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Abstract

We study infinitely repeated games in which players are limited to subsets of

their action space at each stage – a generalization of asynchronous games. This

framework is broad enough to model many real-life repeated scenarios with re-

strictions, such as portfolio management, learning by doing and training. We

present conditions under which rigidity in the choice of actions benefits all play-

ers in terms of worst-case equilibrium payoff and worst-case payoff. To provide

structure, we exemplify our result in a model of a two-player repeated game,

where we derive a formula for the worst-case payoff. Moreover, we show that in

zero-sum games, lack of knowledge about the timing of the revision can compen-

sate for inability to change the action.
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1 Introduction

This paper considers repeated interactions in which players do not necessarily act

simultaneously. This is often the case, as different agents have different decision-

making schedules that seldom coincide, and their capacity to change their actions

often differs. The asynchronous nature of the play can lead to cooperation, similar

to the collusion occurring in the price-leadership mechanism [MacLeod, 1985], the

commitment involved in the central bank setting the interest rate [Libich and Stehĺık,

2010, 2011], and other economic examples presented in the seminal works of Maskin

and Tirole [1988] and Lagunoff and Matsui [1997].

In all of these examples, whenever a player cannot revise his action, the action from

the previous stage is replayed. However, there are other ways in which actions can be

binding; for example, when a revision opportunity is given at every stage, but the new

action has to be “close” to the old one (in some metric). To examine such constraints,

this paper introduces a generalization of repeated games, namely Sub-Actions Repeated

(SAR) Games, in which at each stage the players must choose an action from a subset

of their mixed action space, stochastically determined by the history of the game.

This generalizes the (simultaneous-move) repeated game as well as different models of

asynchronous games.

SAR games take place naturally in many real-life situations. One example is the

price rigidity caused by publishing prices in an advertisement or a catalog. For some

time after the price is published, it is illegal for the vendor to raise it (false advertise-

ment), or at least, costly in terms of reputation. In this situation, the set of available

new prices includes only prices lower than the published price.

Another example is portfolio management. In some cases, changing the entire port-

folio at one time is cumbersome and prohibitive costly, whereas small deviations from

a certain position are feasible and easily implementable. Thus, portfolio management

can be modeled as a SAR game where the change in position at each stage is bounded

by some feasibility constraint.

A further interesting application is learning. One possible model of “learning by

doing” is a model in which repeating a certain action (playing the guitar) makes you

proficient but also prevents you from changing career in the future and choosing other

actions (like starting a career as an astrophysicist). This can also relate to training

models, in which after each stage your skill increases and the subset of available actions

that you can take expands.
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Finally, SAR games can model interaction between players that affects their rivals’

possible actions. For example, Lovo and Tomala [2015] discuss a sail-boat race in which

boats can block each other and by doing so prevent the other boats from performing

a certain action at the next stage. Such situations can be modeled using a SAR game

since the available subset of actions of each player depends on the history and can be

affected by the past actions of other players.

We use two solution concepts to evaluate different SAR games (usually to compare

them to the simultaneous-move repeated game): the worst-case rational payoff, namely

the rational minimax value, and the worst-case equilibrium payoff. Our rational min-

imax value is closely related to the effective minimax value, presented by Wen [1994]

and expanded in Wen [2002], Takahashi and Wen [2003] and Yoon [2004]. The effec-

tive minimax value captures the idea that players with equivalent utility functions will

coordinate their actions rather than punish each other (and themselves in the process).

Similarly, the rational effective minimax value captures the idea that players will not

punish each other too much if it is detrimental to their own payoff.1 The lower bound

we set is the standard minimax value – a player will not punish another player if it

causes his own payoff to drop below his standard minimax value. Such behavior can

be considered as irrational.

We use the rational minimax value because it is a better figure of merit than the

standard minimax value, offering a tighter lower bound on equilibrium payoffs. For

example, in simultaneous-move repeated games, the rational minimax value is the

worst-case equilibrium payoff and any payoff above it can be supported in equilibrium

(when the discount factor is close to unity). Moreover, playing asynchronously can

have opposite effects on these values, with the standard minimax value decreasing

relative to the simultaneous move game and the rational minimax value rising. Thus,

our chosen figure of merit better represents the worst-case payoff, in equilibrium and

off equilibrium, assuming the other players are rational.

In addition, the rational minimax value is more generally applicable than the effec-

tive minimax value, which is only advantageous when there are players with equivalent

utility functions. This is rarely the case, however; more frequently, players show par-

tial but not full correlation between utility functions. The rational minimax value can

account for this partial correlation, as shown in our paper.

1An extreme version of this idea is the sub-game perfect equilibrium – punishments are only carried

out in a way that ensures the punisher does not lose utility relative to the equilibrium path.
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The general nature of SAR games, and their complexity, leads to several technical

obstacles when using the rational minimax value and the worst-case equilibrium payoff.

First, the Folk Theorem does not hold for SAR games in general, so the worst-case

equilibrium payoff is not the rational minimax value (as in standard repeated games).

This is because the SAR game is not necessarily periodic, so punishing strategies may

disappear and the rational minimax value from a certain time t onward can be different

from the rational minimax value from time t � 0. For example, if the game is absorbed

into some higher payoff, the rational minimax value may no longer be obtained, nor a

lower equilibrium payoff.

Another obstacle is that SAR games are non-stationary so the rational minimax

value must take into account all the infinite strategies in the game, not only the mixed

actions in the one-shot game. This non-standard approach poses computational prob-

lems but the nature of the game makes it essential. This led Yoon [2001] to define the

lower and upper minimax values, which depend on the order of play when it exists and

is periodic. Despite these challenges, we choose to keep the definition as general as

possible so as to obtain a main result that is widely applicable. The examples (Section

4) are two periodic SAR games where these problems disappear.

Our contribution is threefold. First, we introduce a new term, the rational minimax

value, which provides a tighter lower bound on equilibrium payoff compared to the

standard minimax value. Second, we show how the feasible set of stage games affects

the rational minimax value in the SAR game. This allows us to characterize the stage

games for which a simultaneous-move game is inferior to a SAR game, in terms of

worst-case equilibrium payoff. In such cases, players will prefer the SAR game over

the simultaneous-move repeated game and may try, as far as possible, to limit revision

opportunities. Third, our theorem can be applied to produce comparative statics

between the SAR game and the simultaneous-move game regarding the worst-case

equilibrium payoff, even when the rational minimax value is not computable for all the

players.

To exemplify our main result we consider a two-player game with complete informa-

tion where one plays synchronously (with a revision opportunity at each stage) while

the other plays asynchronously and has revision opportunities only at certain randomly

chosen stages (“strict-revision process”, as in Tsodikovich and Lehrer [2019]). A de-

terministic version of this model was explored by Wen [2002] (see also Takahashi and

Wen [2003]) and largely inspired this paper. These authors showed how the standard
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and the effective minimax values depend on the (constant) number of stages between

two consecutive revisions. We generalize this work and determine how standard and

rational minimax values change when intra-revision timing is stochastic.

We also consider a slightly different model in which the players do not know the

timings of revisions. Similarly to Spiegler [2015], we show that when revision proba-

bility is large enough, the minimax value remains the same, despite the lack of agility

and the inherent disadvantage of the asynchronous player. Thus, lack of information

has a positive effect that compensates for inability to revise actions.

The rest of the paper is organized as follows. Section 2 presents the model, our

extension of repeated games and formal definitions of our figures of merit – the rational

minimax value and the worst-case equilibrium payoff. In section 3 we discuss the main

result and present the conditions required for the rational minimax value to be higher

in the asynchronous game than in the simultaneous-move game. The main result

is applied to two versions of two-player games with different information structures

in Section 4. Conclusions and extensions are presented in Section 5. To improve

readability, all proofs are relegated to the Appendix.

2 The model

Let G � pI, pAiqni�1, puiqni�1q denote a strategic-form game where I � t1, . . . , nu is the

set of players, Ai is the finite set of pure actions for player i and ui :
�n

i�1Ai Ñ R is the

stage game payoff function for player i. A mixed action αi of player i is a distribution

over Ai, i.e. an element of ∆pAiq. The expected stage payoff of player i, given the

action profile α � pα1, . . . , αnq P ∆pA1q � . . . � ∆pAnq is uipαq �
°

aP�n
i�1 Ai

αpaquipaq.
We write �i to denote all players except player i and the (standard) minimax value of

the stage game for player i is

vi � min
α�iP

�

j�i
∆pAjq

max
αiP∆pAiq

uipαi, α�iq. (1)

The standard minimax value is the lower bound on the payoff that player i can be sure

of obtaining when all players try to minimize his payoff in the one-shot game. Finally,

let F be the convex hull of the set of feasible payoff vectors, FIR the set of individually

rational feasible payoffs, i.e. FIR � tpx1, . . . , xnq P F |xi ¥ viu, and vG � pv1, . . . , vnq
the minimax point.
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p1, 0, 0q p0, 1, 0q

p0, 0, 1q

∆pAiq

Aiptq

Figure 1: An illustration of Aiptq, the set of available actions to Player i in stage t.

2.1 Sub-Actions Repeated (SAR) Games

To model asynchronous play, we introduce a generalization of the standard repeated

game model, namely the sub-actions repeated (SAR) game. In this game, the set of

available actions at each stage for each player is a subset of the set of mixed actions.

The SAR game unfolds as follows. The stage game is repeated infinitely many times.

At stage t � 0, each player chooses his respective action from ∆pAiq. In period t ¥ 1,

a non-empty convex and closed subset Aiptq � ∆pAiq is randomly chosen2 for each

player who is restricted to choosing a mixed action from set Aiptq (see Figure 1).

We require the sets to be convex and closed for technical reasons. Closedness is

required because functions over open sets do not necessarily obtain a maximum. If

Aiptq is not closed, all actions may not be optimal (a best response) and the discussion

should be changed to terms of ε-equilibria instead of Nash-equilibria and inf sup instead

of min max. Convexity is required to ensure the existence of an equilibrium, as a pre-

requirement for the relevant fixed-point theorems. If this condition is not met, there

may be no strategy profile in which each action is a best response to the actions of

all the others. Another reason for imposing convexity is that we wish to allow mixed

actions, and a non-convex sub-actions set implies that some randomizations between

mixed actions are precluded.

We do not impose restrictions on the stochastic process that determines the Aiptqs,
nor on what the players observe. This will be further illustrated using specific processes

2A rigorous definition of the probability space is required to well-define the game. The Examples

to follow suggest several simple options. Hereafter we assume that after every history this probability

space is well-defined.
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in the examples below. We assume that each player knows at time t his own Aiptq,
the history he observed, and the definition of the stochastic process (“the rules of the

game”). Hence, based on the rules, he may also be able to deduce A�ipτq for τ ¥ t,

form beliefs about them or be totally ignorant. A SAR game with a common discount

factor δ is denoted by Γ � pG, tAiptqutPNiPI , δq and for simplicity will be referred to as

the repeated game. This formulation is a generalization of many existing models:

1. Simultaneous-move game (Γ0): For each player and every t, Aiptq � ∆pAiq.

2. One-shot game (Γ1): For each player, Aiptq is a singleton containing only the

pure action played at stage t � 0. Note that the one-shot game is an example of

SAR games so the Folk Theorem does not apply to general SAR games.

3. Alternating-moves game [Maskin and Tirole, 1988, Lagunoff and Matsui, 1997]:

A two-player game in which A1p2t � 1q � ∆pA1q, A2p2tq � ∆pA2q for t ¥ 1 and

at any other stage Aiptq is a singleton containing the pure action played at time

t� 1.

4. Asynchronous-moves game with mixed actions [Yoon, 2001, 2004]: At each stage,

a random set of players It is chosen and only they can revise their action:

AiPItptq � ∆pAiq. The rest play the mixed action they played in the previous

stage.

5. Games with a strict-revision process: Some random variable governs the stages

at which a player can revise his action. At this stage, Aiptq � ∆pAiq. In the

rest, Aiptq is a singleton containing the pure action played at the previous stage.

These games are examined in Section 4. Their single-decision maker version was

analyzed in Tsodikovich and Lehrer [2019].

In examples 1-3, players know at each time step the Aiptqs of all the players and

observe the pure actions played by others. Contrastingly, in example 4, players are able

to observe mixed actions. This can accommodate situations where mixed actions do

not represent randomization over pure action, but rather some distribution of resources

(diverse action) as in portfolio management. Two versions of example 5 are presented

in Section 4. In both versions, only pure actions are observed, the discrepancy concerns

the observability of A2ptq (@t, A1ptq � ∆pA1q, and this is common knowledge). In the

first version (Section 4.1), both players observe A2ptq at each stage while in the second

version (Section 4.2), Player 1 learns A2ptq only at time t� 1.
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Interestingly, with some adjustments, our model can also fit games which are not

repeated per se. For example, in revision games [Calcagno et al., 2014, Gensbittel et al.,

2018]3 the payoff is given to the players only once at a certain deadline according to the

action they prepared before it. While awaiting the deadline, the players observe the

prepared actions and randomly receive opportunities to revise their actions according

to some Poisson process (similar to the pre-opening session in the stock exchange).

This can be modeled as a SAR game in which at each time step at most one of the

players receives a revision opportunity, while the rest of the players replay their pure

action from the previous time stage. As t increases, the probability that no-one receives

a revision opportunity increases and converges to 1, to mimic the small probability to

revise an action close to the deadline. Unlike in revision games, here all stages are

payoff relevant, however for patient enough players (δ Ñ 1) the transient stage is

negligible and only the “last” actions are important.

2.2 The worst-case payoffs

Denote by Σi the set of all possible (behavioral) strategies of player i in the repeated

game. Each strategy specifies the action αti P Aiptq of player i after every t-length

history, which includes the (observed) actions of the players and his Aiptq. Given the

strategy profile σ P
n�
i�1

Σi, the expected δ-discounted payoff of player i is uipσq �

p1 � δq
8°
t�0

δtEpuipαt1, ..., αtnqq. For each player i we denote by Σ�i �
�
j�i

Σj the set of

all the strategies of the others and by σ�i an element of this set. Hence, the standard

minimax value of the repeated game for player i is defined according to

vipΓq � min
σ�iPΣ�i

max
σiPΣi

uipσi, σ�iq. (2)

The standard minimax is the worst-case payoff that a player can guarantee when other

players act as adversaries. This differs from the standard minimax value defined in

Eq. (1) since payoffs are maximized and minimized over the entire path of play instead

of just in the one-shot game. The value is the same as when the repeated game is a

simultaneous-move game (vipΓ0q � vipΓ1q � vi), but not the same as in the general

setting of a SAR game.

3See more details in the preceding unpublished papers Kamada and Sugaya [2010], Kamada and

Kandori [2011], and Calcagno and Lovo [2010].
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Player 2

B S

Player 1

B p2, 1q p0, 0q
S p0, 0q p1, 2q
P p0,�1q p0,�1q

Table 1: A modified “Battle of the Sexes” where the rational minimax of player 2 is

strictly greater than his standard minimax.

In the presence of possible partial equivalence of the utility functions, adversary

behavior can harm players and lower their payoff too, sometimes even below their

minimax value. Thus, we define the rational minimax value as the minimum payoff

that a player receives when the strategy profile produces an individually rational payoff

to all players:

vri pΓq � min
σPΣ

tuipσi, σ�iq|ujpσi, σ�iq ¥ vjpΓq for all j P Iu. (3)

When vri pΓq ¡ vipΓq, player i cannot guarantee the rational minimax by himself and

must rely on the rationality of other players to obtain this value.

Example 1. Rational minimax in a simultaneous-move game.

Consider a modified version of the “Battle of the Sexes” game, shown in Table 1.

In this game, the row player has an additional action, P , which is dominated by the

other actions and does not affect his standard minimax value: v1pΓ0q � 2
3
. This action

can serve as a minimizing strategy against the column player, setting v2pΓ0q � �1.

Playing P too often is not individually rational for the row player, as it will lower his

payoff below 2
3
. Thus, whenever the row player receives at least 2

3
, the outcome of

the game lies inside the gray-shaded area in Figure 2, which results in a payoff of at

least vr2pΓ0q � �1
3

for the column player. The column player cannot guarantee a payoff

higher than �1 by himself, but thanks to the rationality of the row player and the

partial equivalence of the payoff functions, he receives at least �1
3
. The payoffs p2

3
,�1

3
q

are in this case a tight lower bound on the equilibrium payoffs when the discount factor

approaches unity. 4
A strategy profile σ is a Nash equilibrium in the game if no player has a profitable

deviation, i.e. for each player i and each strategy σ1i, uipσq ¥ uipσ1i, σ�iq. Let NEpΓq
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1 2

�1

1

2

v2pΓ0q

vr2pΓ0q

v1pΓ0q

Figure 2: The set of feasible payoffs and the rational minimax of player 2 in the

modified “Battle of the Sexes” (Table 1).

be the set of strategy profiles which are Nash Equilibria in the game Γ and for each

player i let vei pΓq be the lowest equilibrium payoff, i.e.

vei pΓq � inf
σPNEpΓq

tuipσqu.

Trivially, the worst-case equilibrium payoff is higher than the rational minimax value,

so vei pΓq ¥ vri pΓq. In the standard simultaneous-move game, they are the same for δ

close enough to 1: vei pΓ0q � vri pΓ0q.

3 The Main Result

When is a SAR game based on a particular stage game preferred by all the players

over the simultaneous-move game, in terms of rational minimax value? We start by

considering a general two-player game. The behavior of the rational minimax value in

the SAR game is determined by examining the feasible set F , and the location of the

standard minimax point vG relative to it. Generally speaking, this point can lie in one

of three areas (A, B, and F ), as shown in Figure 3. Note that although both v1 and v2

are feasible, they may not be feasible simultaneously (in Example 1, the payoff p2
3
,�1q

is not feasible), so the minimax point can in fact lie outside F .

When vG lies within F , the Folk Theorem states that there are equilibria with

payoffs arbitrarily close to the standard minimax values. The standard minimax value
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A

F

B

epxq

FIR for vG P A

FIR for vG P B

Figure 3: Possible locations of the standard minimax point vG in the payoff space.

The location of vG determines the feasible individually rational set and the rational

minimax value of the players.

is therefore also the rational minimax value, and different SAR games will exhibit

different behaviors regarding standard and rational minimax values. Our main result

cannot be applied here and we leave this analysis to future studies.

When the minimax point is “below” the feasible set in region A,4 any payoff that

is individually rational for player 1 will result in a payoff for player 2 that is strictly

larger than his standard minimax. Therefore, the rational minimax of player 1 is equal

to his standard minimax, while for player 2 the former is larger: vr2 ¡ v2. Since the

lower envelope of the feasible set, epxq � minty|px, yq P F u, is an increasing function

of x ¥ v1, any SAR game in which the standard minimax value of player 1 is higher

than v1 will result in a higher than vr2 worst-case rational payoff for player 2 – an

improvement for both players. It is this type of equivalence between utility functions

that this paper addresses: player 2 will prefer SAR games that limit his ability to lower

the payoff of player 1, which increases the minimax value of player 1 and in return, his

own rational minimax value.

When generalizing this idea to the n-player game, we impose a similar requirement

on the SAR game: that the standard minimax rises for all players whose rational

minimax is equal to the standard minimax in the stage game. When there are players

that satisfy vri pΓ0q ¡ vipΓ0q, the minimax point has to be in the region A and the

above effect can occur. These players should play asynchronously, increase the minimax

4In region B, the players’ roles are reversed.
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value of the other players and consequently, increase their own rational minimax value.

This result is consistent with previous papers finding that restricting the actions can

eliminate unwanted equilibria and serve as a commitment tool, such as Lagunoff and

Matsui [1997].

Theorem 1. Let Γ � �G, tAiptqutPNiPI , δ� be a SAR game and let Γ0 be the corresponding

simultaneous-move game. Denote the set of players whose rational minimax in Γ0 is

equal to the standard minimax value in Γ0 by I�.

If vipΓq ¥ vipΓ0q for every i P I� then vri pΓq ¥ vri pΓ0q for all players.

Theorem 1 divides the players into two groups. The first group, I�, are play-

ers whose rational minimax value is equal to the standard minimax value in the

simultaneous-move game. When the payoff is individually rational for them, the other

players will receive a payoff higher than their standard minimax value – at least the

rational minimax value. In any SAR game where the first group receives higher worst-

case payoffs, the rational minimax value of the second group is sure to rise as well. In a

two-player case, the theorem can be applied to the simultaneous-move game whenever

the rational minimax of one of the players is strictly greater than his standard mini-

max. If the latter occurs, any modification of the repeated game that strictly increases

the standard minimax of the other player will also increase the rational minimax of

the first player, making this modified game beneficial to both players.

Verifying the conditions of Theorem 1 is not trivial in the general case, as the

rational minimax value of all players could be complicated to compute. Nonetheless,

the theorem has two prime applications. First, it transforms the question from one

about SAR games to a simpler question about the stage game and the geometry of its

feasible set. Hence, it identifies which stage games are or are not prone to such an effect,

even without focusing on any particular SAR game. Second, when the scope is limited

to particular types of SAR game, the Theorem is translated to case-specific conditions

that may be more applicable and easier to verify. To demonstrate this, we examine in

Section 4 two models of two-player games where only one of the players is asynchronous

in a manner previously studied by Tsodikovich and Lehrer [2019]. Applying Theorem

1, we obtain concrete and simple conditions on the inter-revision timings for which

the asynchronous game is more favorable than the simultaneous-move game (such as

Corollary 1).

Theorem 1 also has direct implications for the worst-case equilibrium payoffs. First,
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it should be noted that the rational minimax value is not the worst-case equilibrium

payoff, even when players are very patient (δ approaches unity). This can easily be

shown from the one-shot game presented in Table 1. Here, vr1pΓ1q � 2
3

and vr2pΓ1q � �1
3
,

where the latter can only be achieved when Player 2 plays B and Player 1 chooses B

with probability 1
3

and P with probability 2
3
. Clearly, this is not a Nash Equilibrium.

In any equilibrium in this one-shot game, the dominated strategy P is not played and

Player 2 therefore receives a positive payoff.

Nevertheless, Theorem 1 can be re-formulated and proven in terms of the worst-

case equilibrium payoff for patient enough players. The idea is that for all the players

in I�, vei pΓ0q � vri pΓ0q � vipΓ0q and for all players in general, vei pΓq ¥ vri pΓq (with

equality for Γ0). Hence, whenever the theorem conditions hold, vri rises such that

vri pΓq ¥ vri pΓ0q � vei pΓ0q for all the players, which implies vei pΓq ¥ vei pΓ0q.
This result strengthens the argument for focusing on the rational minimax value

– it provides a tighter lower bound on the equilibrium payoffs and the worst-case

equilibrium payoff exhibits the same behavior as the rational minimax value.

Alas, as mentioned above, the Folk Theorem does not hold in general SAR games,

so it is possible that vei pΓq ¡ vri pΓq. Actually, since we do not impose any regularity

or structure conditions on the SAR game, it may not be stationary or repeated in

any sense. As in the one-shot game, it is fully possible that after the first stage,

some punishing strategies will no longer be available. This would make it impossible

to enforce cooperation in order to reach a particular payoff (including the rational

minimax value).

Yet, the Folk Theorem does hold in the models presented in Section 4. This is

due to the structure of these particular SAR games, which in the main are stationary

in expectation. In other words, the expected discounted number of stages until the

situation of the first stage is repeated is finite for each player after every history. The

proof in this situation is very similar to that presented in Yoon [2001].

4 Two-Player Games with One-Sided Asynchronic-

ity

We study a two-player game in which player 1 can revise her actions at every stage

while player 2’s revision opportunities depend on some exogenous random variable.

Whenever player 2 cannot revise his action, he is forced to repeat the pure action
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he chose in the previous stage (“strict-revision process”, see Tsodikovich and Lehrer

[2019]). We set two different levels of information for players. In the first model, the

players know the schedule of revisions, while in the second model they only know the

distribution of the timing of the next revision (clearly, player 2 knows that he has a

revision opportunity, but not how long he will subsequently remain inactive; player 1

learns that player 2 had revision opportunities only after choosing her action). This

knowledge gap between the models affects the rational minimax values of both players.

Formally, let G be a two-player stage game, X P ∆pNq a random variable with

finite support,5 and x1, x2, ... iid realizations of X. A repeated game with one-sided

asynchronous play is a SAR game where player 1 can revise actions at any stage

(A1ptq � ∆pA1q) and player 2 can revise only at stages t � x1, x1 � x2, . . .. At other

stages, A2ptq is a singleton containing the pure action played in stage t� 1.

We assume that both players know the distribution of X and consider two models

that differ with respect to information about its realizations. In the complete infor-

mation model, denoted by ΓX , the realizations of X are known to both players at the

outset of the game (equivalently, during each revision they learn the timing of the next

revision). In the unknown realizations model, denoted by Γ̃X , player 1 does not know

the realizations of X and therefore does not know whether a revision will be possible

at each stage. Regardless, based on T , the number of stages since the previous revi-

sion, she can compute the conditional probability of a revision at the current stage,

qpT q � PrpX � T |X ¥ T q, and base her strategy on it. Similarly, whenever a revision

opportunity is granted to Player 2, he does not know the timing of the next revision

opportunity so he cannot plan ahead.

Our models are an extension of an example in Wen [2002], who studied the repeated

“Battle of the Sexes” (Table 1 without “P”) in which player 1 can revise her actions at

every stage while player 2 can revise his only at stages 0, T, 2T, . . . for some constant

known T ¡ 1. In these settings, player 2’s payoff can be lowered to an undiscounted

average of v2 � 2
3T

, while the minimax value of player 1 rises to v1 � 1 regardless of

T . Nevertheless, due to the structure of the feasibility set, the equilibrium payoff of

player 2 cannot be lower than vr2 � 1
2
.

5This is similar to the Finite Period of Inaction in Expectation condition from Yoon [2001, 2004]

and Wen [2002]. This assumption is required for the Folk Theorem to hold in these models. Thus,

ve � vr for all players.
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4.1 One-Sided Asynchronous Games with Complete Informa-

tion

We approach this problem in two steps. In the first step, we assume that the underlying

stage game is a zero-sum game and compute its value. This illustrates how a game with

one-sided asynchronicity can unfold and provides a method of computing the standard

minimax value for each player in non-zero-sum games. The second step is to compare

this calculation to the standard minimax value in the one-shot game and apply the

conditions of Theorem 1.

Although this model takes the edge off the randomization by having all the revision

stages known in advance, we find that the analysis is still valuable. First, the model

is simple enough for the value to be computed directly. Second, it offers a baseline

for comparison with more complex models, such as the model where revisions are

unknown. Moreover, this is the “worst” model in terms of the restricted player in the

zero-sum game, as any unknown information can serve to increase his value.

4.1.1 The Value of the Zero-Sum Repeated Game

Suppose that the underlying stage game is a zero-sum game, where player 1 is the

maximizer. Whenever player 2 has no revision opportunity, player 1 will best respond

to the anticipated pure action. Thus, at the stages where he has a revision opportunity,

player 2 needs to consider not only the stage payoff but also the continuation payoff

until his next revision.6 The result of this reasoning is an algorithm to compute the

optimal strategies and the value of the game, as shown in Proposition 1.

Proposition 1. The game ΓX � pG,X, δq where G is a zero-sum stage game has the

value

VΓX
� p1�δqEpVXq

1�EpδXq , (4)

where Vn is the value of the one-shot zero-sum auxiliary game with the payoff function

unpa1, a2q � upa1, a2q � δ�δn
1�δ max

xPA1

u px, a2q , (5)

and EpVXq �
°
n VnPrpX � nq.

The auxiliary game represents the situation a player faces when a revision oppor-

tunity is given: player 2 chooses an action for his entire period of inactivity and player

6Except for trivial stage games where player 2 can achieve the value in pure actions.
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Player 2

B S

Player 1

B 2 0

S 0 1

P 0 0

Player 2

B S

B 2p1 � δ � δ2q δ � δ2

S 2pδ � δ2q 1 � δ � δ2

P 2pδ � δ2q δ � δ2

Table 2: The payoffs of the row player in the auxiliary one-shot zero-sum games derived

from the game presented in Table 1 for n � 1 (left) and n � 3 (right).

1 only needs to choose an action for this stage. Subsequently, the pure action is fixed

and she can best respond to it. The value in Eq. (4) is larger than the value of the

one-shot game (which is v1) unless player 2 has a pure optimal strategy.

For large realizations of X and sufficiently patient players, the first term in Eq.

(5) is insignificant relative to the second term, which means that the play is in effect

sequential: player 2 chooses first and player 1 responds. Therefore, when X is a “large”

random variable (meaning that EpδXq is very small) the value of the game reaches its

limit – the minimax value of the stage game in pure actions. In addition, for a fixed

X we show in Proposition 3 in the Appendix that the value is continuous in δ when

approaching patience, and its limit is the value of the undiscounted game.

Example 1 (Continued). The minimax values in “Battle of the Sexes” when the real-

izations of X are common knowledge.

Consider the game presented in Table 1 and assume player 2 revises his actions

according to the random variable

X �
$&
%1 w.p. 1

2
,

3 w.p. 1
2
.

(6)

Again, the row player can play “P” in every stage, setting v2pXq � �1. To compute the

standard minimax value of the row player, we consider only her payoffs and, according

to Proposition 1, compute the value of two one-shot auxiliary games presented in Table

2. For n � 1 this is the regular one-shot game with V1 � 2
3
. For n � 3 and for a large

enough discount factor (δ ¡
?

5�1
2

) the optimal strategies are rS, Ss and the value is

V3 � 1 � δ � δ2. Plugging these numbers into Eq. (4) leads to the standard minimax
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value of the row player in the repeated zero-sum game:

v1pXq � p1 � δq
5
3
�δ�δ2

2�δ�δ3 . (7)

For patient enough players (δ Ñ 1), the standard minimax value is v1pXq � 11
12

, which

is also the result in the undiscounted case (see Proposition 3 in the Appendix): when

X � 1 the payoff is 2
3

during one stage and when X � 3 the payoff per stage is 1 and

is given during 3 stages. The total payoff in these 4 stages is 3 � 2
3

and the expected

payoff per stage is
3�2

3
4

� 11
12

.

4

4.1.2 The Rational Minimax Value of the Non-Zero-Sum Game

Eq. (4) is the value of the zero-sum game which can be used to determine the standard

minimax value. We showed that unless player 2 has a pure minimax strategy against

player 1, her minimax value will increase. The last feature required to apply Theorem

1 is that in the one-shot game, the rational minimax value of player 2 must be larger

than his standard minimax value. This happens only if the minimax point in the stage

game lies in region “A”, shown in Figure 3. These conditions combined define the class

of stage games where one-sided asynchronous play is better for both players than the

simultaneous-move repeated game in terms of rational minimax values.

Corollary 1. If G is a two-player stage game such that

1. Player 2 has no pure minimaxing strategy against player 1; and

2. v2   epv1q � minty|pv1, yq P F u (i.e., pv1, v2q P A),

then for every random variable X P ∆pNq and every discount factor δ P p0, 1q, the

rational minimax value for both players in ΓX is larger than the rational minimax

value in the simultaneous-move game.

The proof is omitted as it is a direct result of Theorem 1, Proposition 1 and the

discussion above. Note that the strong inequality in the second condition imposes a

strong inequality in the result, despite the fact that in Theorem 1 the inequality is

weak. Instead, we show how this corollary affects the “Battle of the Sexes” example

above.
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Example 1 (Continued). The rational minimax values in “Battle of the Sexes”.

Both conditions of Corollary 1 are satisfied for the game shown in Table 1. Thus,

for any X, the rational minimax value of both players in ΓX is larger than the rational

minimax value in Γ0. For example, when considering X presented in Eq. (6) we showed

that for patient enough players vr1pΓXq � 11
12

, which yields vr2pΓXq � � 1
12
¡ vr2pΓ0q. 4

Note that this result does not hold in the symmetric version of the “Battle of the

Sexes”, where action P is unavailable since the minimax point lies within F . This

statement holds for all symmetric games – if the game is symmetric, the standard

minimax value for all players is equal and vG must lie within F . Thus, the rational

minimax is also the standard minimax and the conditions of Corollary 1 (and Theorem

1 in the general case) never hold.

Nevertheless, this model enables us to directly study the effect of X on the rational

minimax payoff. Suppose that the game is the symmetric “Battle of the Sexes”, X

is the random variable that is either 1 w.p. 1 � p or 2 w.p. p, and for simplicity we

consider the undiscounted case (δ Ñ 1). In this case, the standard minimax values are

v1 � 2�4p
3�3p

and v2 � 1
2�p . For 0 ¤ p ¤ 0.5, the minimax point is an interior point of F

and the standard minimax value is both the rational minimax value and the tight lower

bound on the equilibrium payoffs. As p increases further, the minimax point leaves

F and moves diagonally right and down (see Figure 4). In this region, the standard

minimax value of player 1 is also his rational minimax value, but this is not true for

player 2. His rational minimax value is vr2 � epv1q � v1
2

, the corresponding value of v1

on the lower envelope of F , and it is now increasing with p. Eventually, when p � 1,

v1 � 1, v2 � 1
3

and vr2 � 1
2

as was calculated by Wen [2002] (see Figure 5).

4.2 One-Sided Asynchronous Games with Partial Information

We now consider the second model, where the realizations of X are unknown and only

the distribution of X is common knowledge. We assume that revision opportunities

are observable after the actions are chosen and, as before, start by studying the value

when the stage game is a zero-sum game. Unlike Section 4.1.1, there is no simple

formula for the new value of the game. Moreover, it is not clear whether the value

changes, even if the optimal strategy of player 2 in the zero-sum stage game is mixed.

Consider some stage t � 0 and suppose that the pure action a was played at past
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1 2

1

2

Figure 4: The movement of the minimax point for the symmetric “Battle of the Sexes”

game, as the probability of revision every turn decreases for the column player. For a

certain probability (p � 0.5), the minimax point leaves F , and the rational effective

minimax starts to rise for both players along the lower envelope of F .

0.5 1

0.5

1
v1

v2

vr2

vG P F vG R F p

Figure 5: The standard and rational minimax value in the symmetric “Battle of the

Sexes”. When the minimax point leaves F , the rational minimax value of Player 2 rises

(solid) due to the nature of the game, while the standard minimax value continues to

fall (dashed).
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T � 1 stages by player 2. Action a will be played at this stage either if player 2 has

no revision opportunity (with probability 1� qpT q) or has one and decides to replay it

(with some probability). Thus, this stage is equivalent to a stage game where player

2 can choose any action in ∆pA2q that satisfies Prpaq ¥ 1 � qpT q. If there exists an

optimal strategy satisfying this condition, player 2 can secure the value of the one-shot

game for stage t. Otherwise, he must choose a mixed action from a set that does not

contain any optimal action, which means getting a lower payoff for this stage and, as

a result, for the entire repeated game.

The existence of a maximin strategy that chooses a with probability higher than

1 � qpT q for any T is not enough to secure the value at other stages. The maximin

strategy may have a non-zero probability of choosing an action that is never played in

an optimal strategy with probability higher than 1 � qpT q for some T . In this case,

there is some positive probability that this action will be chosen and that, at one of

the subsequent stages, player 2 will be forced to play non-optimally. To guarantee the

value at each stage, it is essential that every action chosen under the optimal strategy

can be played under some optimal strategy with probability higher than 1 � qpT q
for all possible T s. Therefore, the maximin strategies should choose this action with

probability higher than

pX � sup
T¤maxpsupppXqq

p1 � qpT qq . (8)

The next definition formally defines the set of pure actions that can be used in this

manner.

Definition 1. A non-empty set of actions, Bi � Ai, is said to be a p-min optimal

set (for player i) in the one-shot zero-sum game G if for every a P Bi there exists an

optimal strategy α P ∆pBiq that satisfies αpaq ¥ p.

It follows from the above that the existence of a pX-min optimal set for player 2 is

sufficient to achieve the value of the one-shot game in the repeated game. The next

proposition formalizes this discussion and proves that this is also a necessary condition.

Otherwise, player 2 will receive less in the repeated game than in the value of the stage

game.

Proposition 2. Let G be a zero-sum two-player stage game, X P ∆pNq and Γ̃X the

corresponding repeated game where the realizations of X are unknown. The value of the

repeated game, VΓ̃X
is equal to the value of the one-shot stage game, vpΓ1q, iff player

2 has a pX-min optimal set, where pX is defined in Eq. (8). Otherwise, VΓ̃X
¡ VΓ1.
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Finally, consider a repeated game Γ̃X where G is a non-zero-sum stage game. Ac-

cording to Proposition 2, the standard minimax value of player 1 can remain the same

as in the one-shot game whenever player 2 has a pX-min optimal set against player

1, despite the latter’s advantage. In this case, Theorem 1 cannot be applied and the

rational minimax value of player 2 could also remain the same. The lack of information

about the realizations of X benefits player 2 when the underlying game is a zero-sum

game but prevents him from increasing the worst-case rational payoff otherwise.

Example 2. “Battle of the Sexes” with unknown realizations of X.

We return to Example 1, this time assuming that the realizations of X are unknown.

For the standard minimax value of the row player to rise, it is necessary and sufficient

to show that in the zero-sum game shown in Table 2, the column player has no pX-min

action set. This is true, for example, for the X defined in Eq. (6) since qp2q � 0.

At every stage where the column player has no revision opportunity, the row player

knows that X � 3 and the revision will take place only at the next stage. She will best

respond to the anticipated pure action and the value of the game increases.

On the other hand, for X � Geomp2
3
q and for every T P N, the probability of

maintaining the previous action is at least 1 � qpT q � 1
3
, thus pX � 1

3
. The optimal

strategy in the stage game is
�

1
3
pBq, 2

3
pSq� thus tB, Su is 1

3
-min action set and player

2 can obtain the value by using the following strategy: at every revision opportunity,

change actions with probability 0.5. Neither the standard minimax value of the row

player nor the rational minimax value of both players changes for this X. 4
The last example shows that the important property of X in this model is the con-

ditional probabilities denoted by qpT q and not the actual probabilities or the support.

In the example, Player 2 prefers a revision process with infinite support that reveals

no information over a random variable with finite and small support whose conditional

probabilities reveal information about the realizations.

5 Concluding Remarks

This paper addresses a dual objective: to introduce a generalization of repeated games

and define the rational minimax value. Our new model for repeated games, SAR games,

covers more general frameworks that encompass asynchronicity and other obstacles to

revising actions. Here, we examined its impact on the worst-case rational payoff. We

leave it to future research to explore other potential uses.
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Our new rational minimax value was used to achieve better bounding of the equilib-

rium payoffs. This value deserves greater attention as it holds interesting information

on payoffs, on strategies in simultaneous-move games (and SAR games in general) and

on whether cooperation between players is possible. This too is left for the future.
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A Proofs of Theorems

Theorem 1. Let Γ � �G, tAiptqutPNiPI , δ� be a SAR game and let Γ0 be the corresponding

simultaneous-move game. Denote the set of players whose rational minimax in Γ0 is

equal to the standard minimax value in Γ0 by I�.

If vipΓq ¥ vipΓ0q for every i P I� then vri pΓq ¥ vri pΓ0q for all players.

Proof of Theorem 1. The theorem trivially holds for all the players in I�.

Assume I� � I and assume by contradiction that there exists a player j for whom

vrj pΓ0q ¡ vrj pΓq. Therefore, there exists a feasible and individually rational payoff x in

the game Γ so that vrj pΓ0q ¡ xj ¥ vrj pΓq. In addition, by the closedness of the feasible

and individually rational set of the game Γ0, there exists a payoff y P FIR so that

yj � vrj pΓ0q.
Define z � εy � p1 � εqx. Since F is convex, z P F for all ε P r0, 1s. For players in

I�, the payoff z is individually rational in Γ0 since zi � εyi�p1� εqxi ¥ εvipΓ0q� p1�
εqvipΓq ¥ vipΓ0q. It is possible to choose ε very close to 1 so that the payoff will be

rational also for the rest of the players, since zi � εyi�p1�εqxi ¥ εvri pΓ0q�p1�εqxi and

vri pΓ0q ¡ vipΓ0q. However, zj � εvrj pΓ0q � p1 � εqxj   vrj pΓ0q which is a contradiction

since z is an individually rational payoff in Γ0 with a lower payoff for player j than its

rational minimax value.

Therefore, in the game Γ the rational minimax of all the players in IzI� is greater

than in Γ0 and the proof is complete.

Proposition 1. The game ΓX � pG,X, δq where G is a zero-sum stage game has the

value

VΓX
� p1�δqEpVXq

1�EpδXq , (4)

where Vn is the value of the one-shot zero-sum auxiliary game with the payoff function

unpa1, a2q � upa1, a2q � δ�δn
1�δ max

xPA1

u px, a2q , (5)

and EpVXq �
°
n VnPrpX � nq.

Proof of Proposition 1. First, note that the SAR game has a value according

to standard arguments of contraction, so the rest of the proof deals with finding it.

Second, note that if the realization of X at t � 0 is n, then starting from t � n the

situation is the same situation as at t � 0, so the continuation payoff is δnVΓX
, where
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VΓX
is the value of the game. At the first n stages the actions and payoffs can be found

by writing explicitly the optimization problem of the payoff:

p1 � δq min
α2P∆pA2q

�
max

α0
1P∆pA1q

upα0
1, α2q �

¸
a2PA2

α2pa2q
�
n�1̧

t�1

max
at1PA1

δtupat1, a2q
��

, (9)

where a2 is the pure action that was chosen by the mixed action α2 with probability

α2pa2q at t � 0 and at1 is the pure action of player 1 in stage t. For 1 ¤ t ¤ n� 1 the

maximizing action would be a pure best response to a2, since a2 is already known in

advance in those stages. We denote by b : A2 Ñ A1 to be some best response function

(it does not matter which best response to a2 is chosen, if there are several, as all yield

the same payoff and we are interested only in the payoff and it is the same for all best

responses and all 1 ¤ t ¤ n� 1).

We can rewrite the payoff of the mixed actions as the expected value of the pure

actions and use the fact that every α1 P ∆pA1q is a probability distribution over A1 to

turn the last formula into

p1 � δq min
α2P∆pA2q

max
α1P∆pA1q

¸
a2PA2

¸
a1PA1

α2pa2qα1pa1q
�
upa1, a2q � δ�δn

1�δ u pbpa2q, a2qq


. (10)

For every n P N, consider the auxiliary zero-sum stage game with the same players

and actions with the modified payoff function

unpa1, a2q � upa1, a2q � δ�δn
1�δ u pbpa2q, a2q � upa1, a2q � δ�δn

1�δ max
xPA1

u px, a2q . (11)

This auxiliary game has a value, Vn, which is the minimax value in Eq. (10). Therefore,

the payoff of the first n stages is p1 � δqVn. The expected δ-discounted payoff from

t � 0 until the next revision opportunity is therefore EpVXq �
°
n Vn � PrpX � nq and

the continuation payoff from this revision onward is EpδXqVΓX
.

To conclude, the value of the repeated zero-sum game must satisfy

VΓX
� p1 � δqEpVXq � EpδXqVΓX

, (12)

which leads to Eq. (4) and the proof is complete.

Proposition 2. Let G be a zero-sum two-player stage game, X P ∆pNq and Γ̃X the

corresponding repeated game where the realizations of X are unknown. The value of the

repeated game, VΓ̃X
is equal to the value of the one-shot stage game, vpΓ1q, iff player

2 has a pX-min optimal set, where pX is defined in Eq. (8). Otherwise, VΓ̃X
¡ VΓ1.
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Proof of Proposition 2. Suppose that player 2 has a pX-min action set B and

consider the following strategy for him:

1. At t � 0 choose an action according to some maximin strategy with support over

B.

2. Whenever a revision opportunity arrives after T consecutive stages playing the

pure action a, play each pure action with the probability:

α12pa1q � 1a1�a
α�2 pa1q
qpT q � 1a1�a

α�2 pa1q�p1�qpT qq
qpT q , (13)

where α�2 is some minimax strategy with support over B. 7

Assume a was played T stages in a row, and player 2 follows this strategy. The

probability that the pure action a1 will be played next is

Prpa1q � Prpa1|no revisionqPrpno revisionq � Prpa1|revisionqPrprevisionq
� 1la1�ap1 � qpT qq � α12pa1qqpT q � α�2pa1q. (14)

In this stage, player 1 plays against the mixed action α�2 which yields the expected

payoff of at least VΓ1 . This is true for every stage, so the payoff for player 2 in the

repeated game is at least VΓ1 as well. Player 1, however, can guarantee to receive at

least VΓ1 by playing the minimaxing action of the stage game in every stage, which

sets the value of the game to be exactly VΓ̃X
� VΓ1 .

The existence of a pX-min action set for player 2 is also a necessary condition.

Otherwise, there is a positive probability to play in one of the stages an action that is

played in maxmin strategies in lower than pX probability. When such action is played,

for large enough realization of X, there will be a stage in which 1 � qpT q is greater

than the probability to play this action in equilibrium, forcing player 2 to choose this

action with probability higher than the optimal probability. In this stage, the best

response of player 1 to the subset of mixed actions in which the former action is played

with probability of at least 1� qpT q would yield a higher payoff than VΓ1 , resulting in

VΓ̃1
¡ VΓ1 .

B The Continuity of the Value Function For δ � 1

In the following proposition we show that for the zero-sum game introduced in Section

4.1.1, the value function is continuous as δ Ò 1. Thus, for patient enough players, it

7Thus α�2 paq ¥ 1� qpT q and α�2 is indeed a probability.
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is possible to approximately calculate the value in a simpler manner than the one de-

scribed in Proposition 1, by considering the undiscounted value instead of a discounted

value. An example of such computation can be found in the paragraph that follows

Eq. (7).

Proposition 3. Consider the game ΓX � pG,X, δq, with G being a zero-sum game

and assume the players evaluate their undiscounted average payoff instead of the undis-

counted stream of payoffs. If both players know the realizations of X then the game

has a value and the value is
EpXV 0

Xq
EpXq , where for every n, V 0

n is the value of the one-shot

game defined by

u0
npa1, a2q � 1

n
upa1, a2q � n�1

n
max
xPA1

u px, a2q , (15)

and V 0
X � °V 0

nPrpX � nq.

Proof The proof of is done in a similar manner to proposition 1, by divining the

game to “blocks” of inactivity and analysing the value of each such block.

Consider a stage of the game in which player 2 can revise the action and assume

that X � n. Player 2 strives to minimize the payoff of the n next rounds so he should

choose a mixed action that minimizes the maximum of his expected payoff (per round):

1
n

min
σ2P∆pA2q

�
max

σ0
1P∆pA1q

upσ0
1, σ2q �

n�1̧

k�1

¸
a2PA2

max
σk
1P∆pA1q

σ2pa2qupsk1, a2q
�
, (16)

where a2 is the pure action that was chosen by the mixed action σ2 with probability

σ2pa2q. As in the proof or Proposition 1, for 1 ¤ k ¤ n� 1 the maximizing action for

player 1 would be some pure action denoted bpa2q, since a2 is already predetermined

in those stages. We can rewrite the payoff of the mixed actions as the expected value

of the pure actions and use the fact that every σ1 P ∆pA1q is a probability function

over A1 to turn the last formula into

min
σ2P∆pA2q

max
σ1P∆pA1q

¸
a1PA1

¸
a2PA2

σ1pa1qσ2pa2q
�

1
n
upa1, a2q � n�1

n
u pbpa2q, a2q

�
� min

σ2P∆pA2q
max

σ1P∆pA1q

¸
a1PA1

¸
a2PA2

σ1pa1qσ2pa2qunpa1, a2q � V 0
n . (17)

The above arguments can be applied for the maximin strategy for player 1, which

would yield the same result as in Equation (17). Thus, the expected payoff per round

if X � n is V 0
n for the next n rounds. Since the above are the optimal mixed actions

for both players in each “block” of n stages and since the play in each ”block” is
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independent of the other stages, the strategy of playing the appropriate optimal action

in each block according to the realization of X is optimal in the repeated game. To

compute the value of the game we need to compute the average expected payoff when

playing those strategies.

Let m P N and consider the m � 1 stages ptiq0¤i¤m in which player 2 had revision

opportunities. Each ti for i ¥ 1 is a random variable with the property that the

random variables ti�ti�1 :� Xi are independent and have distribution of X. Thus, the

expectation of the number of stage after m revisions, tm, is EpX1� ...�Xmq � mEpXq.
To compute the value of the game we can look at the average payoff

xMpσ1, σ2q � 1
M

M̧

t�0

E
�
upσt1, σt2q

�
(18)

and rewrite it as

tmx̄tm �
tm̧

t�0

xt. (19)

By taking expectations on both sides, the right hand side would be the total expected

payoff upto stage tm which is EpX1VX1 � ...�XmVXmq � mEpXV 0
Xq and the left hand

side is Eptmx̄tmq � EptmqEpx̄tmq � Covptm, x̄tmq � mEpXqEpx̄tmq � Covptm, x̄tmq. The

value of the game is the expected average payoff when taking the limit mÑ 8:

Epx̄tmq � EpXV 0
Xq

EpXq � Covptm,x̄tm q
mEpXq . (20)

We can bound the covariance by the product of the appropriate standard deviations.

First, note that
a
Vptmq �

a
mVpXq. Second, the standard deviation of the average is

bounded since the average itself is bounded by the largest and lowest possible payoffs.

Thus, the covariance is Op?mq and when taking the limit mÑ 8 the covariance term

drops and the right hand side turns to be
EpXV 0

Xq
EpXq . The limit of the left hand side of

the equation is a limit point of the average expected payoff.

The above calculation was done only for time periods in which player 2 had a

revision, and it is sufficient to do so since in any other stage of the game, the expected

deviation from the last stage in which player 2 had a revision is bounded and goes to

zero as m Ñ 8. Thus, the series of the average expected payoffs has only one limit

point which is, by definition, guarantee-able by both players and thus it is the value

of the game:
EpXV 0

Xq
EpXq .

Note that indeed VΓX
� p1�δqEpVXq

1�EpδXq Ñ EpXV 0
Xq

EpXq as δ Ò 1. This calculation is straight-

forward using l’Hôpital’s rule when minding the slightly different definition of the

auxiliary game in the discounted and undiscounted case.
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