Axonal Na + channels detect and transmit levels of input synchrony in local brain circuits - Aix-Marseille Université Access content directly
Journal Articles Science Advances Year : 2020

Axonal Na + channels detect and transmit levels of input synchrony in local brain circuits

Abstract

Sensory processing requires mechanisms of fast coincidence detection to discriminate synchronous from asynchronous inputs. Spike threshold adaptation enables such a discrimination but is ineffective in transmitting this information to the network. We show here that presynaptic axonal sodium channels read and transmit precise levels of input synchrony to the postsynaptic cell by modulating the presynaptic action potential (AP) amplitude. As a consequence, synaptic transmission is facilitated at cortical synapses when the presynaptic spike is produced by synchronous inputs. Using dual soma-axon recordings, imaging, and modeling, we show that this facilitation results from enhanced AP amplitude in the axon due to minimized inactivation of axonal sodium channels. Quantifying local circuit activity and using network modeling, we found that spikes induced by synchronous inputs produced a larger effect on network activity than spikes induced by asynchronous inputs. Therefore, this input synchrony-dependent facilitation may constitute a powerful mechanism, regulating synaptic transmission at proximal synapses.
Fichier principal
Vignette du fichier
Zbili-Debanne-Sci-Adv-2020.pdf (2.21 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-03044417 , version 1 (07-12-2020)

Licence

Attribution - NonCommercial

Identifiers

Cite

Mickaël Zbili, Sylvain Rama, Pierre Yger, Yanis Inglebert, Norah Boumedine-Guignon, et al.. Axonal Na + channels detect and transmit levels of input synchrony in local brain circuits. Science Advances , 2020, 6 (19), pp.eaay4313. ⟨10.1126/sciadv.aay4313⟩. ⟨hal-03044417⟩
59 View
50 Download

Altmetric

Share

Gmail Facebook X LinkedIn More