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Abstract. Visual search is an essential cognitive ability, offering a pro-
totypical control problem to be addressed with Active Inference. Under
a Naive Bayes assumption, the maximization of the information gain ob-
jective is consistent with the separation of the visual sensory flow in two
independent pathways, namely the “What” and the “Where” pathways.
On the “What” side, the processing of the central part of the visual
field (the fovea) provides the current interpretation of the scene, here
the category of the target. On the “Where” side, the processing of the
full visual field (at lower resolution) is expected to provide hints about
future central foveal processing given the potential realization of saccadic
movements. A map of the classification accuracies, as obtained by such
counterfactual saccades, defines a utility function on the motor space,
whose maximal argument prescribes the next saccade. The comparison
of the foveal and the peripheral predictions finally forms an estimate
of the future information gain, providing a simple and resource-efficient
way to implement information gain seeking policies in active vision. This
dual-pathway information processing framework is found efficient on a
synthetic visual search task with a variable (eccentricity-dependent) pre-
cision. More importantly, it is expected to draw connections toward a
more general actor-critic principle in action selection, with the accuracy
of the central processing taking the role of a value (or intrinsic reward)
of the previous saccade.

Keywords: Object detection · Active Inference · Visual search · Visuo-
motor control · Deep Learning.

1 Introduction

Moving fast the eye toward relevant regions of the scene interestingly combines
elements of action selection (moving the eye) with visual information process-
ing. Noteworthy, the visual sensors have evolved during natural selection toward
maximizing their efficiency under strong energy constraints. Vision in most mam-
mals, for instance, has evolved toward a foveated sensor, maintaining a high den-
sity of photoreceptors at the center of the visual field, and a much lower density
at the periphery. This limited bandwidth transmission is combined with a high
mobility of the eye, that allows to displace the center of sight toward different
parts of the visual scene, at up to 900 degrees per second in humans. Beyond
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Fig. 1. Computational graph. Based on the anatomy of mammals’ visual path-
ways, we define the following stream of information to implement visual search, one
stream for localizing the object in visual space (“Where?”), the other for identifying it
(“What?”). (A) The visual display is a stack of three layers: first a natural-like back-
ground noise is generated, characterized by noise contrast, mean spatial frequency and
bandwidth [1]. Then, a sample digit is selected from the MNIST dataset [2], rectified,
multiplied by a contrast factor and overlaid at a random position. Last, a circular, gray
mask is put on. (B) The visual display is then transformed in a retinal input which is
fed to the “Where” pathway. This observation is generated by a bank of filters whose
centers are positioned on a log-polar grid and whose size increases proportionally with
the eccentricity. The “Where” network outputs a collicular-like accuracy map. It is im-
plemented by a three-layered neural network consisting of the retinal log-polar input,
two hidden layers (fully-connected linear layers combined with a ReLU non-linearity)
with 1000 units each. This map has a similar log-polar (retinotopic) organization and
predicts the accuracy at the counter-factual positions of affordable saccades. The posi-
tion of maximal activity in the “Where” pathway serves to generate a saccade denoted
which displaces the center of gaze at a new position. (C) This generates a new sensory
input in the fovea which is fed to a classification network (“What” pathway). This net-
work is implemented using the three-layered LeNet neural network [2]. This network
outputs a vector predicting the accuracy of detecting the correct digit. (D) Depend-
ing on the (binary) success of this categorical identification, we can first reinforce the
What network, by supervisedly learning to associate the output with the ground truth
through back-propagation. Then, we similarly train the “Where” network by updating
its approximate prediction of the accuracy map.

the energetic efficiency, foveated vision improves the performance of agents by
allowing them to focus on relevant vs. irrelevant information [3]. As such, this
action perception loop uniquely specifies an AI problem [4, 5].

Indeed, Friston [6] proposed the FEP as a general explanatory principle be-
hind the puzzling diversity of the mechanistic processes taking place in the brain
and the body. One key ingredient to this process is the (internal) representation
of counterfactual predictions, that is, the probable consequences of possible hy-
pothesis as they would be realized into actions (here, saccades). Equipping the
agent with the ability to actively sample the visual world allows to interpret
saccades as optimal experiments, by which the agent seeks to confirm predictive
models of the (hidden) world [4, 7]. Following such an active inference scheme,
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numerical simulations reproduce sequences of eye movements that fit well with
empirical data [8, 9].

In particular, we focus here on visual search which is the cognitive ability
to locate a single visual object in cluttered visual scene by placing the fovea
on the object, in order to identify it [10–12]. As such, visual search intimately
links the sampling of visual space (as it is done by the sensory apparatus) to the
behavior which directs this sampling through the action of moving the direction
of gaze. Note that the retina samples visual information predominantly on the
fovea, though the target may lie in the periphery, where the acuity is lower.
It is therefore commonplace that the target is not identifiable with the current
information contained on the retinal image. As a consequence, visual search
involves the problem that, given a limited observability, the object has to be
localized before being identified.

Compared to earlier modelling studies, such as [13], we are concerned with
the problem of both locating and identifying the target. This implies the capabil-
ity to process the visual data and extract features from a complex (non-uniform)
retinotopic visual sampling. This observation highlights an important hypothesis
for solving the visual search problem. The semantic content of a visual scene is
indeed defined by the positions and identities of the many objects that it con-
tains. In all generality, the identity of an object is independent from its position
in retinotopic space which is contingent on the observer’s point of view. We thus
consider the assumption that the visual system of mammals is built around such
an independence hypothesis. The independence assumption, largely exploited in
machine learning, is also known as the “Näıve Bayes” assumption. It simply
considers as independent the different factors (or latent features) that explain
the data. This implies here that inferring the identity and the position can be
performed independently, and thus, could be processed sequentially. Selecting an
object and identifying both its position and category may thus be the elemen-
tary bricks of visual processing. It may moreover explain the general separation
of visual processing into the ventral and dorsal pathways. These two specific
processing pathways are devoted to the processing of the stream of visual infor-
mation, either to identify the semantic content of the visual field (the “What”
pathway), or to decide where to orient next the line of sight (the “Where” path-
way). They may operate in a continual and incremental turn-taking fashion,
contributing to understand and exploit at best the visual information.

2 Problem statement: formalizing visual search as
accuracy seeking

2.1 Visual search task

In this manuscript, we built upon an existing model [14] by precisely defining
the mathematical framework under the Active Inference formalism. This model
is based on a simplified generative model for a visual search task and a proposed
algorithm to implement the task. First, in order to implement those principles

http://www.scholarpedia.org/article/Visual_search
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into a concrete image processing task, we construct a simple yet ecological virtual
experiment: After a fixation period of 200 ms, an observer is presented with
a luminous 128 × 128 display showing a single target overlaid on a realistic
noisy background (see Figure 1-A). This target is drawn in our case from the
MNIST database of manuscript digits consisting of 60000 grayscale images of
size 28×28 [2]. This image is displayed for a short period of about 500 ms which
allows to perform (at most) one saccade toward the (unique) target. The goal of
the agent is ultimately to correctly identify the digit.

2.2 Central processing

Following the Free Energy minimization principle (FEP) [6], engaging in a sac-
cade stems on maintaining the visual field within the least surprising possible
state. This implies, for instance, the capability to predict the next visual input
through a generative model, and to orient the sight toward regions that mini-
mize the agent’s predicted model surprise [4]. Due to their limited memory and
processing capabilities, living brains do not afford to predict or simulate their
sensory environment exhaustively. Given the vast diversity of possible visual
fields, one should assume that only the foveated part should deserve predictive
coding. This implies that the saccadic motor control should be tightly optimized
in order to provide a foveal data that should allow to accurately identify (and
predict) the target.

In our model, we divide the retina into the fovea, which constitutes the cen-
ter of the retina, and the peripheral region, which provides a visual information
with a decreasing precision as a function of eccentricity. When considering the
full visual field, the exponential decrease of the density of photo-receptors with
respect to eccentricity [15] must be reflected in a non-uniform sampling of the
visual data. It is here implemented as a log-polar conformal mapping, as it pro-
vides a good fit with observations in mammals and has a long history in computer
vision and robotics [16]. These coordinates are denoted as the couple u = (ε, θ)
corresponding respectively to the log-eccentricity and azimuth in (spherical) po-

lar coordinate by ρ(u)
def.
= (R · exp(ε) · cos θ,R · exp(ε) · sin θ) with R the maximal

eccentricity.

Let us define as x a spatial coordinate in the input image cartesian referential

(with x0
def.
= (0, 0) defining the center of the image), with xt the position of the

target and kt ∈ {0, . . . , 9} its identity. The content of the fovea is considered
as spatially uniform, here defined by extracting the 28 × 28 sub-image f t(x)
at gaze direction x (initially x0). At any given trial t drawn from the set T of
trials of our virtual experiment, knowing the corresponding position xt of the
object, the problem of identifying the object can be solved, for instance, by a
deep neural network [2] which infers its category. This network takes f t(x) as
an input and returns a multinomial distribution vector a(f t(x)) ∈ R10 (with∑

k ak(f t(x)) = 1). This network takes here the role of the “What” pathway.
Knowing the correct label kt (and position xt) for this trial t, this network is
trained using a gradient descent with a categorical Cross Entropy loss. This loss
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is by definition:
Lt
K = − log akt(f t(x)) (1)

The gradient descent is computed at each trial and the process is iterated over the
set T of trials which give pairs of inputs f t(x) and outputs kt for this supervised
learning scheme. The accuracy of this classic neural network is known to exceed
98% over the genuine MNIST database [2], on par with human performance. Due
to the max-pooling layers used between the convolutional layers, it also shows
a robust translation invariance. In our experimental conditions, the network is
trained over an augmented MNIST digits dataset, having a variable contrast, a
variable shift (from 0 to 15 pixels away from the center) and a variable (randomly
generated) background.

Knowing f t(x), the categorical response is kt = arg maxk ak(f t(x)). This
response can be correct or incorrect. The correctness of the response is noted
o(f t(x)) as we test our model. This value, that is 1 for a correct response and 0
otherwise, can be interpreted as a binary random variable. This random variable
can be sampled at different t, with different success or failures depending on the
actual target position xt.

2.3 Accuracy map

The “What” neural network is constructed such that it can provide an estimate
of the chance of success for every possible category by processing the central
part of the visual field, i.e. the fovea. This chance of success could in principle
be estimated the same way at any peripheral position x 6= x0, through making
a saccade and estimating the chance of success at gaze direction x. Then, for
any target position xt, and under an ergodic assumption, it could provide a
belief on the average success that would be obtained at all positions x, i.e.

At(x)
def.
= akt(f t(x)) ≈ Pr(kt|f t(x)). This accuracy being defined for any gaze

direction x, one could thus construct a map providing the expected probability
of classification success knowing a potential future eye direction x afforded by
a saccade. From the definition of the “What” network, this could be simply
approximated by the accuracy of the selected class:

At(x) ≈ max
k

ak(f t(x)) (2)

In principle, one could extract all possible sub-images f t(x) at all positions
x, and estimate At(x) directly. Moving the eye toward x̂ = arg maxxA

t(x) and
finding the object’s identity at location x̂ would solve the problem of both iden-
tifying and locating the target. This brute-force solution is of course computa-
tionally prohibitive, but provides a baseline toward a more biologically-relevant
processing.

The belief in the success or the failure of identifying the target at different
positions being, by construction, an output of the “What” pathway, it is essential
for a visual search task to estimate the correctness of the test prior to a saccade,
that is, to predict the statistics of o(f t(x)) from At(x). The eye next position x
being the result of a motor displacement u, with x = x0 +ρ(u) = ρ(u), it should
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be governed by a policy, i.e. a method that selects the next movement from the
available visual input. The set of all possible displacements forms a motor map,
and such a policy can be formalized as a mapping from the visual input space
toward the motor map. Following the classical reinforcement learning literature,
the motor map is expected to provide a value over the space of actions. We
postulate here that the value of the motor displacement u is identified with the
classification accuracy obtained at position x = ρ(u). Moreover, we will show
that, with minimal simplifying assumptions, this postulate can be framed into
the more general framework of Active Inference.

3 Principles: supervised learning of action selection

3.1 Peripheral visual processing

On the visual side, local visual features are extracted as oriented edges as a
combination of the retinotopic transform with filters resembling that found in
the primary visual cortex [17]. The centers of these filters are radially organized
around the center of fixation, with small receptive fields at the center and more
large and scarce receptive fields at the periphery. The size of the filters increases
proportionally with the eccentricity. To cover the visual space from the periphery
to the fovea, we used 10 spatial eccentricity scales ε ∈ [−4,−1] such that the
filters are placed at about 2, 3, 4.5, 6.5, 9, 13, 18, 26, 36.5, and 51.3 pixels from
the center of gaze. There are 24 different azimuth angles allowing them to cover
most of the original 128 × 128 image. At each of these positions, 6 different
edge orientations and 2 different phases (symmetric and anti-symmetric) are
computed.

This finally implements a bank of linear filters which models the receptive
fields of the primary visual cortex. Assuming this log-polar arrangement, the
resulting retinal visual data at this trial is noted as the feature vector st(x).
For simplicity, it is noted st further on. The length of this vector is 2880, such
that this retinal processing compresses the original image by about 83%, with
high spatial frequencies preserved at the center and only low spatial frequencies
conserved at the periphery. In practice, the bank of filters is pre-computed and
placed into a matrix for a rapid transformation of input batches into feature
vectors.

3.2 Motor control

Assuming the motor control is independent from the identity pathway, we take
the classification success, as measured at the output of the “What” pathway,
as the principal outcome of the “Where” pathway. It is assumed, in short, that
the surprise should be higher in case of failure than in case of success, and
that minimizing the surprise through active inference should be consistent with
maximizing the likelihood of success.

On the motor side, a possible saccade location is defined as u
def.
= (ε, θ). Each

coordinate of the visual field, except for the center, is mapped on a saccadic
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motor map. The motor map is also organized radially in a log-polar fashion,
making the control more precise at the center and coarser at the periphery.
This modeling choice is reminiscent of the approximate log-polar organization
of the superior colliculus (SC) motor map [18]. Given a saccade command u, the
corresponding classification success is noted o(f t(ρ(u))). This success (or failure)
being measured after the saccade, it must be guessed from a model. We posit
here that the principle underlying the “Where” processing pathway is to predict
the probability of success for every possible saccade command. This success is
considered a realization of the likelihood p(o|u, st). It is important here to note
the dependence on the (peripheral) visual observation st. Our likelihood function
p can be seen as a mapping from st to the set U of possible saccade commands.
Following these definitions, the objective of the “Where” processing pathway is
to allow a saccadic decision by training such a likelihood function w(u|st) from
observing failures and success from different saccades selection.

Now, the optimization being done on u, our saccade selection process relies
on maximizing the likelihood of success, i.e. arg maxu p(o = 1|u, st), that is
consistent with assuming that a prior is put on observing a success, whatever
the saccade. Computing a good approximation of the likelihood p(o = 1|u, st) is
therefore crucial to perform visual search:

w(u|st) ≈ p(o = 1|u, st) = At(ρ(u)) (3)

where ρ(u) is the future position of gaze for a saccade u, and st is the feature
vector representing the present peripheral observation. The model predicts the
accuracy of the “What” pathway, given the action u (saccade).

The choice of a saccade given the likelihood may be obtained from the max-
imum a posteriori rule :

πmax(st) = arg max
u

p(o = 1|u, st) · Pr(u) (4)

With for instance Pr(u) = Unif(u) a uniform prior probability on saccade selec-
tion, that is, uniformly on motor space, we obtain the policy (approximate in
probability):

πmax(st) ≈ π̂max(st)
def.
= arg max

u
w(u|st) (5)

Similarly, another strategy would be to use the approximate conditional expec-
tation on action space:

π̂avg(st)
def.
=

∫
u

u · w(u|st) · Pr(u) · du (6)

Note that this conditional expectation is different from that that would operate
in cartesian coordinates. In particular, using a log-polar accuracy map comes
with an intrinsic prior for the saccades to be closer to the fixation point (see
Figure 2).

Incidentally, the unimodal shape of the accuracy map indicates that a highest
chance of success is found when the target is centered on the fovea, and for that
reason the active inference mechanism should privilege saccades that will place
the visual target at the center of the fovea. This is equivalent to identifying the
location of the target in the retinotopic space, and thus inferring the spatial
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information from the visual field, with the future saccade taking the role of a
latent variable explaining the current visual field st.

From the active inference perspective, choosing the accuracy map as a like-
lihood function is like putting a prior on observing a success. In other words,
the agent is more “surprised” in case of classification failure than in case of clas-
sification success. Taking the classification success as the principal outcome of
the “Where” pathway, the action selection process now relies on minimizing the
surprise as upper-bounded by the free-energy:

− log p(o = 1|st) ≤ F with F
def.
= Eq[− log p(o = 1|π, st)+log q(π|st,o = 1)−log p(π|st)]

(7)
with π the policy taking the role of a latent variable predicting the (future)
classification success, and q being a probability distribution function on action
selection policy. Finally, the visual search problem can be summarized as op-
timizing the function q which would define a saccade selection policy from a
maximum success evidence perspective.

3.3 Higher level inference: choosing the processing pathway

Inferring the target location and identity sums up in our case to select a saccade
in order to infer the target category from the future visual field. It is likely,
however, that a saccade may not provide the expected visual data, and that
a corrective saccade may be needed to improve the visual recognition. More
generally, choosing to move the eye or to issue a categorical response from the
available data resorts to select one processing pathway over the other: either
realize the saccade or guess the category from the current foveal data. In order
to make this choice, one must guess whether the chance of success is higher in the
present, given the current visual field, or in the future, after the next saccade.

This, again, can be expressed under the active inference setup. Let p(o|f(x0))
the probability of success when processing the foveal data, as provided by the
“What” network. Under the policy π (provided by the “Where” network), the
decision decomposes into a binary choice between issuing a saccade or not.
This decision should rely on comparing p(o|f(ρ(π(s)) (the future accuracy) and
p(o|f(x0)) (the current accuracy). The active inference comes down here to a bi-
nary choice between actuating a saccade or “actuating” (testing) the categorical
response.

Interestingly, the log difference of the two probabilities

log p(o|f t(ρ(π(st))− log p(o|f t(x0)) ∼ logAt(ρ(π(st)))− logAt(x0) (8)

can be seen as an estimator of the information gain provided by the saccade.
Choosing to actuate a saccade is thus equivalent to maximising the information
gain provided by the new visual data, consistently with the classic “Bayesian sur-
prise” metric [19]. Expanding over purely phenomenological models, our model
finally provides a biologically interpretation of the information gain metric as a
high-level decision criterion, linked to the comparison of the output of the two
principal visual processing pathways.
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3.4 Learning the accuracy map

Neural Networks are known to be in theory universal value function approxima-
tors and in practice, we will use a network architecture, alike to that used for
the “What” pathway. This will provide a sufficient argument for showing that it
is possible to learn such a mapping, while leaving open the possibility that other
architectures may be actually implemented in the brain. The parametric neural
network consists of the input feature vector st (of dimension 2880), followed by
two fully-connected hidden layers of size 1000 with rectified linear activation
units (ReLUs). A final fully-connected output layer with a sigmoid nonlinearity
ensures that the output is compatible with a likelihood function. In accordance
with observations [18, 20], the same log-polar compression pattern is defined at
the retinal input and at the motor output (see Figure 1).

To learn the mapping provided by the “Where” network, we use the BCE
cost as the Kullback-Leibler divergence between the tested accuracy and its
approximation:

Lt
S = −[o(f t(ρ(ut))) · logw(ut|st) + (1− o(f t(ρ(ut))) · log(1− w(ut|st))] (9)

We then optimize the parameters of the neural network implementing the
“Where” pathway such as to optimize the approximation of the likelihood func-
tion. This can be achieved in our feed-forward model using back-propagation [2]
with the input-output pairs (st, ut) and the classification result as it is given by
the “What” pathway. The role of the “What” pathway is here that of a critic
of the output of the “Where” pathway (which takes the role of the actor). This
separation of visuo-spatial processing into an actor and a critic is reminiscent
of a more general actor-critic organization of motor learning in the brain, as
postulated by Joel, Niv, and Ruppin [21].

The natural way to collect such supervision data is to draw data one by one
in our virtual experiment, iteratively generating a saccade and computing the
success of the detection. This is what would be performed by an agent which
would sequentially learn by trial-and-error, using the actual recognition accuracy
(after the saccade) to grade the action selection and leading to a reinforcement
scheme. For instance, we could use corrective saccades to compute (a posteriori)
the probability of a correct localization. In a computer simulation however, this
calculation is slow and not amenable. To accelerate the learning in our scheme
defined by a synthetic generative model, there exists however a computational
shortcut to obtain more supervision pairs. Indeed, the learning of the where
pathway may be done after that of the what pathway. Such a computational
shortcut is allowed by the independence of the categorical performance with
position. Moreover, for each input image, we know the true position in extrinsic

(xt) and intrinsic (ut
def.
= ρ−1(xt)) and identify kt of the target. As such, one can

compute the average accuracy map over the dataset and optimize equivalently

Lt
S = −

∑
u∈S

[A0(u− ut) · logw(u|st) + (1−A0(u− ut)) · log(1− w(u|st)] (10)

where A0(∆u) stands for the accuracy map with respect to the true position,
that is, of the accuracy when the input image to the “What” pathway is system-
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atically shifted by ρ(∆u). In our setting, this function varied little for different
identities and we averaged it over all possible identities. Combining this trans-
lational shift and the shift-dependent accuracy map of the “What” classifier,
the actual accuracy map at each trial can be thus predicted under an ergodic
assumption by shifting the central accuracy map on the true position of the
target (that is with ∆x = ρ(u) − xt). Then, this full accuracy map is a prob-
ability distribution function which can be computed on the rectangular grid of
the visual display. We project this distribution on a log-polar grid to provide the
expected accuracy of each hypothetical saccade in a retinotopic space similar to
a collicular map. Applied to the full sized ground truth accuracy map computed
in metric space, this gives an accuracy map at the different positions of the
retinotopic motor space S. This accelerate learning as it scales up both the set
of tested saccade positions and gives the analog bias value instead of the binary
outcome of the detection. Future work should explore if similar results will still
hold when both networks are learned at the same time and with a trial-and-error
strategy.

4 Results

After training, we observed that the “Where” pathway can correctly predict an
accuracy map, whose maximal argument can be chosen to drive the eye toward
a new viewpoint with a single saccade. There, a central snippet is extracted,
that is processed through the “What” pathway, allowing to predict the digit’s
label. The full scripts for reproducing the figures and explore the results to
the full range of parameters is available at https://github.com/laurentperrinet/
WhereIsMyMNIST (under a GPLv3 license). The network is trained on 60
epochs of 60000 samples, with a learning rate equal to 10−4 and the Adam
optimizer [22] with standard momentum parameters. An improvement in con-
vergence speed was obtained by using batch normalization. One full training
takes about 1 hour on a laptop. The code is written in Python (version 3.7.6)
with the pyTorch library [23] (version 1.1.0).

Saccades distributions and classification success statistics resulting from this
simple sequence are presented in Figure 2. Figure 2A-C provides an example of
our active visual processing setup. The initial visual field (Fig. 2A) is processed
through the “Where” pathway, providing a predicted accuracy map (compared
with the true accuracy map in Fig. 2B)). The maximal argument of the accu-
racy map allows to actuate a saccade. The resulting visual field is provided in
Fig. 2C, and the classification is done on the central part of the visual field only
(red square). To generalize results, 1000 saccades are sampled for different se-
quences of input visual fields containing a target with a fixed eccentricity, but
a variable identity, a variable azimuth and a variable background clutter. The
digit contrast parameter is set to 70% and the eccentricity varies between 4 and
40 pixels. The empirical classification accuracies are provided in Figure 2D, for
different eccentricities. These are averaged over all trials both on the initial cen-
tral snippet and the final central snippet (that is, at the landing of the saccade).

https://github.com/laurentperrinet/WhereIsMyMNIST
https://github.com/laurentperrinet/WhereIsMyMNIST
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Fig. 2. Example of active vision after training the “Where” network. Digit contrast
set to 70%. From left to right: (A) Magnified reconstruction of the visual input, as
reconstructed from the primary visual feature vector through an inverse log-polar trans-
form. (B) Color-coded radial representation of the output accuracy maps, with dark
blue for the lower accuracy values, and yellow for higher values. The network output
(“Predicted”) is visually compared with the ground truth (“True”). (C) Visual field
shift obtained after doing a saccade: The digit (the number 4) can now be recognized
within the foveal region. (D) The final classification rate is plotted in function of the
target eccentricity. The transparent orange corresponds to the pre-saccadic accuracy
from the central classifier (’no saccade’). The blue bars correspond to the post-saccadic
accuracy (’one saccade’), averaged over 1000 trials per eccentricity. Red line : empiri-
cal information gain, estimated from the accuracy difference. (E) Saccades distribution
for different target eccentricities. The same saccades are plotted in (pixel) Cartesian
coordinates on the left, and in log-polar coordinates on the right. The Cartesian coor-
dinates correspond to the effector space while the log-polar coordinates correspond to
the motor control space. In both cases, the empirical marginal distributions over one
axis are shown on the right side.

The (transparent) orange bars provide the initial classification rate (without
saccade) and the blue bars provide the final classification rate (after saccade).
As expected, the accuracy decreases in both cases with the eccentricity, for the
targets become less and less visible in the periphery. The decrease is rapid in the
pre-saccadic case: the accuracy drops to the baseline level for a target distance
of approximately 20 pixels from the center of gaze, consistent with the size of
the target. The post-saccadic accuracy provides a much wider recognition range,
with a slow decrease from about 90% recognition rate up to up to about 60%
recognition when the target is put at 40 pixels away from the center. An estimate
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of the information gain provided is provided through a direct comparison of the
empirical accuracies (red line). Here an optimal information gain is obtained in
the 25-35 eccentricity range.

The lower accuracy observed at larger ranges is an effect of the visual signal
bandwidth reduction at the larger eccentricities, that do not allow to accurately
separate the target from the background. The spatial spreading of the saccades
obtained at different eccentricities is represented on Figure 2E. The same sac-
cades have been represented in Cartesian (pixel) coordinates (left figure) and
in log-polar coordinates (right figure). By construction, the log-polar process-
ing, implemented in the “Where” visuo-spatial pathway, leads to a decrease in
saccade precision with respect to the eccentricity. This decreasing precision is
illustrated by the higher variance of the saccades distribution observed at higher
eccentricities, in the Cartesian space of the saccade realization. Interestingly,
the variance of the marginal distribution of the saccades along the eccentricity
axis is close to constant when represented in the log-polar space, that is, in the
space of the (collicular) motor command. From 10 to 30 pixels away from the
center, the precision of the command is invariant with respect to the eccentricity.
The lower precision observed at about 40 pixels eccentricity only reflects a lower
detection rate. Due to the log-polar construction of the motor map, the motor
command (falsely) appears to display the same precision at various eccentrici-
ties. As it would be the case with a more detailed model of the motor noise, this
log-polar organization of the control space can be interpreted as a natural re-
normalization, helping to counteract the precision loading that would otherwise
be attached with the larger saccades, helping to provide a more uniform spread
of the motor command in the effector space.

5 Discussion and perspectives

We proposed a computer-based framework allowing to implement visual search
under bio-realistic constraints, using a foveated retina and a log-polar visuo-
motor control map. A simple “Näıve Bayes” assumption justifies the separation
of the processing in two pathway, the “What” visuo-semantic pathway and the
“Where” visuo-spatial pathway. The predicted classification rate (or classifica-
tion accuracy), serves as a guiding principle throughout the paper. It provides a
way to link and compare the output of both pathways, serving either to select
a saccade, in order to improve the chance of success, or to test a categorical
response on the current visual data.

Future work should explore the application of this architecture to more com-
plex tasks, and in particular to a more ecological virtual experiment consisting
in classifying natural images. In particular, it would be possible to generalize
this to a sequence of saccades, that is, mapping out an entire sequence of sac-
cades by the where pathway, given the current field of view [24]. Finally, we
used here the log-polar retinotopic mapping as a constraint originating from the
anatomy of the visual pathways and have shown in Figure 2 that this implicitly
generate a uniform action selection probabilty. At the temporal scale of natural
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selection, one could also consider this mapping as the emergence of an optimal
solution considering an ecological niche, explaining for instance why foveal re-
gions are more concentrated in predators than in preys, as shown for instance in
avians [25]. As can be observed in the comparative study of pupils’ shapes [26],
this may justify the differences observed between preys (with a less sparse cone
density at the periphery) and predators (with a tendency toward denser foveal
regions) as a form. The compromise between the urgency to detect and the need
to be accurate may justify the different balances which may exist in different
species and thus as long term form of homeostasis [27].
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