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Abstract: Induced pluripotent stem cells (iPSCs) obtained by reprogramming primary somatic
cells have revolutionized the fields of cell biology and disease modeling. However, the number
protocols for generating mature muscle fibers with sarcolemmal organization using iPSCs remain
limited, and partly mimic the complexity of mature skeletal muscle. Methods: We used a novel
combination of small molecules added in a precise sequence for the simultaneous codifferentiation of
human iPSCs into skeletal muscle cells and motor neurons. Results: We show that the presence of
both cell types reduces the production time for millimeter-long multinucleated muscle fibers with
sarcolemmal organization. Muscle fiber contractions are visible in 19–21 days, and can be maintained
over long period thanks to the production of innervated multinucleated mature skeletal muscle
fibers with autonomous cell regeneration of PAX7-positive cells and extracellular matrix synthesis.
The sequential addition of specific molecules recapitulates key steps of human peripheral neurogenesis
and myogenesis. Furthermore, this organoid-like culture can be used for functional evaluation and
drug screening. Conclusion: Our protocol, which is applicable to hiPSCs from healthy individuals,
was validated in Duchenne Muscular Dystrophy, Myotonic Dystrophy, Facio-Scapulo-Humeral
Dystrophy and type 2A Limb-Girdle Muscular Dystrophy, opening new paths for the exploration of
muscle differentiation, disease modeling and drug discovery.

Keywords: human induced pluripotent cells; differentiation; myoblasts; myotubes; motor neurons;
satellite cells; Z-lines; contraction; muscular dystrophy; Facio-Scapulo-Humeral Dystrophy; Myotonic
Dystrophy; Duchenne Muscular Dystrophy; Limb girdle muscular dystrophy

1. Introduction

Since the discovery in Human of somatic cell reprogramming into pluripotent stem cells (hiPSCs),
protocols aimed at modeling skeletal muscle differentiation have been lagging behind those of other
cell lineages [1].
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In vivo, skeletal myogenesis involves tightly controlled spatial and temporal cues, and most of
the current strategies take advantage of the cascade of events of somitogenesis during embryogenesis.
In this context, available protocols, the vast majority of which are only focused on the production of
myotubes, are either based on the induced expression of exogenous myogenic genes (PAX3, PAX7,
MYOD1) [2–4] or the use of small molecules [5–10] with variable degrees of efficiency [2,11–14].
Indeed, regardless of the protocol, one of their commonalities is the duration of the differentiation
process and yield. More importantly, the resulting cultures are difficult to maintain in the long
term, and only partially recapitulate the organization and function of mature muscle with a lack of
sarcolemmal architecture and expression of fetal or embryonic Myosins, as well as suffering from
reduced functionality. Yet, in vitro systems which are able to recapitulate in vivo skeletal muscle
differentiation are needed for basic research, disease modeling and drug discovery for a wide range of
neuromuscular and muscular disorders for which the molecular mechanisms remain unclear or are
lacking a therapy.

Using hiPSCs, we describe a human skeletal muscle differentiation model for the production of
muscle fibers. Conditions of differentiation were optimized in cells from healthy donors and applied
to cells from patients affected by different neuromuscular disorders. We reproducibly obtained aligned
and mature contractile myofibers, together with motor neurons in conditions that preserve in the long
term a pool of PAX7-positive (PAX7+ ) cells which is able to renew in culture, thereby ensuring the
continuous production of muscle fibers over a long period of time. Differentiated cells are functional
and respond to different drugs, opening new perspectives for the modeling of neuromuscular disorders
and drug discovery.

2. Results

2.1. Concomitant Induction of Myogenesis and Neurogenesis for the Production of Innervated Muscle Fibers

During embryonic development, precise changes in the time and concentration of signaling
molecules determine the characteristics of different cell lineages. Based on the use of small molecules
that mimic the activation or repression of the signaling cascades required for in vivo myogenesis,
but also neurogenesis, we sought to optimize conditions to produce innervated mature muscle fibers;
to this end, hiPSCs were collected by mechanical dissociation. Small hiPSC clumps were plated on
Matrigel-coated dishes in the presence of Thiazovivin in differentiation medium (DM) supplemented
with ITS-A, LDN193189 (LDN), a potent BMP pathway inhibitor, and CHIR99021, a GSK3 inhibitor
(Figure 1A). Cells were maintained for 6 days in this medium with daily medium change. On the
7th day, cells were grown in DM + LDN supplemented with Insulin Growth Factor 1 (IGF1) and
Hepatocyte Growth Factor (HGF) for 24 h to favor cell lineage orientation. LDN and HGF were then
removed and the cells were maintained in DM + IGF1 for four more days (until day 12), during which
they proliferated. During this period (D10-12), cells could be collected by dissociation with accutase
for freezing, thawing, expansion and replating. Between D6 and 12, we observed populations of cells
with different morphologies that migrated out of the different cell clumps. Modulation of the BMP and
Wnt pathways induce the production of neural stem cells, and LDN induce both muscle and neural
stem cell differentiation, suggesting the presence of mesodermal progenitors and neuronal cells in
this time window. To assess whether neuronal differentiation might be activated in parallel to muscle
differentiation, we tested the effect of the transient addition of DAPT, a γ Secretase and Notch pathway
inhibitor that induces cell cycle exit and postmitotic motor neuron differentiation [15]. By bright field
imaging at D17 and after the addition of DAPT, we observed axons together with large patches of
elongated contractile fibers (Figure 1A) with the first fibers contractions visible 2 to 4 days after the
removal of DAPT (Days 19–20, Supplementary Movie 1). In the absence of DAPT, rare contractions of
isolated fibers were visible approximately 2 months postdifferentiation, indicating that the activation
of neurulation and differentiation of motor neurons accelerate muscle cell differentiation.
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Figure 1. Protocol for myogenic differentiation. (A) Time line and phase contrast images of cells
differentiated from human induced pluripotent stem cells (hiPSCs) at Day 0 (D0), D6, D8, D12, D17 and
D30, corresponding to changes in the composition of the medium. Thiazovivin, an inhibitor of the
ROCK pathway, was added at the time of plating and two days after. The composition of the medium is
indicated for the different culture steps. CHIR: CHIR99021; LDN: LDN193189; F: FGF2; I: IGF1; H: HGF;
DAPT: N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester. Cells could be frozen
between Days 10 and 12 for storage, expansion and further differentiation. First contractions were
visible between day 19 and 21 postdifferentiation. (B) Representative Z stack after confocal microscopy
of cultures stained with anti-PAX3 antibody at Day 6 and Day 8 postdifferentiation, and Day 12 with
anti-PAX7. Representative immunostaining of early myofibers at Day 14 stained for the sarcomeric
Desmin (green). Cells were counterstained with DAPI.



Cells 2020, 9, 1531 4 of 17

2.2. Modulation of Wnt, BMP and Notch Pathways Leads to the Progressive Enrichment in Skeletal Muscle
Progenitors, Followed by the Formation of Myofibers with Complete Sarcomeric Differentiation and Highly
Organized Myofibrillar Pattern

At the different steps of our procedure, we analyzed the expression of PAX3 and PAX7 that
characterize muscle and neuronal progenitors. Using flow cytometry, we detected approximately 12%
of PAX3-positive (PAX3+ ) cells and 2% PAX7+ cells at D8 and 2–5% of PAX7+ cells from D21 onwards.
By immunostaining, PAX3 was detected as early as D6, and remained visible at D8 (Figure 1B). At D12,
cells expressed PAX7, indicating the presence of progenitors. Upon medium change and addition
of DAPT, we observed a progressive change in cell shape and the appearance of elongated cells
(Figure 1A), positive for the sarcomeric Desmin marker (DES, Figure 1B), with a progressive enrichment
and spontaneous contraction from Day 19 onward (Supplementary Video 1).

At Day 30, multinucleated elongated muscle fibers were visualized using anti-Titin, a giant protein
that links the Z disk and M lines of the sarcomere, and anti-Desmin (DES), which is responsible for
connecting myofibrils to each other and to the plasma membrane (Figure 2A). As further evidenced
by transmission electron microscopy (TEM), the myofibers displayed a well-organized sarcomeric
structure with clearly visible A-band of Myosin filaments, I-bands of Actin filaments, and M- and
Z-lines, all hallmarks of mature sarcomeres (Figure 2B). The myofibers showed multiple nuclei at
the periphery, a marker of differentiation and maturation (Figure 2B), as well as large mitochondria
with well-organized cristae, indicative of a high metabolic activity and consistent with the continuous
contraction of the myofibers.

2.3. Myotubes and Motor Neurons in Close Proximity Connect with Each Other to Form Functional
Neuromuscular Junctions

To address whether contractions observed as early as D19-21 occurred spontaneously or were
associated with nervous stimuli enhanced by the addition of DAPT, the presence of acetylcholine
receptors (AChR) and neuromuscular junction (NMJ) were visualized by staining with Alexa Fluor 555
α Bungarotoxin (Thermo Fisher Scientific, Eugene, OR, USA: BTX, white, Figure 2C) at the surface of
myofibers with axons (NF staining, green) that extended toward these α Bungarotoxin clusters. Fiber
contractions were irreversibly blocked by the addition of α Bungarotoxin (responsible for the inhibition
of acetylcholine receptors) and Tetrododotxin (TTX, a sodium channel blocker that irreversibly inhibits
action potential) to the medium (Figure 2D), advocating for the presence of motor neurons, NMJs and
undifferentiated acetylcholine receptors clusters at the surface of the muscle fibers.

2.4. The Activation of Genes Required for Muscle Contraction Occurred Between D17 and D30

To follow the gene expression profiles at key steps of the differentiation process, we performed an
RNA Seq transcriptome analysis in hiPSC clones derived from two different control cells at D8, D17
and D30, corresponding to the main medium changes (Figure 1A). As illustrated by volcano plots,
the number of differentially expressed genes (DEG) was high between D8 and D17, and decreased
between D17 and D30 (Supplementary Figure S1A,B).

By selecting genes with a Log2 fold change (Log2FC) of 2 and an adjusted p value (padj) < 0.05, and
comparing DEGs between D8–D17 and D17–D30 corresponding to GO terms related to “contraction”,
we obtained a first list of 101 genes subdivided into four groups (Figure 2E). The first group (13 genes),
activated at D8 and silenced at D17–D30, corresponded to genes involved in “myocytes adhesion
and cell communication”, “muscle system process” or “cardiac conduction”. The second group of
18 genes, transiently activated at D17 and silenced at D30, corresponded to genes involved in smooth
muscle and cardiac muscle contraction. The third group (18 genes), activated at D17 and decreased at
D30, corresponded to genes involved in “calcium ion transmembrane transport via high voltage-gated
calcium channel”, and “cardiac action potential and membrane depolarization”, suggesting—as
observed in group 2—the transient activation of genes involved in cardiac contraction. Consistent with
the first contractions at D19–21, the fourth group (52 genes), specifically activated at D30, corresponded
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to “muscle filament sliding” (21 genes, padj: 7.75e−42), “relaxation of skeletal muscle”, “detection
of muscle stretch” and “regulation of twitch skeletal muscle contraction”, indicating a progressive
enrichment in pathways corresponding to skeletal muscle function. To functionally characterize
hiPSC-derived myofiber and contractile activity, we analyzed intracellular calcium (Ca2+) release by
adding Fluor8 to the fresh medium 30 min prior to recording (Figure 2F). As illustrated (Supplementary
Video 2), recording easily permits separate analysis of neuronal activity (visible as small green dots)
from calcium trafficking in muscle fibers. The analysis of muscle spontaneous Ca2+ transients per
minute and per fiber at Day 30 postdifferentiation, but also in the long term, did not reveal any
difference in calcium release between early and late time points. This indicated that the hiPSC-derived
muscle fibers were functional, and that muscle functionality was maintained, even for long periods,
in culture.

Figure 2. Ultrastructural and functional validation of hiPSC-derived myofibers. (A) Representative
Z stacks of muscle fibers at Day 30, stained for Titin (TTN, green, upper panel) and merged between
Desmin (DES, orange) and Titin filament (green, lower panel) at Day 30 postdifferentiation. Nuclei were
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counterstained with DAPI. (B) Ultrastructural features of differentiation. Control cells showed complete
sarcomeric organization with highly organized myofibrillar patterns and fully mature sarcomeric
banding pattern with clearly visible Z-lines (arrows, panels 2; 4), nuclei localized at the periphery
of the fibers (panel 1, N) and large mitochondria (panel 3, M). Thick filaments were assembled with
the formation of Z and M lines across the Myosin filaments (Panel 4). Z-lines were aligned, forming
a clearly visible structural pattern (panels 1;2;4). We also observed I-bands of Actin filaments and
A-bands (panels 2; 4). (C) Representative Z stacks of cultures stained for acetylcholine receptors (AChR)
using Alpha Bungarotoxin coupled with Alexa 555 (White), and immunostaining of muscle fibers using
anti-Titin (TTN, red), anti-Dystrophin (DYS, red), anti-Desmin (orange) and anti-NeuroFilament (NF,
green) antibodies. We observed several undifferentiated acetylcholine receptors clusters at the surface of
the myofibers (white). (D) Contractions of muscle fibers were recorded in real time by video microscopy
in control cells (Supplementary Movie 1) prior to or after the addition of Alpha Bungarotoxin (α
BTX) or Tetrodotoxin (TTX), to the cell medium, or after medium replacement and drug removal.
Histogram displays the mean number of contractions ± S.D. shown by error bars, prior to drug addition
(T0), 5 h (T 5H) or 24 h after (T 24 H), or 24 h after drug removal and medium replacement (T 24H
washout). The addition of both drugs irreversibly inhibited cell contraction. (E) Heatmap of DEGs
corresponding to the “contraction” GO terms in D8 vs. D17 and D17 vs. D30. Brackets identify genes
differentially expressed for the different time points. Group 1, genes activated at D17; group 2, genes
activated at D17 and D30; and group 3, genes upregulated at D8. (F) Intracellular calcium signaling
in hiPSC-derived myofibers was measured using an Axio Observed microscope at day 30, day 120
(4 months) and day 150 (5 months) postdifferentiation. For each time point, >215 muscle fibers were
analyzed separately. The number of contractions per minute and per fiber is reported as violin plots.
No difference was observed in the calcium influx at day 120 and 150 compared to day 30 (ANOVA
multiple comparison test followed by Brown-Forsythe and Welch correction p = 0.264 and p = 0.299;
respectively). hiPSC-derived myofibers by transmission electron microscopy (TEM) at Day 45 post.

2.5. Transcriptomic Profiling Showed a Two-Phase Process with Induction of Neuronal Differentiation followed
by Induction of the Myogenic Program

A global analysis of DEGs between the three RNA Seq datasets (D8, D17, D30) revealed a list of
2229 DEGs between D8 and D17, and 281 genes between D17 and D30, with an overlap of 302 genes
common to the three time points, i.e., corresponding to genes induced at an early step of differentiation
and maintained over time (Figure 3A). For this group, the fifteen most significant associated GO
terms corresponded to skeletal muscle function and development or axonogenesis (Figure 3B). Then,
an analysis of significantly overrepresented biological pathways between D8–D17 and D17–D30,
revealed two phases in the differentiation process. Between D8–D17, enriched pathways corresponded
to axon development and synapse formation, but also cell cycle regulation, consistent with cell cycle
exit and final differentiation (Figure 3C). In the second phase (D17–D30), we observed an enrichment in
motor neuron networks (Figure 3D) with a marked increase in TUBB3, a class-III β-Tubulin restricted
to neurons expressed in dorsal root ganglion and required for axon outgrowth [16] (Figure 3D,E).
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Figure 3. Transcriptomic profiling of in vitro differentiated innervated muscle fibers at day 8, 17
and 30 postdifferentiation. (A) Venn diagram showing the number of genes differentially regulated
between D8 and D30, D8 and D17 or D17 and D30. The three time points correspond to the main
medium changes. Genes were selected based on a padj <0.05. Lists of genes that are differentially
expressed between D8–D17, D17–D30 and D8–30 are given in Supplementary Table S1. (B) List of the
most significant Biological processes (BP) corresponding to the 302 genes common to the three time
points with associated GO term and padj values. (C) Biological pathways significantly overrepresented
between D8 and D17. (D) Representative Z stacks of hiPSC-derived motor neurons using anti HB9
antibodies (upper panel, red), anti-Neurofilament (NF, orange, medium) and merged (bottom) with
nuclei counterstained with DAPI. (E) Immunostaining of hiPSC-derived motor neurons using anti
HB9 antibodies (red) and anti-TUBβ3 (green) with nuclei counterstained with DAPI. (F) Biological
pathways significantly overrepresented between D17 and D30. (G) Heatmap of the different myogenic
transcription factors at D8, D17 and D30. (H) Heatmap of differentially expressed genes corresponding
to “skeletal muscle differentiation” between D8, D17 and D30.
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2.6. Myogenic and Neuronal Specification and Long-Term Persistence of PAX7+ Cells

Between D17 and D30, notch pathway inhibition and activation of neuronal differentiation
facilitated skeletal muscle differentiation, as evidenced by progressive activation of myogenesis and
overrepresentation of genes specific to skeletal muscle differentiation and development (Figure 3F).

At the individual gene level, the expression of embryonic/fetal Myosins was followed by the
progressive increase of adult isoforms (MYH2 and MYH7). We also noticed expression of NCAM1
encoding the CD56 cell surface marker between D8 and D17 (Log2FC: -3.92, padj: 3.75e−8) and a steady
expression between D17 and D30 (Log2FC: 1.077), indicating a stable proportion of precursor cells over
time. Besides NCAM1, the expression of other myogenic progenitors markers such as CD29 (ITGB1),
CD82 (TSPAN1) and CXCR4 was also detectable in our RNA Seq datasets during the differentiation
process. From D8 to D17, we observed increased MEOX1 expression, activated in presomitic mesoderm
and required for sclerotome and somitic development (Log2FC: 3.56, padj: 8.49e−6), and an increase in
PAX3 (Log2FC: 3.03, padj: 6.93e−14, Fig. 3g). PAX7 expression significantly increased between D17 and
D30 (Log2FC: -2.46, padj: 4.56e−8, Figure 3G), consistent with immunostaining data (Figure 1B) and
replacement of PAX3+ muscle/neuronal precursors to PAX7+ muscle progenitors. Regarding myogenic
markers (Figure 3G), MYF5 was expressed at a low level at the different time points, while MYOD1
strongly increased (Log2FC: -3.56, padj: 3.42e−5) between D17–D30. Late differentiation markers, i.e.,
MYOG and MYF6, were poorly expressed between D8 and D17, but progressively increased between
D17 and D30 (Log2FC: -2.89, padj: 5.27e−6; Log2FC: −1.92, padj: 0.08, respectively), consistent with
their role in the late differentiation stages and myotube/myofiber formation.

DEGs for muscle-associated GO terms (Figure 3H) provided a list of 21 genes expressed in other
mesoderm-derived tissues between D8 and D17 whose expression decreased between D17 and D30.
Between D17–D30, we obtained a list of 111 upregulated genes that encode proteins involved in
skeletal muscle function. This list includes muscle-specific Myosin Heavy Chains (MHC) such as
embryonic/fetal MYH8, MYH3, but also adult MYH7 and MYH2 isoforms, as well as Troponin T
such as TNNC2, TNNT3 or TNNT2, expressed in fast type skeletal muscles, and TNNC1, expressed
in slow type skeletal muscle (Figure 3H). We also detected increased expression of two recently
discovered genes that encode the muscle-specific membrane proteins required for fusion and myotube
formation, MYMK (Myomaker) and MYMX (encoding Minion, Myomerger or Myomixer) [17,18].
Myomaker required for membrane hemifusion is activated in the early differentiation stages (Log2FC:
−9.84; padj: 7.63E−10 between D8 and D30) while Myomixer required for fusion completion is
activated at a later stage (Log2FC: −3.7; padj: 8.42E−7 between D17 and D30), consistent with its
action in fusion of Myomaker-positive cells [17] and the progressive increase in muscle fibers in our
experimental conditions.

In addition, overrepresentation tests revealed a strong enrichment in the gene encoding components
of the extracellular matrix (ECM) between D17 and D30, (Figure 3F, Supplementary Figure S1C),
in which we noticed different Laminins, members of the collagen family (Supplementary Figure S1D,
padj: 1.26e−10), and activation of the TGFβ pathway. The synthesis of ECM by hiPSC-derived cells likely
contributes to the organization of the innervated muscle tissue, but also to its long-term maintenance
and mechanical properties without the massive cell detachment and cell death that usually occurs for
primary myoblasts or hiPSC-derived myotubes after the first contractions [19].

2.7. Months-Long Persistence of Muscle and Motoneurons Signature

For a selected number of genes, RNA seq data (Supplementary Figure S2A) were confirmed by
RT-qPCR from D6 to D30 and at late time points (3 months, 5 months, 7 months) postdifferentiation
(Supplementary Figure S2B,C). The expression of the adult MYH2 isoform was detectable as early as
D8, and remained steady with time (Supplementary Figure S2C). The same kinetics were observed
for Desmin (DES), Titin (TTN), Sarcoglycan Gamma Sarcolemmal protein (SGCG), RYR1 encoding
the ryanodine receptor involved in calcium release in the sarcoplasmic reticulum (Supplementary
Figure S2B,C) and myogenic transcription factors (MYOD1, MYF5, MYOG, MYF6, Supplementary
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Figure S2C). The expression of PAX3 was stable from D6–D21, and then decreased at D30, while
the expression of PAX7 progressively increased and remained stable over time, suggesting that
precursor cells which are able to regenerate the culture persist over time (Supplementary Figure S2B,C).
The kinetics of PAX7, Desmin and MYH2, 3 and 8 expression were confirmed by western blotting
(Supplementary Figure S3A), all of which remained detectable for up to 7 months postdifferentiation
(Supplementary Figure S3A–C) with a decreased level of PAX7 protein level, consistent with the high
rate of differentiation and the persistence of a minority population of precursor cells in our culture.

The expression of motor neuron-specific markers such as the HB9 homeobox protein (MNX1) was
higher in the early differentiation stages and decreased at D30, while ISLET1 (ISL LIM homeobox 1)
expression, which increased upon DAPT induction, remained stable. Consistent with fiber contractions,
the presence of NMJs and the inhibitory action of αBTX, the expression of Choline-O-Acetyltransferase
(ChAT) specific to cholinergic neurons and Agrin (AGRN) increased from D17 onwards and remained
stable (Supplementary Figure S2B,C). Together with the expression of the Myelin Basic Protein (MBP,
Supplementary File), we also detected cells positive for S100β that colocalized with αBTX-stained
NMJs, indicating the possible presence of Schwann cells (Figure 4A) and neural crest progenitors,
as evidenced by increased expression of SOX2 or TFAP1 between D8 and D17, followed by a stable
expression level between D17 and D30 (Supplementary Table S1). In agreement with the formation of
functional NMJs, TEM revealed basal lamina invaginations and the presence of synaptic cleft at the
surface of muscle (Figure 4B). Thus, the self-organization between muscle cells and motors neurons
yielded highly organized innervated muscle fibers with NMJs at the surface of the fibers.

2.8. Response to Pharmaceutical Drugs

To evaluate the potential application of hiPSC-derived innervated myofibers as a preclinical model
for drug testing, we tested the response to different classes of pharmaceutical agents by real-time
video microscopy and calcium handling analysis. Cells at D45 were treated for different durations
with different concentrations of each molecule (Figure 4C–F). For glutamate, we did not observe
any difference in calcium release after the addition of 2 µM of the molecule, but increased calcium
release activity was observed 20 to 30 min for a 20 µM concentration, consistent with the expression
of glutamate receptors and the participation of glutamate in modulating acetylcholine transmission
(Figure 4C).

We then tested the action of three muscle relaxants: Salbutamol, a β2 adreno receptor agonist
with a potent relaxant property (Figure 4D), Carisoprodol, that modulates γ-Aminobutyric acid type A
receptor (GABAARs) postsynaptic neurotransmission (Figure 4E) and Mexiletine, a sodium channel
blocker (Nav 1.4) used to reduce muscle stiffness, tiredness and weakness, in particular in DM [20]
(Figure 4F).

Salbutamol decreased Ca2+ handling as early as 4 h (h) after 1 µM and 10 µM drug addition to the
medium, with recovery to basal activity after 24 h (Figure 4D). Carisoprodol modulated postsynaptic
neurotransmission and reduced muscle contraction 3 to 4 h after the addition of 0.5 to 1 mM drug, with
total recovery after 24 h (Figure 4E). As expected, given its ability to block the sodium channel and
inhibit Na +/Ca2+ exchange-dependent Ca2+ overload, we observed a decrease in calcium handling 2 h
after the addition of 10 µM mexiletine, and a sharp decrease 1 to 2 h after 100 µM of the drug was
added, followed by a progressive but partial recovery between 3 to 24 h posttreatment (Figure 4F).
Altogether, the functional responses to all these different drugs highlight the value of our “innervated
muscle in a dish” model for drug screening and future therapeutic development.
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Figure 4. Characterization of NMJs and evaluation of the functional response to pharmaceutical drugs.
(A) Representative Z stacks of cells stained at Day 30 postdifferentiation using alpha Bungarotoxin
(aBTX, orange), anti-MyHC (MF20, red) or anti-S100β (green). NMJs are indicated by white arrows
on the merge. The formation of functional NMJs was confirmed by the presence of S100β-positive
cells expressed by Schwann cells capping the neuronal terminals. A higher magnification of different
aBTX-positive NMJs is shown. (B) Transmission electron microscopy showing the presence of an axon
positioned close to a muscle fiber. The basal lamina is visible (panels 1–2), as well as invagination of the
plasma membrane (panel 2). (C–F) We measured the transient calcium influx in control myofibers prior
to drug addition (0 h) and at different time points after a single addition of different concentrations of
each drug. Violin plots display the number of influxes per minute and per fiber (n > 50). Statistical
significance was determined using an ANOVA multiple comparison test followed by Brown-Forsythe
and Welch correction and comparison to the basal condition (prior to drug addition). C. 0; 2 and 20 µM
for glutamate after 0; 10; 20; 30 min of incubation, (D) 0; 1 and 10 µM for Salbutamol after 0, 1, 2, 4 and
24 h of incubation. (E) 0, 0.5 and 1 mM for Carisoprodol after 0, 1, 2, 4 and 24 h of incubation. F. 0, 10
and 100 µM for Mexiletine after 0, 1, 2, 4 and 24 h of incubation.
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2.9. HiPSC-Derived Muscle Cells for Modeling Neuromuscular Disorders

To evaluate the reproducibility and robustness of our protocol, we applied it to the four most
frequent muscular dystrophies, i.e., Duchenne Muscular Dystrophy (DMD, OMIM 310200), Myotonic
Dystrophy (DM1, OMIM 160900), Facio Scapulo Humeral Dystrophy (FSHD2, OMIM 158901) and Limb
Girdle Muscular Dystrophy 2A (LGMD2A, or LGMDR1, OMIM 253600). Using antibodies against
Desmin and Titin, we observed the formation of multinucleated, millimeter-long, aligned myofibers and
a mature fiber striated pattern at D30 postdifferentiation (Figure 5A). We also observed immature AChR
clusters at the surface of the fibers after α BTX staining (Figure 5B). Compared to our two control cells and
the two clones analyzed for DM1 and LGMD2A, we observed that the fiber section size was significantly
reduced in DMD cells, and wasvariable as well as slightly increased in FSHD2 cells (Figure 5C).

Figure 5. Structural and functional phenotyping of hiPSC-derived muscle cells from patients affected
by muscular dystrophy. (A) Representative Z stacks of myofibers at day 45 with staining of sarcomeric
Desmin (DES, orange) and Titin filament (TTN, green) for Duchenne Muscular Dystrophy (DMD),
myotonic dystrophy (DM1), Facio Scapulo Humeral Dystrophy (FSHD) and Limb Girdle Muscular
Dystrophy Type 2A (LGMD2A). (B) Representative Z stacks of cultures stained for acetylcholine
receptors (AChR) using Alpha Bungarotoxin coupled with Alexa 555 (White, arrows) at the surface of
hiPSC-derived muscle fiber stained in red using anti-Titin (TTN, red). Antineurofilament (NF, green)
was used to visualize motor neurons axons. Nuclei were counterstained with DAPI. As in the control
cells, we observed the presence of several undifferentiated acetylcholine receptors clusters at the
surface of the myofibers for the different pathologies. (C) We compared the muscle fiber section of the
Titin-stained fibers in control cells and the four different pathologies (DMD, DM1, FSHD or LGMD2A).
For each condition, 500 fibers were analyzed, and the section of the fiber was determined at three
different positions along each. Box plots display the mean sizes for the different samples. Values
were compared using an ANOVA multiple comparison test, followed by Brown-Forsythe and Welch
correction tests; ****p < 0.0001; ***p < 0.001; **p < 0.01. –(D) Heatmap for expression of different muscle
and motor neuron markers over time for cells differentiated from the control (CTRL) or pathological
(DMD, DM1, FSHD, LGMD2A) hiPSCs at D30 postdifferentiation, determined by RT-qPCR on biological
triplicates, each realized in biological duplicates (n = 6 per data point). The names of the different genes
are indicated on the bottom. Data for additional time points (D6, D8, D12, D17 and D21) are presented
in the Supplementary Information section.
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Furthermore, for the four diseases, TEM revealed the full maturation of hiPSC-derived muscle
fibers with visible Z lines structures (Figure 6A). However, we observed an increased proportion of
discontinuous and tortuous architectures with interrupted Z lines, suggesting defects in sarcolemmal
anchoring, as reported in [21,22]. In DMD, the presence of vacuole-like areas between the fibers
(Figure 6A) strikingly resembled what was reported in [23] in vivo as a sign of muscle fiber degeneration.
In LGMD2A, we observed a patchy pattern of small disorganized fibers with electron-dense inclusion
between fibers, as reported in [24,25].

Figure 6. Functional and ultrastructural characterization of diseased hiPSC-derived muscle fibers.
(A) Ultrastructural features of hiPSC-derived muscle fibers for different neuromuscular disorders.
Electron microscopy was performed 60 days postdifferentiation. Representative images for DMD, DM1,
FSHD and LGMD2A are presented. (B) Intracellular calcium signaling in hiPSC-derived myofibers
was measured using an Axio Observed microscope at day 45 postdifferentiation. For each time point,
>180 muscle fibers were analyzed. We report the number of influxes recorded per minute and per
fiber as violin plots. Data were compared using an ANOVA multiple comparison test followed by
Brown-Forsythe and Welch correction. DM1 myofibers presented lower calcium influx compared
to the control (****; p < 0.0001), whereas calcium influx increased in FSHD and DMD myofibers
(****; p < 0.0001). No difference was observed between the control and LGMD2A myofibers (p = 0.89).

Having shown that the codifferentiation of neurons and myotubes gives rise to the formation of
NMJs at the surface of the fibers in healthy and diseased contexts, we next investigated muscle fiber
functionality by measuring the calcium transient at D30. For all diseases, we observed a significant
decrease in the calcium handling amplitude in DMD cells (p < 0.0001) compared to controls, but an
increase in other pathologies (DM1, FSHD and LGMD; p < 0.0001, Figure 6B).
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The expression of the different genes validated in control cells was evaluated in these different
clones by RT-qPCR from D6 to D30 (Supplementary Figures S4–7, Figure 5D). The expression of
embryonic and fetal MyHCs was comparable in the different contexts, while that of the adult isoform
(MYH2) remained very low, in particular in DMD, and was more variable between diseases, suggesting
delayed muscle maturation in these different clones (Supplementary Figures S8,9). The expression of
Desmin, Titin and PAX7 was comparable between conditions.

Finally, to address whether the approach described here might be applied to modeling the large
repertoire of inherited muscle diseases, we classified our RNA-seq data based on the list of genes
used for diagnosis by whole exome sequencing of gene panels for the different classes of diseases
(Supplementary Figure S10). This preliminary analysis revealed that the vast majority of these genes
were expressed in our experimental conditions. Thus, together with the visualization of structural
abnormalities, these analyses confirmed that our protocol can be reliably used to model neuromuscular
pathologies including at the functional level, providing a reliable cellular model and potential readout
for functional testing. The analyses further highlight the value of our model to reveal signatures
associated with genetic neuromuscular diseases.

3. Discussion

Different protocols exist for the differentiation of human pluripotent or embryonic stem cells for a
large variety of terminally differentiated tissues. Nevertheless, differentiation of the skeletal muscle
lineage remains challenging [5,26–29], with some methodologies relying on the ectopic expression
of muscle-specific transcription factors by viral gene delivery [12,28–31] and limited enrichment in
mature skeletal muscle fibers [2,12–14].

Based on the selective and sequential addition of small molecules, we describe a novel and reliable
procedure for the production of innervated and functional skeletal muscle tissue. Our serum-free protocol
stems from the dual modulation of the Wnt and BMP pathways that induce paraxial development [7,8],
but incorporates an additional step of inhibition of the notch pathway, which increases myogenic
specification, and facilitates the production of motor neurons and muscle maturation [15,32,33].

We showed that our system recapitulates key functional aspects of human skeletal muscle
organization, including in its ultrastructural architecture, development of a functioning contractile
apparatus and capacity for long-term regeneration that allowed culture for up to a year. Compared
to other reports in which gradual attenuation and exhaustion were observed [7,34], the presence of
hiPSC-derived motor neurons that codifferentiate with muscle fibers accelerates the differentiation.

A critical bottleneck to differentiation protocols published so far is the maturation and functionality
of hiPSC-derived muscle fibers. In controls cells, we observed intact sarcomeres with distinct I-bands
or M- and Z-lines without any aberrant myoblast formation with branched arms as reported [7,32].
Furthermore, if sarcomeric organization can be observed in some fibers with other approaches [7,35],
hiPSC-derived muscle fibers are mostly composed of embryonic or fetal Myosins [7,35,36]. We showed
here that fetal/perinatal, but also adult, Myosin heavy and light chains are detectable at the time of the
first contractions, with a stable level of expression overtime.

Furthermore, most protocols for the production of innervated muscle fibers rely either on the
coculture of human primary myoblasts with animal motor neurons extracted from dorsal roots
ganglions, the coculture of hiPSC-derived motor neurons with human or animal muscle cells [37] or,
more recently, hiPSC-derived motor neurons mixed with hiPSC-derived muscles cells [38].

We report here on the simultaneous codifferentiation between both cell types in healthy and
diseased backgrounds where hiPSC-derived motor neurons and muscle cells self-organize and establish
functional contacts with muscle fibers in 2D. The presence of acetylcholine receptors at the surface of the
fibers for the formation of a contractile “muscle in a dish” further confirm the important contribution
of the different lineages forming muscle, as observed in vivo [38–41]. Albeit based on the RNA seq
data, the fetal acetylcholine receptor subunit isoform was more abundant than the adult isoform at
D30 postdifferentiation. A recent article reported the production of human trunk neuromuscular
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organoids in which maturity was reached at day 50 postdifferentiation [42]. Interestingly, using a
different approach, we reached the same conclusion, i.e., that the simultaneous differentiation of muscle
and peripheral neurons is necessary for the production of mature and functional muscle fibers, an
important prerequisite for disease modeling.

Our system enabling codifferentiation between skeletal muscle cells and motor neurons from the
same individual will deepen our understanding of the early stages of muscle-motor neuron interactions
and NMJ formation in physiological and pathological contexts, and open new perspectives for the
investigation of early differentiation steps or muscle-nerve interactions.

Culture on matrigel coating that contains laminin, a component of the basal lamina of NMJs,
Collagen IV and Proteoglycans [43], is highly favorable for motor neuron differentiation, the maintenance
of multinucleated muscle fibers, but also PAX3/PAX7 positive cells, over a long period of time.
The gradual activation of genes encoding ECM factors, including laminins, collagens and proteoglycan,
suggests a progressive replacement of matrigel by this ECM, which likely contributes to long-term
cell maintenance, functionality and attachment, despite continuous contractions usually leading to
muscle detachment.

Overall, the lack of successful strategies for the production of functional and fully mature myofibers
jeopardizes investigations into disease mechanisms and therapeutic development. Furthermore, as
genome-wide approaches often prove difficult regarding the interpretation of variants of unknown
significance (VUS), this protocol provides a novel tool for the evaluation and deciphering of pathways
associated with diseases causing mutations and associated signatures. Thus, compared to the
occasional twitching reported for control cells [7,32], or the absence of twitching in patient cells [32], our
straightforward procedure fills the gap between currently available 2D protocols, in which maturity
and functionality are reduced, and the advances provided by neuromuscular organoids [42]. Compared
to organoids, contractions were visible as early as 19–21 days postdifferentiation in our conditions.
This reliable and easy-to-use model provides a new tool to investigate the early stages of differentiation
and cell–cell interactions/interplay, and makes it possible to model a wide range of neuromuscular
disorders, thereby facilitating drug discovery.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/6/1531/s1.
Table S1. Sequence of the primers used for RT-PCR. Figure S1. Expression profiling during hiPS differentiation.
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Expression of myogenic markers and persistence of satellite cells over time. Figure S4. Time course expression of
myogenic and motor neurons markers in DMD hiPSC-derived muscles. Figure S5. Time course expression of
myogenic and motor neurons markers in DM1 hiPSC-derived muscles. Figure S6. Time course expression of
myogenic and motor neurons markers in FSHD hiPSC-derived muscles. Figure S7. Time course expression of
myogenic and motor neurons markers in LGMD2A hiPSC-derived muscles. Figure S8. Quantification of myogenic
markers protein levels in DMD and DM1 hiPSC-derived muscles. Figure S9. Quantification of myogenic markers
protein levels in FSHD and LGMD2A hiPSC-derived muscles. Figure S10. Heatmap of RNAseq data for genes
involved in muscular dystrophies. Supplemental movie 1. Recoding of myofibers after 30 days post differentiaton.
Supplemental movie 2. Recording of Calcium transients after addition to the cell culture medium of FLUO-8AM
fluorescent Ca2+ indicator recorded using a Fast Imaging Observer system (Axio Observer.Z1/7; Zeiss) with a
10× lens.
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