2 infection, including similar 259 



choice of entry receptors 32. SARS-CoV and SARS-CoV-2 share about 76% amino acids 260 

identity and most amino acid residues essential for ACE2 binding were conserved in the 261 

SARS-CoV-2 spike S1 domain. Another recent paper published reported the structural basis 262 

of SARS-CoV2 interaction with ACE2 3. The trimeric SARS-CoV-2 S1 spike binds the PD 263 

domain of ACE2 and the cleavage of ACE2 C-terminal segment (residues 697 to 716) by the 264 

transmembrane protease serine 2 (TMPRSS2) enhances the S-protein-driven viral entry. By 265 

comparing the 805 amino acid residues of the 10 human ACE2 proteins and the 4 different 266 

ACE2 isoforms available through GeneBank using Clustal Omega multiple sequence 267 

alignment, a 100% identity among the complete ACE2 sequences was observed and the 268 

isoforms corresponded to a deletion in the CLD domain, or truncation in the transmembrane 269 

domain. The role of these isoforms in SARS-CoV-2 infection and COVID-19 outcome, 270 

remains speculative. According to the recent work by Cao and colleagues 41, 32 variants of 271 

ACE2 where characterized among which seven hotspot variants (Lys26Arg, Ile486Val, 272 

Ala627Val, Asn638Ser, Ser692Pro, Asn720Asp, and Leu731Ile/Phe) in different populations 273 

(Figure 1B). This open the possibility that some people could be less susceptible to SARS-274 

CoV-2 infection than others.  275 

 276 

 277 

Discussion 278 

ACE2 protein at the surface of lung alveolar epithelial cells allows infection of the respiratory 279 

tract with SARS-CoV-2. It can be hypothesized that the ACE2 levels correlate with 280 

susceptibility to SARS-CoV-2 infection. Apparently, men have a higher ACE2 expression in 281 

lung than women and Asian people express ACE2 higher than Caucasian and African 282 

American populations 37. This is in agreement with the finding that conversion of Ang II to 283 

Ang (1-7) by ACE2 was higher in males than female 100, suggesting an over-expression of 284 

ACE2 in men. Because ACE2 is encoded by a gene located on the X chromosome and men 285 

express more ACE2 than women it could be speculated that depending the allele expressed by 286 

women, they could be considered of lower sensitivity against the most severe adverse effects 287 

of the infection 99, 101. All clinical reports published to date indicate that men represent 288 

between 66% and 75% of the most severe cases of COVID-19. During early SARS-CoV-2 289 

infection and viral spread within body tissues, the ACE2 function is likely impaired either by 290 

steric hindrance of the peptidase domain of ACE2 following virus binding or by down 291 



regulation of ACE2 mRNA expression and ACE2 protein. In severe COVID-19 disease, the 292 

presence of the viral receptor on other tissues than lung may explain the multi-organ failure 293 

sometimes observed in clinic. We therefore suggest that quantification of ACE2 and AngII be 294 

added to the COVID-19 patients biological monitoring.  295 

It is known that ACE2 can shift the RAAS balance by conversion of Ang II to Ang (1-7). 296 

Consequently, HT and COVID-19 recently become a question of concern for international 297 

professional societies of cardiology regarding: i) the susceptibility of patients with HT to get 298 

COVID-19; ii) the severity of the disease; and, iii) the use of ACE inhibitors (ACEi) and 299 

AngII receptor blockers (ARBs, that targets the AT1R). It is known that HT inhibitors 300 

increase the cell-surface expression of ACE2. It was demonstrated that ACEi can increase 301 

intestinal ACE2 mRNA expression 102. Although data are lacking regarding the effects of 302 

such drugs on ACE2 mRNA expression in lung epithelial cells, there is a concern that patients 303 

taking those treatments can favor virus capture. In patients with HT who received long-term 304 

olmesartan (ARB) treatment, urinary ACE2 levels were higher than among untreated control 305 

patients 103. In contrast to HT, in patients suffering from idiopathic pulmonary fibrosis, the 306 

expression levels of ACE2 are markedly decreased 30. ACE2 is a major actor toward 307 

resolution of inflammation and fibrosis 104. In an animal model of bleomycin-induced 308 

pulmonary fibrosis, treatment with intraperitoneal injection of recombinant human ACE2 309 

improved the lung function and decreased lung inflammation and fibrosis 105. Moreover, 310 

impaired phosphorylation of ACE2 Ser680 by AMP-activated protein kinase in pulmonary 311 

endothelium leads to a labile ACE2 and hence pulmonary HT 106. We must also paid attention 312 

to molecules such as xanthenone (XNT) and dimiazene aceturate (DIZE, an anti-313 

trypanosomal drug) described as ACE2 activators 107. In a rat model of ischemic heart disease, 314 

the subcutaneous infusion of DIZE significantly increased cardiac ACE2 mRNA expression 315 

and ACE2 protein catalytic activity, reduced ACE mRNA expression, and improved cardiac 316 

remodeling 108. The possible beneficial properties of other molecules such as exenatide (a 317 

glucagon-like peptide-1 agonist) which induces an increase in vasodilatory and a decrease 318 

in vasoconstrictive mediators must also be investigated 109 . In addition, it was recently 319 

reported that heparin (anticoagulant) treatment is associated with decreased mortality in 320 

severe COVID-19 patients with coagulopathy 110.  321 

In a Chinese cohort of 1,099 patients with COVID-19, 165 (13%) individuals were patients 322 

with HT, among which 24% suffered from severe COVID-19, a percentage of 3.7%, slightly 323 

higher to that of the general population of COVID-19 patients 111. In a smaller cohort of 191 324 



patients with COVID-19, 58 (30%) were patients with hypertension and 48% of them died, 325 

which is surprisingly high percentage (14.6%) 112. These results suggest that the prevalence of 326 

patients with HT was higher in patients who developed severe COVID-19 disease than those 327 

who do not. By mid march 2020, the international professional societies of cardiology 328 

recommended continuing patients' treatment 113. Indeed, when the SARS-CoV-2 spike binds 329 

its ACE2 receptor in the α helix 1 (Lys31, Tyr 41) and β5 region (Lys353) it likely reduces 330 

the catalytic properties of ACE2 that is usually associated with reduced inflammation. The 331 

lack of Ang(1-7) generation may increase lung injury 114, 115 and cardiovascular risks, Ang II 332 

acting like an inflammatory cytokine 116. In a murine model it was observed that lung 333 

inflammation aggravates AngII-induced induced abdominal aortic aneurysms 117.  334 

Mutations might modify the expression level of ACE2 protein as shown in a murine model 335 

118. The deletion of ACE2 in mice model was associated with increased circulation and tissue 336 

AngII levels and led to cardiovascular damage 119, 120. It remain possible that i) mutations 337 

affecting the human ACE2 gene; ii) transcriptional variation in ACE2 mRNA expression; iii) 338 

post-transcriptional modifications that act on the ACE2 viral receptor (such as N-339 

glycosylation), and; iv) putative ACE2 protein mutations, may influence the outcome of 340 

COVID-19 by acting on blood pressure through the RAAS and possible increasing of lung 341 

and heart damages through the oxidative stress triggered by Ang II. Recently an high rate 342 

fatality of SARS-CoV-2 was reported in Iran 121 , without satisfactory explanation. If 343 

underreporting of the number of infected people can be excluded, it could be hypothesized: i) 344 

a more aggressive variant clade of SARS-CoV-2 122 ; ii) a variation in ACE2; or, iii) a 345 

variation in genes like those encoding Toll-like receptors. Since it is known that Ang(1-7) 346 

prevents inflammation by inhibiting the resistin/ Toll-like receptor 4 (TLR4)/MAPK/NF-kB 347 

pathway 123 and that there is a high variability of the TLR4 gene in different ethnic groups in 348 

Iran 124, it remains possible that SARS-CoV-2 triggers increased inflammation in Iranian 349 

patients by suppressing the ACE2-mediated metabolism of AngII to Ang(1-7). This could be 350 

related to the observation that mice deficient in the TLR3/TLR4 adaptor TRIF are highly 351 

susceptible to SARS-CoV infection including severe inflammatory induction 125.  352 

The mechanism of acute myocardial injury caused by SARS-CoV-2 during severe COVD-19 353 

disease might be related to the inhibition of ACE2 catalytic activity 126. (Figure 2).  354 

Interestingly, a recent study posted as a pre-print paper127 pointed out a list of 97 approved 355 

drugs that may have a therapeutic potential against COVID-19 including anti-diabetics 356 

(metaformin), statins (simvastatin) and ARBs (sartans). Medical records of patients currently 357 



treated with these compounds may help to identify whether those drugs have a beneficial or 358 

adverse effect on COVID-19 patients. Metaformin was also identified as a potential drug-359 

repurposing against SARS-CoV-2 in another study 128. It should be remembered that a large 360 

number of data suggest that there is a mild or severe cytokine storm in severe COVID-19 361 

patients which is an important cause of death. To reduce the pro-inflammatory effect of AngII 362 

and the cytokine storm observed in severe cases of COVID-19, it might make sense to 363 

continue treating patients with ACE inhibitors and ARBs, a conclusion shared by recent 364 

recommendations of the international societies of cardiology129. However, Fang and 365 

colleagues115 recently reported that the most distinctive comorbidities in patients who died 366 

from COVID-19 are HT, coronary heart diseases, cerebrovascular diseases and diabetes, and 367 

among them several were treated by ACE inhibitors. How should clinicians navigate this 368 

uncertainty for patients who are taking ACE inhibitors and ARBs and become infected with 369 

SARS-CoV-2? Do these molecules have a harmful effect in the outcome of the disease or is 370 

the link that is made highlights only a confounding factor which confirms that HT is a major 371 

factor of comorbidity? In agreement with others 130-132 , we consider that it is of special 372 

importance to rapidly evaluate whether these drugs are more beneficial than harmful in severe 373 

COVID-19 patients. 374 
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Figure legends 421 

 422 

Figure 1 423 

1A. Schematic representation of the regulation of ACE2. The transcription of the Ace2 gene is 424 

under control of the SIRT1 DNA-binding protein that binds the Ace2 gene promotor. Post-425 

transcriptional regulation by miRNA (miRNA143, miRNA421) could occur (not shown). 426 

Following translation the newly synthesized ACE2 proteins are likely target of post-427 

transcriptional modifications such as phosporylation of Ser680 by AMPK that enhances the 428 

stability of ACE2, and N-glycosylations. Once expressed at the cell membrane the ACE2 429 

protein can be regulated by sheddases (ADAM10, ADAM17) that cleave the ACE2 430 

extracellular domain and release a circulating soluble form sACE2 capable to interact with 431 

integrins (ITGB1).  432 

1B. Schematic representation (left) of the ACE2 molecule and its major domains. The amino 433 

acids position is in black. Some of the amino acids important for viral tropism are in red 434 

(previous studies showed that residues 31, 41, and regions 82-84 and 353-357 are important 435 

for viral spike binding). Clustal Omega multiple sequence alignment (EMBL-EBI 436 

bioinformatic tool; Copyright © EMBL 2020) of human ACE2 and its different isoforms 437 

(right). The comparison of the reference Homo sapiens ACE2 protein sequence 438 

(S1=Genbank: BAB40370.1) with 9 others ACE2 sequences from the NCBI reference 439 

sequence database (S2=UniProtKB Q9BYF1.2; S3=NCBI NP_001358344.1; S4=NCBI 440 

NP_068576.1; S5= GenBank EAW98892.1; S6= GenBank AAH48094.2; S7= GenBank 441 

AAH39902.1; S8= GenBank AAO25651.1; S9= GenBank BAD99267.1; GenBank 442 

AAF99721.1), showed 100% amino acids identity (not shown). The Clustal MSA was also 443 

used for the comparison of the human ACE2 S1 sequence and available sequences of ACE2 444 

isoforms: the isoform X1 (I1)= NCBI XP_011543851.1; isoform X2 (I2)= NCBI 445 

XP_011543853.1; isoform X3(I3)=NCBI XP_011543854.1; isoform CRA (I4)=GenBank 446 

EAW98891.1. The figure illustrates that these isoforms correspond to deletions in the CLD 447 

domain, or truncations in the transmembrane domain. A very elegant work by Cao and 448 

colleagues42 has recently analyzed 1700 ACE2 variants in search of ACE2 protein 449 

polymorphism. The mutations and truncations found by this team are shown in light blue.  450 



 451 

 452 

 453 



Figure 2 454 

Simplified diagram of the renin-angiotensin system in normal and pathologic conditions. The 455 

left panel indicates that ACE2 converts Ang II to Ang(1-7) leading to protective signal. The 456 

right panel illustrates the possible dysfunction of signals when SARS-CoV-2 is attached to its 457 

ACE2 receptor. Under this condition Ang(1-7) is no longer synthetized, Ang II accumulates 458 

and binds AT1R, leading to proinflammatory signals that trigger both tissues damage (in 459 

particular lung and heart) and hypertension.  460 
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