
HAL Id: hal-03082804
https://amu.hal.science/hal-03082804

Submitted on 18 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantification of Lambda (Λ) in multi-elemental
compound-specific isotope analysis

Patrick Höhener, Gwenael Imfeld

To cite this version:
Patrick Höhener, Gwenael Imfeld. Quantification of Lambda (Λ) in multi-elemental compound-specific
isotope analysis. Chemosphere, 2021, 267, pp.129232. �10.1016/j.chemosphere.2020.129232�. �hal-
03082804�

https://amu.hal.science/hal-03082804
https://hal.archives-ouvertes.fr


Short Communication Chemosphere    1 
 

 

 

Quantification of Lambda () in multi-elemental compound-1 

specific isotope analysis 2 

1Patrick Höhener* and 2Gwenaël Imfeld 3 

1Aix Marseille University – CNRS, UMR 7376, Laboratory of Environmental Chemistry, 4 

Marseille, France, Phone No. 0033413551034 5 

*Corresponding author. patrick.hohener@univ-amu.fr 6 

2 Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), Université de 7 

Strasbourg, UMR 7517 CNRS/EOST, 1 Rue Blessig, 67084, Strasbourg Cedex, France 8 

Short communication to Chemosphere, https://doi.org/10.1016/j.chemosphere.2020.1292329 

 10 

Highlights 11 

The parameter  represents dual element stable isotope data  12 

Two conventions for quantifying  give different  values 13 
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We show that only the ln-transformed isotope ratios should be fitted 15 
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ABSTRACT 18 

In multi-elemental compound-specific isotope analysis the lambda () value expresses the 19 

isotope shift of one element versus the isotope shift of a second element. In dual-isotope plots, 20 

the slope of the regression lines typical reveals the footprint of the underlying isotope effects 21 

allowing to distinguish degradation pathways of an organic contaminant molecule in the 22 

environment. While different conventions and fitting procedures are used in the literature to 23 

determine , it remains unclear how they affect the magnitude of  Here we generate synthetic 24 

data for benzene d2H and d13C with two enrichment factors H and C using the Rayleigh equation 25 

to examine how different conventions and linear fitting procedures yield distinct . Fitting an 26 

error-free data set in a graph plotting the d2H versus d13C overestimates  by 0.225% ∙ 𝜀𝐻/𝜀𝐶, 27 

meaning that if 𝜀𝐻/𝜀𝐶  is larger than 22,  is overestimated by more than 5%. The correct fitting 28 

of  requires a natural logarithmic transformation of d2H versus d13C data. Using this 29 

transformation, the ordinary linear regression (OLR), the reduced major-axis (RMA) and the 30 

York methods find the correct , even for large 𝜀𝐻/𝜀𝐶. Fitting a dataset with synthetic data with 31 

typical random errors let to the same conclusion and positioned the suitability of each regression 32 

method. We conclude that fitting of non-transformed d values should be discontinued. The 33 

validity of most previous  values is not compromised, although previously obtained  values 34 

for large 𝜀𝐻/𝜀𝐶 could be corrected using our error estimation to improve comparison. 35 

Key Words 36 

Stable isotopes, pollution, assessment, bioremediation  37 
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1. Introduction 38 

Multi-elemental Compound-Specific Isotope Analysis (ME-CSIA) is increasingly used to assess 39 

the fate of pollutants such as hydrocarbons (Vogt et al., 2016), chlorinated solvents solvents 40 

(Palau et al., 2014, Audi-Miro et al., 2015, Palau et al., 2016), nitrates (Xue et al., 2009), 41 

perchlorates (Sturchio et al., 2012) and pesticides (Ponsin et al., 2019, Melsbach et al., 2020) in 42 

the environment. The slope of the dual-isotope plot (Lambda, ) reflects changes of the isotope 43 

ratios of each element, which can be specific to a reaction mechanism, and thus inform about 44 

transformation processes in the laboratory or in the field. (Vogt et al., 2016, Elsner, 2010) 45 

Several studies (Masbou et al., 2018, Huntscha et al., 2014, Lian et al., 2019, Bouchard et al., 46 

2018, Vogt et al., 2016, Elsner, 2010, Ojeda et al., 2019)  refer to  using the simple definition in 47 

eq. 1, which is written here as an example for hydrogen vs carbon d values (eq. 1). 48 

𝛬 =  
∆𝛿 𝐻 2

∆𝛿 𝐶 13 ≈
𝜀𝐻

𝜀𝐶
 eq. 1 49 

where Dd is the change of isotope ratios from initial values, and  are the enrichment factors for 50 

hydrogen and carbon. The Lambda () is an important parameter in ME-CSIA. It is a practical 51 

and unitless number which characterizes a specific process. It can be determined either by simply 52 

using the two enrichment factors and the right-hand side of equation 1 on one hand, or from 53 

regression analysis in a dual-isotope plots with isotope data of one element versus data of 54 

another element in the same compound (Figure 1). Lambda values were obtained in many studies 55 

(Ojeda et al., 2019, Palau et al., 2017, Rosell et al., 2007, Rodriguez-Fernandez et al., 2018, 56 

Rodriguez-Fernandez et al., 2018, Dogan-Subasi et al., 2017, Cretnik et al., 2013, Audi-Miro et 57 

al., 2013, Palau et al., 2014, Lian et al., 2019, Badin et al., 2016, Mogusu et al., 2015, Ponsin et 58 
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al., 2019, McKelvie et al., 2009, Pati et al., 2012)  from the regression analyses in dual-isotope 59 

plots (i.e., ratios of one isotope as a function of another isotope as delta values; Figure 1A).  60 

Another mathematical notation for  has been described in detail in (Wijker et al., 2013) (eq. 2), 61 

noted here for hydrogen and carbon isotopes: 62 

𝛬 =  
𝑙𝑛[(𝛿 𝐻/1000 2 +1)/(𝛿 𝐻0/1000 2 +1)]

𝑙𝑛[(𝛿 𝐶/1000 13 +1)/(𝛿 𝐶0/1000 13 +1)]
≈

𝜀𝐻

𝜀𝐶
 eq. 2 63 

Figure 1B shows an example of a dual-isotope plot to determine  using eq. 2, named below the 64 

ln-transformed d data. This way of obtaining  was used e.g. in ( Schilling et al., 2019 a+b). 65 

Apart from those two different conventions for plotting isotope data, different methods of linear 66 

regression were proposed to obtain . These include the ordinary linear regression (OLR), the 67 

reduced major axis regression (RMA), and the York linear regression, which have been 68 

compared recently (Ojeda et al., 2019).  69 

The objective of this short comment is to compare the two conventions (i.e., A, with eq. 1 and B, 70 

with 2) to determine  values and the associated uncertainty from a dual-isotope plot. Two 71 

synthetic datasets were generated, one without random error, and a second one with random 72 

errors mimicking measurement uncertainties. Each dataset was fitted with the ordinary linear 73 

regression (OLR), the reduced major-axis (RMA) and the York regression methods and results 74 

were compared. 75 

2. Methods 76 

The Rayleigh equation (eq. 3) (Aelion et al., 2010) was used to generate 10 synthetic exact data 77 

points for each element (i.e., C and H). We used isotope enrichment factors for carbon and 78 
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hydrogen corresponding to methanogenic degradation of benzene: C = -2.0 and H = -59.5 ‰. 79 

(Mancini et al., 2003) The remaining fraction (𝑓) of benzene was varied from 1 to 0.1 in steps of 80 

0.1 (see data set in the supplementary data). 81 

𝑅

𝑅0
= 𝑓(𝛼−1) eq. 3 82 

Where R is the isotope ratio, R0 is the initial isotope ratio (chosen as the R of international 83 

standard Rstd), 𝑓 is the fraction of compound remaining (C/C0), and  is the isotope fractionation 84 

factor (equal to /1000 +1). The resulting isotope ratios were expressed as d values [d =(R/Rstd-85 

1)*1000; Rstd,H=1.5575E-4; Rstd,C=0.011237] and plotted in Figure 1A (Dd vs DdC, eq .1) 86 

and 1B (ln-transformed data, eq. 2). The resulting slopes should reflect the ratio of original 87 

isotopic enrichment values, -59.50/-2.00, thus =29.75. 88 

A second dataset was generated using the same enrichment factors but introducing random errors 89 

in the calculated d values (see Table S1 in supplementary data). The d values of this set had a 90 

random error of up to ± 0.5 ‰ for carbon and up to ± 5.0 ‰ for hydrogen, which corresponds to 91 

the typical total analytical uncertainties. 92 

Finally, 25 more datasets (data not shown) were generated in the same manner as dataset 1 93 

without random error, keeping C = -2.0 ‰ and varying H over H / C ratios from 2 to 50. Each 94 

of these data sets was fitted with OLR, and the overestimation of fit A over fit B was quantified 95 

and plotted in Figure 2 as a function of 𝜀𝐻/𝜀𝐶 96 

The datasets were generated with Excel (Microsoft), Vs. 2011), and linear regressions (OLR, 97 

RMA and York) were calculated with a script adapted from Ojeda et al. (2019) and were not 98 

forced through the origin. 99 
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3. Results 100 

The dataset 1 with the raw Dd values (eq. 1) does not plot on a perfect straight line (Figure 1A). 101 

The slope becomes steeper with increasing d values (smaller 𝑓). An OLR gives a mean  of 102 

31.70 ± 0.21 (R2 >0.99), which overestimates the true  of 29.75 by 6.6 %. In contrast, the 103 

dataset 1 with ln-transformed d values (eq. 2) plots perfectly on a straight line with a slope of 104 

29.74 ± 0.02 with an R2 of 1.0000 (Figure 1B), which matches the true . 105 

 106 

 107 

 108 

 109 

 110 

 111 

 112 

 113 

   114 

Fig. 1. Dual-isotope plot of A) raw Dd values (according to eq. 1), and B) ln-transformed d 115 

values (according to eq. 2). Crosses correspond to exact datapoints (dataset 1) and grey 116 

diamonds are datapoints with random error (dataset 2).117 
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 118 

Table 1: Comparison of  calculated with the raw Dd values (convention A, eq. 1) and the ln-transformed d values (convention B, eq. 119 

2) using the OLR, RMA and York methods, for the exact data points (dataset 1) and data generated with a random error (dataset 2).120 

 121 

Exact data points (dataset 1) 

 Dd vs Dd  ln-transformed 

   SE R2   SE R2 

OLR 31.70 0.21 >0.99  29.74 0.02 1.00 

RMA 31.71 0.19 >0.99  29.74 0.02 1.00 

York 31.71 3.77 >0.99  29.74 3.56 1.00 

SE: Standard error of  122 

 123 

 124 

 125 

 126 

 127 

Random error (dataset 2) 

Dd vs Dd  ln-transformed 

 SE R2   SE R2 

30.08 2.13 0.96  28.15 2.16 0.95 

30.67 1.90 0.98  28.80 1.93 0.98 

31.17 3.68 0.96  29.33 3.50 0.95 

 128 



Short Comm. Chemosphere 8 

 

 

The overestimation of  calculated with convention A compared to convention B was quantified 129 

as a function of H/C ranging from 2 to 50 (Fig. 2; OLR method)). 130 

 131 

Fig. 2 Overestimation of  () as a function of H/C (symbols) when convention A (eq. 1) is 132 

used. The straight dotted line is the mean error increase of 0.225% per H/C. 133 

Figure 2 shows that the error in a graph plotting the d values like in Fig. 1.A overestimates  by 134 

11.5 % when H / C  reaches 50. The increase of the error is almost linear with a slope of 0.225% 135 

per H / C  136 

4. Discussion 137 

The use of the exact (error-free) synthetic dataset to compare conventions A (eq. 1) and B (eq. 2) 138 

emphasized that  calculated with convention A is linearly overestimated (eq.1). The difference 139 
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of  obtained with convention A and B has a pure mathematical cause (Wijker et al., 2013): 140 

equation 1 is derived from eq. 2 by a Taylor series expansion which is only approximate. 141 

Höhener and Atteia (Höhener and Atteia, 2014) derived mathematically the dependence of the 142 

slope  on the remaining, non-degraded fraction f in a dual-isotope plot (eq. 4) based on the 143 

theory of Rayleigh distillation. 144 

𝛬 =  
∆𝛿 𝐻 2

∆𝛿 𝐶 13 =
𝑓

𝜀𝐻
1000

−1

𝑓
𝜀𝐶

1000
−1

 eq. 4 145 

Equation 4 (eq. 16 in (Höhener and Atteia, 2014)) shows that  is increasing with decreasing f , 146 

as observed in Figure 1A. Thus, for f close to one,  is 29.75, while for f = 0.1,  is 31.80.  147 

All three regression methods tested for convention A with dataset 1 gave a similar  of 31.7, 148 

although their standard errors (SE) differed (Table 1). OLR and RMA methods gave a narrow SE 149 

(0.21 and 0.19, respectively), leading us to the wrong conclusion that  is > 31. Regression with 150 

the York method gave a larger SE ( = 31.71 ± 3.68, Tab. 1), which represents a correct but 151 

inaccurate description of the true  of 29.75. For convention B and dataset 1, all three regression 152 

methods find the true , although only the OLR and RMA method yielded accurate  within 153 

narrow error limits. 154 

Measured isotope ratios are always affected by random errors from measurements, which were 155 

accounted for in dataset 2 to calculate  (Table 1). All three methods predicted    using 156 

convention A, and  was associated with large SE, ranging from 1.90 to 3.68. Using convention 157 

B,  ranged from 28.15 to 29.33, with SE ranging from 1.9 (RMA) to 3.5 (York). For dataset 2, 158 

RMA was the best fitting method, yielding the narrower SE, while both OLR and York gave 159 
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accurate predictions also with higher error. All regressions match thus the true value of 29.75 160 

within their error limits.  161 

To sum up, the error-free data in a dual-isotope plot with Dd vs Dd values do not lie on a straight 162 

line and thus should not be fitted with any linear regression. The slope in a Dd vs Dd plot is per 163 

definition a function of the progress of reaction f (eq. 4). A non-linear curve is obtained, 164 

especially when the orders of magnitude of the enrichment factors differ. Linear regressions in 165 

such plots yield  that overestimate the true  and should be discontinued. The correct 166 

convention to linearize data is provided in eq. 2 and should be applied as in Figure 1B to obtain 167 

accurate  OLR and RMA regression methods yield narrower error estimates, whereas the York 168 

method finds the true  within a larger error margin. The validity of most previously obtained  169 

values with convention A might not be compromised given the total uncertainty of the 170 

experimental and analytical methods. However, in a few cases with large 𝜀𝐻/𝜀𝐶 ratios, corrections 171 

might be applied in order to compare optimally all  values. The simple procedure to follow 172 

consists in using Fig. 2 of our manuscript, selecting the appropriate ratio of epsilons, reporting 173 

the corresponding error percentage (which is the percentage of overestimation) to lower  by this 174 

percentage. Worthy of note, if experimental data still plotting nonlinearly on a ln-transformed 175 

plot with eq. 2, as e.g. in (Dorer et al., 2014), another process may be involved, including a very 176 

strong hydrogen fractionation (tunneling), concentration-dependent fractionation and/or 177 

instrumental non-linearity. In these specific cases,  cannot be expressed as a constant number. 178 
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Table S1: Datasets used in this work                             313 

 Table S1: Synthetic data shown in Figure 1 and used for fitting. 314 

     

Remaining 
Exact data points 

(dataset 1)  
Random error  

(dataset 2) 

fraction d13C d2H d13C d2H 

f ‰ ‰ ‰ ‰ 

1 0 0 0 0 

0.9 0.21 6.29 0.41 1.79 

0.8 0.45 13.37 0.55 16.87 

0.7 0.71 21.45 0.46 25.95 

0.6 1.02 30.86 0.57 34.86 

0.5 1.39 42.10 1.44 43.6 

0.4 1.83 56.03 1.48 59.53 

0.3 2.41 74.26 2.16 76.26 

0.2 3.22 100.50 2.92 99.0 

0.1 4.62 146.83 4.92 146.33 
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