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Dynamics of a reactive spherical particle falling in a linearly stratified fluid

Ludovic Huguet,∗ Victor Barge-Zwick, and Michael Le Bars
CNRS, Aix Marseille Univ, Centrale Marseille, IRPHE, Marseille, France

(Dated: October 26, 2020)

Motivated by numerous geophysical applications, we have carried out laboratory experiments of
a reactive (i.e. melting) solid sphere freely falling by gravity in a stratified environment, in the
regime of large Reynolds (Re) and Froude numbers. We compare our results to non-reactive spheres
in the same regime. First, we confirm for larger values of Re, the stratification drag enhancement
previously observed for low and moderate Re [e.g. 1]. We also show an even more significant drag
enhancement due to melting, much larger than the stratification-induced one. We argue that the
mechanism for both enhancements is similar, due to the specific structure of the vorticity field sets
by buoyancy effects and associated baroclinic torques, as deciphered for stratification by Zhang et
al. [2]. Using particle image velocimetry, we then characterize the long-term evolution (at time
t ≫ 1/N with N the Brünt-Väisälä frequency) of the internal wave field generated by the wake
of the spheres. Measured wave field is similar for both reactive and inert spheres: indeed, each
sphere fall might be considered as a quasi impulsive source of energy in time and the horizontal
direction, as the falling time (resp. the sphere radius) is much smaller than N (resp. than the tank
width). Internal gravity waves are generated by wake turbulence over a broad spectrum, with the
least damped component being at the Brünt-Väisälä frequency and the largest admissible horizontal
wavelength. About 1% of the initial potential energy of each sphere is converted in to kinetic energy
in the internal waves, with no significant dependence on the Froude number over the explored range.

I. INTRODUCTION

Particles settling or rising in a stratified fluid have been widely studied in the previous decades because of numerous
applications ranging from industrial processes to geophysics (see the broad review of Magnaudet et al. [1]). Examples
include marine snow, plankton, and Lagrangian floats [3] in the ocean, as well as dust and aerosols in the atmosphere.
Moreover, moving reactive particles, meaning particles exchanging heat and mass with the surrounding medium, are
encountered in many geophysical contexts such as ice crystallizing in the atmosphere [4], water droplet condensing or
evaporating in clouds, iron or oxide crystals solidifying in planetary cores [5–7]. The sedimentation of these reactive
particles often occurs in a stably stratified layer, as for instance at the top or bottom of liquid planetary cores due
to a combination of thermal, pressure and chemical gradients [8]. The fall of reactive particles may strongly interact
with the stratified surrounding environment, and the associated dynamics are the focus of our present study, using a
generic, laboratory, experimental model. These dynamics include both the fall of the particle and its wake, but also
the internal wave field that it generates and that then persists for a long period of time.
Experimental studies have reported a drag increase for inert particles falling through a sharp density gradient [9–14].

In a linearly stratified fluid, Yick et al. [15] showed that the drag coefficient can be enhanced by a factor 3 compared to
the one in a homogeneous fluid for small Reynolds number (Re = 2aU

ν with U the falling velocity, a the sphere radius
and ν the fluid kinematic viscosity). A lot of numerical simulations of a sphere falling in a stratified layer have been
done for small and moderate Reynolds numbers [2, 15–18]. Direct numerical simulations and asymptotic approaches
have shown the enhancement of the drag due to the stratification. Doostmohammadi et al. [19] also examined the drag
enhancement in transient settling. Zhang et al. [2] challenged the canonical view of the enhancing drag coefficient in a
stratified layer, commonly attributed to the additional buoyancy force resulting from the dragging of light fluid by the
falling body. They rigorously examined the physical mechanism implied in the drag increase and showed that for high
Prandtl number the added drag is mostly due a modification of the vorticity field induced by the baroclinic torque
on the surface of the sphere. Others experimental and numerical studies focused on the flow regime past the sphere
settling [16, 20–22]. Hanazaki et al. [21] investigated the characteristics (length and radius) of the associated jet and
its behavior for a large range of Reynolds and Froude numbers (Fr = U

Na with N the Brünt-Väisälä frequency). They
found seven regimes corresponding to various jet structures (see Fig. 1). Hanazaki et al. [20] examined the effect of
the molecular diffusion and showed that the jet widens when diffusivity increases and that the stratification is then
less effective.
The falling or rising paths of spherical or non-spherical bodies have been largely studied (see the review of Ern et al.

[23]). The trajectory of a falling sphere depends on the Reynolds number and the density ratio (m⋆ = ρsphere/ρfluid)
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FIG. 1. Diagram of the 7 regimes of wakes observed in the experiments or numerical studies [1]. The solid and empty large
markers denote our experiments with the reactive and plastic spheres respectively. Modified from Fig. 4a of Hanazaki et al. [21]
with the permission of Cambridge University Press.

and can be oblique, periodic or chaotic [23, 24]. For instance, at m⋆ ≫ 1 and high Reynolds number, falling paths are
chaotic [25], but become periodic at m⋆ ∼ 1 [24, 26]. However, experimental studies of the falling or rising path are
difficult as the noise background in the fluid can dramatically change the instabilities occurring on the path [24, 25].
To the best of our knowledge, there is no exhaustive study of the path of a freely falling sphere in a stratified layer.
In a stratified layer, the vertical motion of a buoyant fluid or particle may generate internal waves [27, 28], as for

instance in the Earth’s atmosphere [29] and in astrophysical environments [30]. Mowbray and Rarity [31] have been
the firsts to describe internal waves associated with the settling of a sphere through a stratified layer, in the regime
of small Reynolds and Froude numbers. The velocity field during the fall of the sphere is explained by the linear
theory of internal waves [16, 21, 32], which governs the radius and the length of the jet behind the sphere. Most of
the studies regarding the generation of internal waves by a turbulent wake are focused on a horizontally towed sphere
in a linearly stratified layer. Two regimes of waves are described: Lee waves and random internal waves [33–35], the
second regime being dominant for Fr > 4 [33, 36]. To the best of our knowledge, no previous study has examined
the internal waves produced by the fall of a sphere in the regime of large Reynolds and Froude numbers.
In this paper, we investigate the dynamics of a sphere falling in a linearly stably stratified fluid while melting,

focusing on the drag coefficient and the associated internal waves generation. To decipher the effects of melting from
the ones due to stratification, we also investigate the dynamics of inert (plastic) spheres. Our experiments have a range
of Froude and Reynolds numbers of 80 < Fr < 600 and 400 < Re < 15000 respectively, i.e. relatively unexplored
in regards to the previous experiments as shown in Fig. 1 (see Magnaudet et al. [1] for a review). In Section II,
we describe the experimental setup, and we define the physical parameters. In Section III, we present a model for
understanding the melting rate of our spheres, and we compare it with experimental results. We describe the falling
behavior of the spheres, and we calculate the drag coefficient for melting and plastic spheres in Section IV. Section
V presents our results on the internal waves generated by both types of spheres settling into a stratified layer. In
Section VI we discuss our main results and their implications.

II. METHOD

The experiment is carried out in a 30 × 30 × 50 cm tank filled with linearly stably stratified, salty water using
the double-bucket technique [37, 38] (Fig. 2). A larger tank (45 × 45 × 100 cm) is used in one set of experiments
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FIG. 2. Schema of the experimental set-up for the small tank. The 50 FPS-camera (1) allows us to perform PIV measurements
over the whole tank. We use a 50 mm-lens on the 500 FPS-camera to track the rapid dynamics of the sphere wake in a reduced
domain. A green laser of 1W is used here.

to investigate possible wall effects. We impose a linear stratification which is characterized by the Brünt-Väisälä
frequency N in Hz

N =
1

2π

√

−
g

ρ

∂ρ

∂z
(1)

where g is the gravitational acceleration, ρ is the mean density of the fluid, and ∂ρ
∂z is the density gradient. In

our tanks, we set a Brünt-Väisälä frequency between 0.1 and 0.2 Hz. Fig. 3 shows the five different stratifications
used in our experiments. We have measured the density every 8 cm by microsampling and then using a portable
density meter (Anton-Paar DMA 35). To release the sphere without initial shear or vertical velocity, we use an iris
diaphragm with 16 leaves mounted on a support and disposed on the water surface, before being carefully opened
(Fig. 2). We perform particle image velocimetry (PIV) with silver-coated particles (diameter of 10 µm) to track the
fluid motion in the whole tank at a frame rate of 50 FPS, as well as a zoom of the turbulent wake over a window
of 12.3× 15 cm2 at 500 FPS. In both cases, we typically use 32× 32 pixels boxes with 50% overlap. Independently
of the PIV measurements, we also perform experiments with a back-lighting to track the real-time two-dimensional
position of the spheres. The post-processing of these images produces better results for the sphere velocity, so for the
drag coefficient. Indeed, the high-Reynolds number of our experiments implies a 3D motion of the falling spheres,
which do not stay in the laser sheet plane.
Our reactive spheres are molded in spherical molds 3D-printed with three different radii (14, 7.9, 5 mm). By image

analysis, we measure the ratio between the minor axis and the major axis of the falling spheres, which denotes their
sphericity. For reactive spheres, this ratio is about 0.9± 0.05. The difficulty of making a proper sphere is due to (i)
the small hole required to pour the liquid solution and (ii) the melting during the un-molding. The major axis is
mostly perpendicular to gravity. To mold the reactive spheres, a liquid solution with c0 = 25 wt% NaCl is trapped in
the spherical mold and cooled from ambient temperature to about −23◦C, below the eutectic temperature (see the
red star arrow in Fig. 4). The mass composition of each sphere is then (see the horizontal red arrows in Fig. 4)

xi =
cpe − c0

cpe
= 59.42% of ice (2)

and

xhh = 1−
cpe − c0

cpe
= 40.58% of hydrohalite, (3)
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FIG. 3. (a) Density profile of the four different linear stratifications in the small tank. One stratification (N = 0.142 Hz)
has been used with backlighting to track the sphere position (red solid line and squares). Two different stratifications (N =
0.094 and 0.136 Hz) have been used for PIV measurements (dashed lines and circles). The last stratification (N = 0.196 Hz)
has been used with the two measurement techniques (black line and diamonds). (b) Density profile in the large tank, only used
with back-lighting technique: the linear stratification, of the same depth as in the small tank, is enclosed between the top and
bottom homogeneous layers, with a noticeable density jump around the bottom interface.

where cpe is the concentration of the peritectic point. The density of the ice-hydrohalite mixture sphere ρm is
theoretically defined by

ρm,th = ρice(1− Φhh) + ρhhΦhh = 1114 kgm−3, (4)

where ρice and ρhh are the density of ice and hydrohalite, respectively (Table I). Φhh = xhh/(xhh + (1 − xhh)
ρhh

ρice
)

is the volume fraction of hydrohalite. This value is slightly below our experimental measurements giving ρm,exp =
1142 ± 15 kgm−3, based on two different methods: first, we measured the mass of several spheres and the volume
change induced by immersing them in water; second, we measured the equilibrium position of some spheres in a
stratified fluid with a density linearly changing from 1096 to 1160 kgm−3. The disagreement might essentially come
from non-ideal conditions while making the sphere (e.g. non instantaneous cooling of the fluid below the eutectic).
In the following sections, we thus use the ρm,exp value.
In addition to those home-made reactive spheres, we also use spheres of Torlon (polyamide-imide) or PVC (Polyvinyl

chloride) with radius 1.6, 3.2, 4.8, 7.9, 9.5, 14.3 mm and density between 1300 and 1430 kgm−3 to isolate the effect
of melting on the falling sphere dynamics.

III. MELTING OF OUR REACTIVE SPHERES

III.1. Theoretical model

Here we consider the melting of a sphere of mass Mg = ρm4/3πa3 at an initial temperature Ts in a mass Ml of
well mixed, warmer and pure water (or at least, far from salt saturation) at temperature T , enclosed in a tank. The
differential velocity between the sphere and the fluid is U . The total mass of the system is Mtot = Ml +Mg. Then,
the energy conservation in the fluid – including the liquid that has come from the melt and is still at the melting
temperature T0 – can be written as

Cl
p(Mtot −Mg)

∂T

∂t
= −4πa2FT + ρ0C

l
p(T − T0)4πa

2 ∂a

∂t
+ P(Text − T )Cl

p(Mtot −Mg) (5)
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FIG. 4. Phase diagram of binary mixtures of water (H2O) and sodium chloride (NaCl). (s) and (l) denote the solid and the
liquid phases, respectively. The subscripts e, pe and tp denote the eutectic, peritectic, and triple point of the phase diagram,
respectively. The NaCl 2H2O phase is a hydrated salt and is called hydrohalite. The fluid with a salt concentration of 25 wt%
(red star) is cooled below the eutectic temperature (vertical red arrow) where a solid mixture is formed by pure ice and
hydrohalite (horizontal dotted red arrows). Blue color lines indicate the liquid density.

TABLE I. Physical property values used in the theoretical calculations.

Quantity Symbol Value Unit Reference
Melting temperature of ice Tice 0 ◦C [39]
Eutectic temperature Te -21.1 ◦C [39]
Triple point temperature Ttp 0.1 ◦C [39]
Eutectic composition ce 23.3 wt% [39]
Peritectic composition cpe 61.6 wt% [39]
Triple point composition ctp 26.33 wt% [39]
Density of ice at -23◦C ρice 920 kgm−3 [40]
Density of hydrohalite at -10◦C ρhh 1610 kgm−3 [41, 42]
Density of pure water at 25◦C ρw 997 kgm−3 [43–45]
Density of salty water at 0◦C and c = 25 wt% ρ0 1198.5 kgm−3 see Appendix A
Latent heat of crystallization of ice Lice 334 kJ kg−1 [46]
Enthalpy of dissolution of NaCl LNaCl 66.39 kJ kg−1 [47]
Enthalpy of dissociation of hydrohalite Lhh 7.73 kJ kg−1 [48]
Heat capacity of water Cl

p 4184 JK−1 kg−1

Thermal conductivity of the hydrohalite-ice sphere km 2.7 Wm−1 K−1 [46, 49]
Thermal conductivity of water kl 0.6 Wm−1 K−1 [50]
Kinematic viscosity of water at 0◦C ν 1.8× 10−6 m2 s−1 [51]

where Cl
p is the specific heat capacity of water (we neglect its dependence on temperature and salt concentration)

and ρ0 the density of the 25%-NaCl water used to mold the sphere (we neglect its dependence on temperature). The
first term of the right-hand side corresponds to the convective heat flux FT from the liquid towards the sphere. The
second term corresponds to the heating of the liquid melt from its release temperature T0 to the liquid temperature T
(we neglect the density change between the solid and the melt, and we assume rapid and complete mixing). The last
term of the right-hand side corresponds to the heat losses by the liquid in the surrounding environment through the
tank boundaries. P is an effective heat exchange or heat loss parameter, which can be experimentally determined by
simply measuring the cooling of pure water in the same set-up but with no melting sphere. Note that it is negligible
in both tanks for our main experiment on falling, melting spheres, but it has to be accounted for in our melting model
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validation experiment presented in the next section.
The salt mass conservation is given by

Mtotc = Mlcl +Mgc0, (6)

where cl is the liquid concentration of sodium chloride (cl(t = 0) = 0) and c the mean concentration. The salt
concentration in the sphere c0, the mean concentration c, and the total mass Mtot = Ml+Mg are all constant. Hence
differentiating this equation gives

∂cl
∂t

=
(cl − co)

(Mtot −Mg)

∂Mg

∂t
=

(cl − co)

(Mtot −Mg)
ρm4πa2

∂a

∂t
. (7)

The mass of sodium chloride in our reactive sphere is small compared to the total volume of water. Then, the mean
liquid concentration is small and far from the saturation point, hence the salt concentration in the liquid does not
prevent the melting of the sphere.
Following the Stefan condition at the melting interface, the growth rate is defined by a balance between the latent

heat release due to the melting, the heat flux from the sphere towards the liquid, and the heat flux from the liquid
towards the sphere

[Liceρice(1 − Φhh) + LhhρhhΦhh + LNaClρhhΦhhcpe]
∂a

∂t
= km

∂T

∂r

∣

∣

∣

∣

r=a−

− kl
∂T

∂r

∣

∣

∣

∣

r=a+

(8)

where km and kl are the heat conductivity of the sphere and of the liquid, respectively. Here we take into account
the binary mixture of the sphere, hence the release of latent heat due to ice melting Lice as well as the enthalpy due
to hydrohalite dissociation Lhh followed by sodium chloride dissolution LNaCl. All processes are endothermic, which
means that the melting of the sphere will absorb energy from the surrounding liquid. By assuming as a first order
approximation a linear temperature profile through the sphere, we can write

[Liceρice(1− Φhh) + LhhρhhΦhh + LNaClρhhΦhhcpe]
∂a

∂t
= km

(

T0 − Ts

a

)

− FT , (9)

where T0 is the temperature at the surface of the sphere equal to the melting temperature of ice, Ts the temperature
at the sphere center assumed to remain at its initial value, and FT the convective heat flux defined in Eq. (10).
The convective heat flux FT has been measured for a large range of Reynolds, Prandlt and Schmidt numbers, as

shown by Clift et al. [52]. We use here the parameterization given by Zhang and Xu [53], valid over a large range of
Reynolds number

FT =
kl(T − T0)

2a

(

1 + (1 + PeT )
1/3

(

1 +
0.096Re1/3

1 + 7Re−2

))

(10)

where PeT = 2aU
κl

is the Péclet number and κl =
kl

ρwCl
p
the liquid thermal diffusivity.

We can finally model the melting of a sphere by solving the two coupled differential equations (5) and (9) in terms
of the liquid temperature T and the sphere radius a, using the physical properties from the table I and the heat
flux parameterization (10). Equation (7) then gives the liquid concentration evolution cl, and a polynomial fit of the
equation of state of an aqueous sodium chloride solution (see Appendix A) finally allows evaluating the fluid density.

III.2. Melting of a reactive sphere in a beaker

In this section, our goal is to validate the theoretical model of melting presented above. It would be very difficult to
track the temperature and the salt concentration in the wake of a sphere during its fall in our complete experiment.
Besides, it will turn out to be also very difficult to measure the radius changes, as will be discussed in the next
paragraph. Thus, we have carried out a simpler experiment in a small beaker, where a sphere hanging from a rod is
completely immersed in a known volume of pure water. The liquid is stirred with a magnetic stirrer to homogenize
the temperature and the concentration during the melting. We performed density and temperature measurements in
the fluid with a portable density meter (Anton-Paar DMA 35). Using a high-speed camera, we also tracked the radius
evolution with time. We have measured previously the effective heat exchange / heat loss parameter of this set-up,
P = 4.8±0.2×10−4 s−1. Fig. 6 shows the evolution of the radius, temperature, and density for two runs with a 14 mm
reactive sphere. The sphere falls from the rod after 20 seconds which prevents tracking the radius afterward. The



7

reactive sphere

small beaker

Stir bar

densimeter

4 mm diameter rod

14 mm

10 mm

FIG. 5. Experiment in a small beaker of a sphere melting in a turbulent fluid using a magnetic stirrer.

0

4

8

12

a
 (

m
m

)

t (s)

20

22

24

26

T
em

p
er

at
u
re

 (
°C

)

995

1000

1005

1010

0 10 20 30 40 50 60

D
en

si
ty

 (
k
g 

m
-3
)

(b)

(a)

(c)

FIG. 6. Evolution of the radius (a), fluid temperature (b), and fluid density (c) for two similar experiments (red and black) of a
reactive sphere melting in well-mixed pure water. Thick solid lines (in (a)) and dotted lines with circles (in (b) and (c)) denote
measurements. Thin solid lines correspond to the model presented in Section III.1 with a kinematic viscosity 9× 10−7 m2 s−1

and a velocity 35 cm s−1.

typical fluid velocity has been estimated experimentally to be O(0.35) m s−1. We solve the set of equations (5), (7) and
(9) with a(t = 0) = 14 mm and cl(t = 0) = 0 wt%. Note that we do not take into account the effect of the rod, since
it is small and heat transfer in metal is very rapid. The initial fluid temperature is the only free parameter as it has
not been measured precisely. To solve Eq. (10), we have to estimate the value of the kinematic viscosity of the fluid.
Since the Prandtl and Schmidt numbers are large, the thermal and chemical boundary layers are small compared to
the viscous boundary layer. Besides, changes in the bulk fluid composition and temperature are small. Therefore, we
consider the viscosity of the bulk of the fluid that is ν(∼ 25◦C,∼ 0 wt%) = 9×10−7 m2 s−1 (see Appendix A; temporal
changes in temperature and concentration over the course of the experiment have no significant effect on viscosity).
By adjusting, using a least squared method, the initial temperature to T (t = 0 s) = 25.8◦C and 26.2◦C respectively for
the two considered experiments (in red and black in Fig. 6), the theoretical evolution of the radius, liquid temperature
and density is in good agreement with measurements.
Using the same set of equations, we then estimate the melting rate of a sphere falling in a stratified layer in our
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complete experiment. Because the reactive spheres fall in a few seconds only, we consider that the temperature and
the concentration of the far-field remain constant. Thus, our estimation of the melting rate is an upper bound: the
increase of salt concentration and the decrease of the temperature in the fluid surrounding the melting sphere would
indeed reduce the melting rate if taken into account. Here, we use the falling velocity (as detailed below in Fig. 9)
for each different sphere radius as the value of U in Eq. (10). Over the falling time in the stratified layer, the sphere
radius decreases by less than, 2%, 6%, and 15% for the 14, 7.9, 5 mm spheres respectively (see Fig. 7). With the
high-speed camera equipped with a zoom ((2) in Fig. 2), we observe qualitatively the melting of the reactive sphere.
However, we observe the same variation of radius for both the plastic and reactive spheres. Indeed, the small radius
variation induced by melting is of the same order of magnitude as the apparent decrease of radius due to refraction
index changes with salt content. In the following, we thus use a constant radius for the reactive spheres to calculate
all dimensionless parameters, including the drag coefficient, the Froude number, and the Reynolds number: this
hypothesis only implies a small error which will be further discussed below in Fig. 10.

IV. DYNAMICS OF THE PLASTIC AND REACTIVE SPHERES

IV.1. Falling behavior of the plastic and reactive spheres

Here, using a back-lighting technique, we present the results on the settling of plastic and reactive spheres. In
all cases over the explored parameter range, the vertical settling is combined with oscillatory horizontal motions,
with various but always small amplitudes (the ratio of horizontal vs. vertical velocities is always less than 10% and
is becoming even smaller for the smallest spheres). We first performed two experiments in a homogeneous fluid,
respectively in the small tank and in the large tank, to investigate the wall effects. Second, we conducted three
experiments with a stably stratified layer (two in the small tank and one in the large tank) for three different Brünt-
Väisälä frequencies N = 0.136 Hz, 0.164 Hz and 0.196 Hz (see linear stratifications in Fig. 3). Up to 7 releases at the
top of the tank were performed for each sphere size and type. A low-pass filter was applied on the positions x and z
to remove all high-frequency noise due to the post-processing, before calculating the velocity by finite-difference. The
Reynolds number Re and the Froude number Fr are calculated with the median of the velocity distribution for each
sphere size, the initial sphere radius and with the viscosity of the bulk fluid for the mean concentration along the
density profile and at ambient temperature. Figs. 8-9 show the settling evolution of the plastic and reactive spheres
in the larger tank with a stratification band (see Fig. 3b), and in pure water.
Fig. 8b,d show the velocity of the plastic spheres for 2 different radii (14.3 and 3.2 mm), with time t = 0 correspond-

ing to the time when the sphere reaches the top of the stratified layer. Fig. 8a,c show the same cases in a homogeneous
fluid, for reference. Before entering the stratified layer, the velocity of the largest spheres rapidly decreases, and then
increases once in the layer. This rapid variation is not observed for the smallest plastic spheres (3.2 and 1.6 mm).
For all radii, however, a jump of velocity occurs when the spheres reach the bottom of the stratified layer. These
observations agree with the recent study of Verso et al. [14], which relates velocity changes to the crossing of a rela-
tively sharp density interface. In our experiment, the transition is always sharp at the bottom of the stratified layer
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(see Fig. 3b), whereas it is seen as sharp at the top interface by large spheres only. Then, within the stratified layer
(colored lines in the middle column of Fig. 8b,d), the velocity decreases with depth for the smaller spheres whereas
for the larger spheres it remains almost constant. Besides, the falling path is quite periodic for the largest spheres,
while the smallest spheres (3.2 and 1.6 mm radius) fall only with small oscillations. Actually, the velocity decrease
is correlated to the relative decrease of the sphere buoyancy due to the ambient stratification: the density difference
between the sphere and the fluid driving the fall decreases with depth because fluid density increases with depth.
For the largest plastic spheres, this evolution is of the order of 6% using the Newtonian velocity scaling introduced
below (see (11)), hence it is of the same order of magnitude as the variation due to the non-rectilinear motion: this
is why the velocity decrease is not observed in these specific cases. The median velocities of the two largest spheres
are almost similar (41.1 cm s−1 and 40.7 cm s−1 for the 14.3 mm and 7.9 mm spheres respectively), which is also
likely due to the strong oscillations of the sphere. For comparison, we also show the trajectory of our plastic spheres
in a homogeneous fluid for the same radii. For the largest spheres (top line in Fig. 8a), the falling trajectories are
more chaotic and the velocity spreads on a larger range. For the 3.2 mm radius spheres with a smaller Reynolds
number (Fig. 8c), the falling paths are quite similar to the stratified case, yet with a constant sinking velocity. As
shown in [24], the falling path is strongly perturbed by the noise background in the fluid, which we did not carefully
remove between each launch. Nevertheless, for a stratified layer, we may expect that the motion noise is smaller,
mostly two-dimensional, and more rapidly attenuated: therefore, the presence of a stratified layer extends the regime
of regular oscillatory path.
Fig. 9b,d shows the velocity of two reactive spheres in a stratified layer, and Fig. 9a,c in a homogeneous fluid for

comparison. All reactive spheres oscillate rather strongly when settling into both stratified and homogeneous layers.
The associated wavelength decreases with the size of the spheres (λ ∼ 30, 18, 10 cm for radius a = 1.43, 0.79, 0.5 cm
respectively). The ratio λ/(2a) is about 10, which is close to the typical wavelength λ/(2a) = 12 found for spheres
falling in a homogeneous fluid with high Reynolds number [24, 26]. The presence of stratification does not seem to
strongly modify this wavelength in the explored range of (rather large) Froude number. However, the trajectories are
more periodic (i.e. less chaotic) when the spheres fall in a stratified layer, as already observed for plastic spheres.
Moreover, the falling path of the reactive spheres seems to be even more regular than one of the plastic spheres, which
may be due to smaller Reynolds number and density ratio m⋆ ∼ 1.1. These trajectory changes are also associated
with amplitude oscillations of the velocity, which becomes smaller with a smaller sphere radius. With melting spheres
in a stratified layer, we observe the expected velocity decrease with depth for all radii due to the buoyancy decrease:
estimate based on the Newtonian velocity given below (see (11)) indeed leads to a relative decrease of 14% in velocity
from the top to the bottom of the stratification. Note however that here, we do not see any rapid change around
neither the top nor the bottom interface. All those unexpected dynamics would deserve a more detailed study with
a dedicated set-up; here, we will simply focus on the effect of melting on the mean falling velocity.

IV.2. Drag coefficient of the plastic and reactive spheres

At large Reynolds number, the sedimenting velocity of a buoyant, solid sphere in a homogeneous fluid writes [53]

U =

√

8ga∆ρ

3ρCH
d

, (11)

where the drag coefficient CH
d scales as [52]

CH
d =

24

Re
+ (1.8Re−0.313) +

0.42

1 + 42500Re−1.16
. (12)

This parametrization is valid for Reynolds number Re up to 3× 105 with an error of about 5%.
Here, we define the experimental instantaneous drag coefficient by

Cm
d (z) =

8ga(ρm − ρ(z))

3ρ(z)U(z)2
(13)

where U(z) =
√

u2
z + 2u2

x is the measured velocity of the sphere as a function of its vertical position. a is the initial
radius of the sphere which is considered constant even for the reactive sphere knowing that the melting rate is small
(see Sec. III.2 and further discussion in Fig. 10 below). ρ(z) is the density profile in the stratified layer (Fig. 3). As
for our melting model (see Sec. III.2), we also calculate the Reynolds number Re using the kinematic viscosity of
the bulk fluid with T = 25◦C and the salt concentration of the ambient fluid; but we acknowledge that the reactive
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FIG. 8. Evolution of the velocity during the fall of the plastic spheres for 2 different radii (14.3 (a,b) and 3.2 mm (c,d)
respectively) in a homogeneous fluid (a,c) and in a linear stratified layer with N = 0.164 Hz (b,d). The left column shows the
horizontal and vertical position of each sphere, together with the norm of the velocity U(z) =

√
u2
z + 2u2

x (uz and ux are the
vertical velocity and the horizontal velocity respectively) as a color scale. Note that in (b,d) the stratification starts just above
the top of the figure and ends at the bottom of the figure, i.e. at z = 25 cm. The middle column represents the evolution of
the norm of the velocity U(z) for each sphere. The lines are colorized when the spheres are in the stratified layer, starting from
t = 0 at the top interface. The right column shows the distribution of the norm of the velocity U(z) of all spheres through the
fall. The Reynolds number Re and the Froude number Fr are calculated with the median of the velocity distribution.

spheres release cold and salty fluid which has a viscosity about three times larger. Our Reynolds number should
thus be considered as an upper bound (see further discussion in Fig. 10 below). We have calculated the value of
the drag coefficient Cm

d , Reynolds number Re, and Froude number Fr for all z positions in all experiments with
the corresponding values of U(z) and ρ(z). We have then defined for each configuration the median values and the
standard deviations. The range of explored median Froude and Reynolds numbers is shown in Fig. 1.

To test the significance of our choices regarding the sphere radius and the fluid viscosity, we have also calculated
the drag coefficient with different hypotheses. First, we compare three different models of radius evolution: constant,
model-based, and measure-based (with the limitations already described in section III.2), shown respectively as green,
blue, and red in Fig. 10. A constant radius slightly overestimates the value of the drag coefficient and Reynolds number
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FIG. 9. Same as Fig. 8 for the reactive spheres (14 (a,b), 7.9 (c) and 5 mm (d) respectively) in the large tank with a homogeneous
fluid (a,c) and with a linear stratification of N = 0.164 Hz (b,d). Note that (c) is for a different radius than (d).

compared to the model-based and measure-based values. Then, considering the upper bound of fluid viscosity, i.e. the
viscosity of the released fluid at the interface with T = 0◦C and c = 25 wt% (maroon dots in Fig. 10), the Reynolds
number is about three times smaller for the same drag coefficient. In all cases, however, a strong signature of melting
on the drag coefficient is clearly observed compared to the non-reactive case in a homogeneous layer (Fig. 11a) or in
a stratified layer (Fig. 11b).

Fig. 11a shows the median drag coefficient Cm
d as a function of the Reynolds number Re for all experiments without

stratification. For Re < 4000, the drag coefficient of plastic spheres is in very good agreement with the scaling law of
Clift et al. [52] for both tanks, hence confirming the absence of significant wall effect. For larger Re, wall effects seem
more important for the smaller tank, where measurements deviate from the theoretical model. However, even the
largest spheres have a radius of at least 20 times smaller than the tank width, and those effects remain limited. In all
cases, the observed change in the drag coefficient due to the melting of reactive spheres is significantly larger, with a
Cm

d at least two times larger than the one of non-reactive spheres for the same Re (full blue squares in Fig. 11a).

Fig. 11b additionally shows the drag coefficient for the experiments with the reactive and non-reactive spheres in
a stratified layer. For all spheres, the drag coefficient is enhanced by stratification for all Reynolds numbers (see
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FIG. 10. Drag coefficient Cm
d as a function the Reynolds number Re for three 5 mm-radius reactive spheres falling in a stratified

layer (N = 0.164 Hz), considering various hypotheses for the sphere radius and the fluid viscosity. The solid line corresponds
to Eq. (12) and the gray area denotes the +6% and -4% estimated uncertainty on this equation [52]. Small dot markers denote
instantaneous values during the fall of each sphere, while the large squares show corresponding median values and standard
deviations.

Fig. 12). However, the effect of the stratification remains small because in our experiments the stratification is weak
compared to the sphere velocity (i.e. high Froude number). Again, the effect of melting on the drag coefficient is
predominant.
The drag coefficient can also be altered by the shape and roughness of a falling sphere, and we acknowledge that

our reactive spheres do not have a perfectly spherical shape due to their molding process. In Newton’s regime (large
Reynolds number), oblate spheroids (b/a < 1 with a and b the major and minor axes respectively) have a larger drag
coefficient than the one for the sphere. However, our spheres have a small flatness (b/a ∼ 0.9) which implies a very
small drag coefficient increase [52, 54]. Moreover, the roughness of a sphere only modifies the drag coefficient for Re
over 104. One can notice that the density of the melt released at the surface of the reactive spheres is only slightly
larger (10%) than the density of the reactive sphere. Then, the added drag cannot be due to the added or lost mass
during the melting because the total mass is almost conserved. In other words, the sphere and the fluid released at
its surface fall together and the melting does not change the total buoyancy. Therefore, following Zhang et al., [2], we
relate the strong drag enhancement of the reactive sphere to an increase of the vorticity induced by the released melt
in the wake, where we indeed observe strong mixing. The release of the melt at the sphere’s surface induces a major
density disturbance, which strongly interacts with the pressure field generated by the fall. Therefore, we expect the
melt to drastically change the flow in the wake by inducing baroclinic torques that modify the vorticity field. This
suggested mechanism now requires specific theoretical and numerical investigation, following the approach of [2].
In the literature, the added drag coefficient due to the stratification Cm

d /CH
d − 1 is often described as a function of

the Richardson number [15, 16, 21, 22], where the Richardson number is defined following Yick et al. [15] as

Ri =
Re

Fr2
=

2a3N2

νU
, (14)

comparing the buoyancy forces to the viscous shear forces. Our results are shown in Fig. 13, together with the scaling
laws found by Zhang et al. [2] and some previous numerical results [15, 16, 21, 22]. Note that the numerical results of
Yick et al. [15] (stars and crosses in Fig. 13) explore the same range of Richardson number but have a much smaller
Froude number. For both reactive and plastic spheres, the added drag increases with the Richardson number, the
added drag being about two times larger for the reactive spheres than for the plastic ones at a given Richardson
number. Using a balance between the Archimedes, inertial and vorticity forces, Zhang et al. [2] predicted a scaling
law for the added drag Cm

d /CH
d − 1 as Ri0.5(2.7Re−0.5+0.08) for high Schmidt and Reynolds numbers, but moderate

Froude number. Whereas this scaling is in a quite good agreement with the numerical results for Re = 50, 100, 200
of [16, 21, 22] and the Argo float value [3], it is not able to quantitatively explain our results for either plastic or
reactive spheres. Our experimental results on the non-reactive plastic spheres might still scale with Ri0.5, but a new
study following the formalism of Zhang et al. [2] for high Froude numbers is necessary to infer the relevant prefactor.
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Besides, the added drag for the reactive sphere seems to show a shallower Richardson number dependence, even if
this will require additional experiments for confirmation.

In conclusion, despite exploring a limited range in sphere radius and stratification, and despite intrinsic experimental
limitations, our experiments exhibit a significative drag enhancement due to the melting and a specific dependence
on stratification that will deserve additional studies, especially 3D numerical simulations following the recent results
of Zhang et al. [2].
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V. INTERNAL WAVES AFTER THE FALL OF A SPHERE

V.1. Linear theory for plane waves with viscosity

The dispersion relation of a linear internal wave in a viscous fluid writes

( ω

N

)2

− iν
k2

N

( ω

N

)

−
k2x + k2y

k2
= 0, (15)

where k is the wave-number with k2 = k2x + k2y + k2z , and ω the wave frequency. Waves with frequency ω > N are
evanescent. For lower frequency waves, the roots of this second order polynomial can be split in a real part and an
imaginary part as

ωr = ±N

√

k2x + k2y
k2

−
ν2k4

4N2
and ωi =

νk2

2
. (16)

The real part gives the oscillation frequency including the viscous shift; however, the viscous contribution is small when
considering Brünt-Väisälä frequencies and wavelengths relevant for our experiments. The imaginary part corresponds
to the wave damping for the given wavenumber.
The fall of each sphere creates turbulence in the wake, and emits a series of propagating waves of various frequencies

and wave numbers. Hence the velocity field writes

~u =
∑

~u0e
i(~k.~x−ωrt)−ωit (17)

where ~u0 = u0~ez + v0~ex + w0~ey. In our experiments, the PIV measurements allow us to measure u~ez and v~ex, and
assuming isotropy in the horizontal plane, we estimate that v~ex ≃ w~ey. Then, we can write the kinetic energy in the
whole tank as

Ek =
1

2

∫

V

ρ(z)
(

|u|2 + 2|v|2
)

dV. (18)

Focusing on the least damped component with the smallest wave-number k (see discussion below), the long time
evolution of our PIV measurements then gives a relevant estimate of its attenuation rate

ωEk

I = νk2. (19)

Looking at the initial value Ek(t = 0) indicates the amount of energy deposited in the wave field.
After multiple reflections on the domain boundaries, waves might form standing modes, whose velocity is discretized

to account for the boundary conditions, with kx = m π
L , ky = l πL , kz = j π

H , with L and H the width and the height of
the tank and m, l, j integers. Assuming isotropy in the horizontal direction means m = l.

V.2. Results

Here we analyze the experiments carried in the small tank with non-reactive and reactive spheres and three dif-
ferent Brünt-Väisälä frequencies N = 0.094 Hz, 0.136 Hz, and 0.196 Hz (see Fig. 3a). We perform long-term PIV
measurements, i.e. over durations between 120 and 180 second after the launch of a sphere, using the same set of
PIV parameters in all experiments (that are box size, overlap, and time step). Between 2 and 4 launches are done for
each of the three sizes of reactive and plastic spheres.
In Fig. 14, we show the typical time evolution of the kinetic energy in the stably stratified layer for a plastic and

a reactive sphere fall. The shown behavior is generic to all performed experiments. The energy drastically increases
once the sphere is released in the tank and during its fast fall. Due to the large velocity of the fluid during these early
times compared to the frame rate of our camera (50 FPS), the first ∼10 seconds of measurements should not be used
quantitatively. However, the difference between the (blue) total energy and the (black) filtered energy over the wave
propagating frequency domain shows that (i) at first, the falling of the sphere generates motion in all frequencies,
presumably due to the turbulent wake, and (ii) after 20 s typically, all the energy is in the internal waves only. The
kinetic energy then decreases close to exponentially due to the viscous dissipation of internal waves, while visibly
oscillating at a frequency close to 2N .
To further analyze this time dependency, Fig. 15 shows the frequency spectrum of the vertical velocity field for

all the experiments. A marked peak is present at the Brünt-Väisälä frequency for all cases, with a strong cut-off for
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FIG. 14. Evolution of the kinetic energy in the stably stratified layer with N = 0.196 Hz when (a) a plastic sphere and (b)
a reactive sphere of 14 mm-radius fall. The blue line is smoothed with a moving average to remove all high-frequency noise
(> 2Hz). The black line is filtered with a low-pass filter with a cut-off frequency fc = 0.25 Hz to keep only the signature of
propagating internal waves. An exponential fit is computed for the signal between 20 s and 130 s. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this paper.)
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FIG. 15. Spatial mean of the frequency spectrum of the vertical velocity field for three different stratifications with Brünt-
Väisälä frequency (vertical bold black line) N = 0.094 Hz, 0.136 Hz, and 0.196 Hz. Dashed and solid lines correspond to the
reactive and plastic spheres respectively. Blue, black and red denote three different radius 14, 7.9 and 5 mm for the reactive
spheres and 14.2, 7.9, 4.8 mm for the plastic spheres.

larger frequencies, corresponding to evanescent waves. This is further illustrated in Fig. 16, showing an example of the
spectrogram for the vertical velocity field, spatially averaged over the whole domain. The fall of the sphere initially
excites all frequencies. But rapidly, a cut-off appears above the Brünt-Väisälä frequency N , while frequencies smaller
than N are more progressively attenuated, the least damped component being at N .

For all our experiments, we calculate the initial amplitude and the attenuation rate of the least damped wave
component of the energy signal by linearly fitting the log of the kinetic energy-filtered with a low-pass filter just above
N (see e.g. the black line in Fig. 14). Fig. 17 shows, as a function of the radius, the attenuation ωEk

I (top), the
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FIG. 16. Spatially averaged spectrogram of the vertical velocity in the stably stratified layer with N = 0.196 Hz (black line)
during and after the fall of a 14 mm-radius reactive sphere. Spectrum energy is an arbitrary log-scale. The vertical red line
denotes the launch time of the sphere.

initial amplitude A0 = 2Ek(t = 0)/ρ (middle), and the ratio between the initial wave kinetic energy Ek(t = 0) and
the initial potential energy of the sphere at the top of the tank Ep = 4π

3 a3∆ρgH . The error bars denote the spread
between different launches of similar spheres in each stratification. Fig. 17 does not exhibit any clear dependency on
the Brünt-Väisälä frequency nor the sphere composition. The attenuation rate ωEk

I might slightly decrease with a
radius for the plastic and reactive spheres, but this demands confirmation over a larger range. The initial amplitude
A0 increases with the radius, which seems reasonable since the energy injected into the system, i.e. the initial potential
energy of the sphere, also increases with radius. A scaling law A0 ∝ a3 seems to fit with our observations over the
explored limited range (black line in Fig. 17b): this implies a constant ratio Ek(t = 0)/Ep, as indeed shown in the
bottom figure. The part of potential energy dissipated in propagating waves is thus about 1%: this ratio is quite
similar to the amount of energy radiated from a turbulent mixed layer into a stratified layer [55] and from an impulsive
plume [56]. But it is smaller than the energy dissipated from a buoyant parcel of fluid rising in a stratified layer [28].

Those various experimental observations can be simply explained by noticing that the sphere falling time and the
sphere radius are small compared to the buoyancy period and the tank dimensions, respectively: hence, from the
internal wave point of view, at first order, the sphere fall might be considered as an impulsive excitation in time and
the horizontal direction, and as an essentially uniform excitation in the vertical direction (with additional turbulent
fluctuations). As such, it provides energy in all ω and kx, and mostly in kz = 0. Following the dispersion relation,
kz = 0 means ω = N , and according to wave damping, the least damped component is at the smaller acceptable kx.
Since the sphere falls in the middle of the tank, the axial symmetry of the excitation imposes a minimum wavenumber
kx = 3π/L = 31 m−1. This is indeed confirmed in Fig. 18, showing the spatio-temporal diagrams of the vertical
velocity during the first 30 seconds after a sphere fall. By measuring the wavenumber kx in two windows symmetric
compared to the falling path, kx is about 39 m−1 (Fig. 18a,c), while motions indeed seem independent of z (Fig. 18b).

Regarding dissipation, using those wavelengths with ν ∼ 9 10−7 m2 s−1 gives an attenuation rate ωEk

I = 2.7 10−3 s−1,

which is one order of magnitude smaller than the results of Fig. 17a. Actually, ωEk

I measurements include the
contribution of all waves as well as of the boundary dissipation, while our model only considers the bulk dissipation of
the most long-standing wave. Finally, the actual geometry where the small sphere produces an initially axisymmetric
perturbation that bounces out in a rectangular tank complexifies the oversimplified description provided above. The
main observations are nevertheless in good agreement with our theory, including a single axially symmetric pattern
in the horizontal direction, and the independence of the attenuation rate with the sphere radius.

VI. CONCLUSION

We have experimentally studied the fall of a sphere in a stably stratified layer, expanding previous works by
exploring a regime of larger Reynolds and Froude numbers. We have focused our experiments on the specific behavior
of a reactive (i.e. melting) sphere vs. an inert one. Besides, we have examined the fluid motions in our tank over
several minutes after the rapid fall of a sphere (a few seconds) to investigate the generated internal wave field. As
for previous studies at moderate Reynolds number, we show that the drag coefficient of a falling non-reactive sphere



18

0.005

0.01

0.02

0.05

0.004 0.008 0.012 0.016

10− 3

10− 2

10− 1

100

0.004 0.008 0.012 0.016

0.001

0.01

0.05

0.004 0.008 0.012 0.016

ω
I

(s
−
1
)

A
0

(c
m
2

s−
2
)

Reactive spheres (N = 0.196 Hz)
Plastic

Reactive (N = 0.094 Hz)
Plastic

Plastic (N = 0.136 Hz)

E
k
/
E
p

Radius a (m)

E
k

(a)

(b)

(c)

FIG. 17. The attenuation ωEk
I (a), the initial wave amplitude A0 (b) and the ratio between the initial wave kinetic energy

Ek(t = 0) and the potential energy Ep (c) as a function of the radius of the spheres for three different stratifications with a
Brünt-Väisälä frequency N = 0.094 Hz (red), 0.136 Hz (green), and 0.196 Hz (black). The empty and full diamonds denote the
plastic and reactive spheres, respectively. The error bars denote the standard deviation based on several experiments performed
with the same spheres (between 2 and 4 launches for each size and each stratification). In (b), the solid black line shows an a3

slope. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)

is enhanced due to the stratification and that the added drag might be proportional to Ri0.5. However, the scaling
law for moderate Reynolds and Froude numbers suggested by Zhang et al. [2] was unable to quantitatively predict
our results: this is likely due to the more turbulent wake that induces both 3D motions and supplementary buoyancy
contribution to the drag that are unaccounted for in previous numerical and theoretical studies. The drag coefficient
of melting spheres is strongly enhanced compared to non-reactive spheres. This enhancement is larger than any
estimated shape and roughness effect. Besides, since the density of the released melt is close to the one of the melted
sphere, the added drag cannot be due to an added mass associated with the melting. We think that it is actually due
to the strong mixing in the wake of the sphere induced by melting, expending upon the recent results of [2]. Finally,
for both melting and inert spheres, an internal wave field encompassing about 1% of the initial potential energy of the
sphere is excited in the tank by the sphere fall. Since this fall is seen as an almost impulsive excitation in space and
horizontal direction and an almost uniform excitation in the vertical direction, most of the released energy rapidly
focuses at the Brünt-Väisälä frequency and at the largest admissible horizontal wavelength, where it is dissipated very
slowly.
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FIG. 18. (a) and (b) Spatiotemporal diagram of the vertical velocity induced by a plastic sphere (14.3 mm radius) falling in
a stably stratified layer with N = 0.196 Hz as a function of x at mid-tank depth (a) and as a function of z in the middle of
the tank (b). The vertical velocity is filtered with a pass-band filter around N . (c) Power density spectrum for kx for the two
radially symmetric windows highlighted in (a).

We acknowledge that our study is limited by several factors, including the small explored range in terms of buoyancy
frequency and sphere radius, as well as the slow melting rate of our sphere during their fall. Additional studies are
necessary to investigate exhaustively the effect of melting on the sphere dynamics, expending upon the first conclusions
drawn here. They should, in particular, focus on the motion in the wake behind the melting sphere. This is definitely
an experimental challenge. Direct numerical simulations of a reactive sphere falling in a stratified layer, even for
lower Reynolds number, would also be extremely useful to unravel the contribution of the release fluid at the melting
surface and the modification of the wake.
To finish with, let us simply mention the possible application of our results to planetary core dynamics. For

small planets like Mercury and Ganymede, the top-down crystallization of their liquid iron core [5, 57] implies the
formation of crystals at the top of the core and their sinking in a hotter region, hence partial or complete melting.
The crystal size-range is poorly constrained but could vary from micrometer-scale [57] to kilometer-scale [58, 59]. A
larger drag coefficient would imply a longer residence time of these falling crystals and locally modify the equilibrium
state [60]. Even more interesting, the top of those planetary cores is often associated with a thermal or chemical
stratification which prevents large-scale convective motions [57, 61], hence questioning the origin of their magnetic
field. The sinking of large crystals could redistribute a small amount of their potential energy into kinetic energy via
long-standing internal waves, which would help to provide the necessary kinetic energy to drive a long-lived dynamo.
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TABLE II. Coefficient for Eq. (A1)

b1 999.83952
b2 4.58004182743 10−2

b3 7.7259007462164
b4 −81656026808 10−3

b5 −2.89974283744 10−2

b6 −2.80856566638 10−2

b7 6.39597015 10−5

b8 3.870476539 10−4

b9 1.267276467 10−4

b10 3.5362104886 10−3

b11 −4.013195 10−7

b12 −2.1143606 10−6

b13 −5.2677931 10−6

b14 1.58535023 10−5

b15 −1.305467659 10−4

b16 1.1142 10−9

b17 5.0965 10−9

b18 1.96269 10−8

b19 −1.0807 10−8

b20 −2.899707 10−7

b21 1.9280990 10−6

Appendix A: Viscosity and density of an aqueous sodium chloride solution

Following the density table of [62] for a salty water and the 5th-order polynomial standard equation for the pure
water density [43–45], the density of the aqueous sodium chloride solution as a function of temperature and composition
at ambient pressure (1 bar) is given with a 5th-order polynomial fit

ρ(c, T ) = b1 + b2T + b3c+ b4T
2 + b5Tc+ b6c

2 + b7T
3

+ b8T
2c+ b9Tc

2 + b10c
3 + b11T

4 + b12T
3c

+ b13T
2c2 + b14Tc

3 + b15c
4 + b16T

5 + b17T
4c

+ b18T
3c2 + b19T

2c3 + b20Tc
4 + b21c

5 (A1)

with T in Celsius and c in wt%. All coefficients are given in table II.
The dynamic viscosity of the aqueous sodium chloride solution as a function of temperature and composition at

ambient pressure (1 bar) can be approximated by [51]

µ(c, T ) = c1 + c2e
(a1T ) + c3e

(a2m)

+ c4e
(a3(0.01T+m)) + c5e

(a4(0.01T−m)) (A2)

with m = c/100
(1−c/100)∗MNaCl

the molality of the solution. MNaCl = 58.44 gmol−1 is the molar mass of sodium chloride

and c (wt%) is the concentration in salt in the solution. The constants are defined as c1 = 0.1256735, c2 = 1.265347,
c3 = −1.105369, c4 = 0.2044679, c5 = 1.308779, a1 = −0.0429718, a2 = 0.3710073, a3 = 0.420889, a4 = −0.3259828
[51].
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[62] A. I. Simion, C.-G. Grigoraş, A. Roşu, and L. Gavrilă, Mathematical modelling of density and viscosity of nacl aqueous

solutions, Journal of Agroalimentary Processes and Technologies 21, 41 (2015).

https://doi.org/10.6100/IR50645
https://doi.org/10.1016/s0012-821x(03)00297-8
https://doi.org/10.1002/2014JE004781

	Dynamics of a reactive spherical particle falling in a linearly stratified fluid
	Abstract
	I Introduction
	II Method
	III Melting of our reactive spheres
	III.1 Theoretical model
	III.2 Melting of a reactive sphere in a beaker

	IV Dynamics of the plastic and reactive spheres
	IV.1 Falling behavior of the plastic and reactive spheres
	IV.2 Drag coefficient of the plastic and reactive spheres

	V Internal waves after the fall of a sphere
	V.1 Linear theory for plane waves with viscosity
	V.2 Results

	VI Conclusion
	VII Acknowledgment
	A Viscosity and density of an aqueous sodium chloride solution
	 References


