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Abstract

The fast normalized cross-correlation (NCC) calculation method presented here features low computational requirements, which
makes it suitable for being implemented in real time onboard micro-controllers with very few computational resources. This method
was adapted for making distance measurements, using a high speed optic flow sensor operating at 20m/s. An application of this
study is to develop a proof of concept of an innovative optic flow sensor fixed at the tip of an helicopter’s blade (from Airbus
Helicopter) to measure the distance to various obstacles (wall, cliff...) in the azimuthal plane (rotor plane) during hovering flight.
Due to its small size, this sensor developed in this paper can also be also adapted for Micro aerial vehicles (MAVs). This method
of calculation requires less memory than the reference method, at the expense of some extra arithmetical operations, but it is still
significantly lighter than the classical NCC method. An algorithm for implementing this method in real-time robotic applications
is presented. Experimental results confirm the efficiency of this highly time-saving method.

Keywords: Optic flow sensor, normalized cross-correlation, time delay, distance estimation, real-time calculation

1. Introduction

Obstacle detection for aircraft, and in particular for rotary
wing aircraft moving at low altitude, is a subject which has
not yet found a commercially viable technical-operational re-
sponse for the greatest number of operators. This is an ongoing
concern because collision with obstacles, particularly for main
rotor and tail rotor helicopters, is still a significant cause of ac-
cidents. Thus, this study proposes the implementation of optic
flow sensors fixed at the tip of the blades, to measure the optical
flow in order to estimate the distance to a frontal, lateral or even
rear obstacle (wall, cliff, post, tree...). However, due to the ex-
tremely fast dynamic of an helicopter’s blade, this sensor must
be the lightest and the smallest as possible, requiring greatly
miniaturized system integration processes, power supplies, and
sensors.

This problems of miniaturization are similar to constraint
of Micro aerial vehicles (MAVs). Micro aerial vehicles are
insect-sized robots which can be used for remote observation
purposes in hazardous or small-scale environments. Thanks
to their size, they provide useful means of performing tasks
such as inspecting inaccessible areas, search-and-rescue opera-
tions, and greenhouse monitoring. Contrary to larger unmanned
aerial vehicles (UAVs), this miniaturization often means replac-
ing traditional sensors such as radars, laser rangers, motion sen-
sors, infrared rangers, sonar and GPS systems as means of self-
localization, and turning to biological sources of inspiration.
MAV drones’ sensors therefore often consist of RGB cameras,
which provide highly energy efficient and versatile sensing per-
formances. The many variables which can be monitored based
on the optic flow include the presence of objects and obstacles

and the occurrence of motion in the environment. The stereo vi-
sion implemented in previous studies using two cameras gives
reliable distance [6], velocity estimates [10, 15, 16] or obsta-
cle avoidance [18]. However, due to the strict limitations im-
posed on the energy, sensing, and processing resources of MAV
drones’ microprocesors, even the most efficient stereo vision
methods are too computationally demanding to be implemented
on-board on their microprocessors. More efficient stereo vi-
sion algorithms and sensors based on the optic flow (OF) have
therefore been developed, which require much fewer/lighter
resources. Bio-inspired OF sensors provide low-cost, light-
weight sensors which are cheaper and lighter than traditional
sensors, making it very interesting for aircraft and mini-UAVs.
The OF can be used to measure several parameters such as a
robot’s velocity [13, 15], its altitude [5, 17] and to detect the
distance to obstacles [16, 19, 7]. Contrary to methods based
on stereo vision using two cameras, OF methods require only
a few pixels: it often suffice to measure just two signals in or-
der to obtain the information required for navigating safely. OF
measurements can be challenging when it comes to measuring
the time elapse between two fast signals at speeds greater than
10m/s. One of the most widely used methods here is the classi-
cal normalized cross-correlation (NCC) method [9, 2, 8, 1, 11].
A reference window is defined on the first signal and compared
with windows in the second signal delayed by a fixed time lag: a
cross-correlation coefficient is then determined between the two
windows. After calculating the cross-correlation coefficient for
several different time delay, the maximum correlation obtained
between the two signals is defined as the current delay. [4]
showed that the normalized cross-correlation method gives bet-
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ter time delay estimation than phase-shift [3] or pulse counting
methods [13, 21, 16]. However, the cross-correlation method is
rather time-consuming and requires many computations to ob-
tain the maximum correlation, which is a significant drawback
in the case of real-time applications in which it has to be run
on-board a MAV microprocessor, for example. Because of this
disadvantage, the pulse counting method is still mainly used in
small embedded optic flow sensors although it gives less accu-
rate results. Some authors such as [1, 11, 24, 12] have presented
faster methods of calculation for finding maximum correlations.
The method proposed by the latter authors [1, 12] consists of
interpolating the cross-correlation curve with a parabolic in-
terpolation or a SINC function. A maximum correlation can
be obtained by calculating only three correlations and extrap-
olating the maximum correlation from them. However, the re-
sults obtained in this way are highly sensitive to noisy signals,
which affect the interpolation. In [24] a fast algorithm involv-
ing no multiplications was presented for calculating normalized
cross-correlations (NCCs). Since multiplications require more
computational time than additions, they were replaced in the
method presented by [24] by logical operations giving just a
slight increase in the false positive rate. Some redundant cal-
culations are still performed, however. Thus, [11] developed
a fast NCC method based on the use of sum tables in view of
the fact that many calculations tend to be redundant because
of the exhaustive search conducted on the windows compared
with the reference windows. The correlations calculated in the
overlapping region between two closely neighboring time de-
lay values therefore becomes redundant. The sum table method
was therefore developed in order to calculate cross-correlations
faster. The main disadvantage of the latter method is that the
number of sum tables to be memorized is too large for embed-
ded systems to cope with, since they have only a small memory.

Nowadays, it does not exist commercial system in the in-
dustry that can inform the pilot about the position and distance
of surrounding obstacles. This paper deals with an innovative
optical system based on the use of a custom-made sensor fixed
at the tip of a rotating helicopter’s blade to measure the distance
to an obstacle during hovering flight. The method developed
here is inspired from OF sensor developed for Micro-Air vehi-
cles to obtain a cheap, compact and light sensor to be fixed on
any helicopter’s blade. Pure translational OF allows to measure
optically distance to objects by making some assumption about
the translational speed (see [20]). Our OF-based principle
benefits from the high tangent speed of an optical sensor placed
off-centered from the axis of the helicopter’s main rotor. To
obtain the required performance, the computational time of
the NCC must be reduced and be implemented in real time to
obtain more accurate results than using pulse counting method.
For this purpose, a moving cross-correlation coefficient has
been developed to reduce the time required to calculate usual
NCCs. The idea is similar here to that proposed in [11] for
reducing redundant calculations, but fewer sum tables are
required, which keeps the memory requirements small, thus
meeting the demands of embedded OF sensors. The method
of calculation presented here involves some extra basic arith-
metical operations in comparison with the reference method,

but not uses root square operation making it faster to compute,
and the method is still significantly lighter than the classical
method of calculating the NCC. The OF sensor developed
here can be used to assess either the distance to an obstacle,
or the vehicle’s velocity if the distance to the obstacle is known.

This paper is organized as follow. In Section 2, the prob-
lem of using optic flow to determine the distance based on time
lag data is presented. The Section 3 exposes the parameters re-
quired to calculate the distance to obstacle and the size of the
smallest obstacle which can be detected. The theory of nor-
malized cross-correlations used here to assess the time delay
is described in Section 4.1. A method to reduce the number
of NCC to be calculated is presented in Section 4.2. The Sec-
tion 5 describes the new method developed for calculating the
NCC faster. The implementation of the algorithm on which this
method is based and comparisons with the reference method
[11] is described in Section 5.3. Experiments in which the
method was tested and the results obtained are presented and
discussed in Section 6. Section 7 concludes the paper.

2. Optic flow

Optic flow sensors are usually composed of several (at least
two) photosensors measuring motion. The visual motion sen-
sor designed and developed in this study for measuring the dis-
tance to contrasting objects is a small, lightweight 2-pixel mo-
tion sensor. A defocused lens placed in front of the two photo-
sensors determines the inter-receptor angle ∆φ, defined as the
angle between the two optical axes of two adjacent photosen-
sors. Defocusing the lens makes the angular sensitivity of each
photosensor follow a Gaussian curve. The inter-receptor angle
therefore depends on the photosensor’s pitch and the lens defo-
cusing ratio. A contrasting object is detected by measuring the
delay between two photosensor signals S 1 and S 2, as

ω =
∆φ

∆t
(1)

where ω is the angular speed (or the Optic Flow (OF)) and ∆t
is the time delay between S 1and S 2.

The optic flow ω can be divided into two components:

ω = ωtrans + ωrot (2)

where ωtrans is the translational optic flow and ωrot is the ro-
tational optic flow. By definition, ωrot = Ωr where Ωr is the
relative angular velocity between the sensor and oncoming ob-
ject.

Since ωtrans is by definition an angular speed, a contrasting
object can be detected only if there exists a relative velocity Vt
between the sensor and the object. The OF ωtrans of a moving
object such as a wall or a bar subjected to a purely translational
velocity Vt can be defined as follows [19]

ωtrans =
Vt

D
sin2 (α) (3)

where D is the distance to any surface, and α is the orientation
of the sensor with respect to the surface. Since the sensor is
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placed in front of the surface, or if we are dealing only with a
small object placed in front of the sensor, α can be taken to be
equal to α = π

2 . Thus, the relation between the velocity Vt and
the optic flow ωtrans becomes

ωtrans =
Vt

D
(4)

Then, combining (1) and (4) gives

D =
Vt

(ω − ωrot)
, (5)

=
Vt(

∆φ
∆t −Ωr

) . (6)

If the velocities Vt and Ωr are assumed to be known by the
sensor (and/or Ωr is assumed to be equal to zero), the distance
D can be therefore determined by measuring ∆t. Distance
to object estimation is therefore based here on the time
delay measured between two photosensors’ output signals.
It has been previously established [4] that the normalized
cross-correlation method gives more accurate time delay
estimates, than phase-shift or pulse counting methods. The
cross-correlation method is described in Section (4).

Comment: In (6), the distance D is calculated using the
known velocity Vt and the value of Ωr. However, the veloc-
ity Vt can also be estimated if the distance D and the value of
Ωr are known. This method can be applied to a case in which
it is required to determine a ground vehicle velocity, where the
distance D between the sensor and the ground is known and the
value of Ωr is assumed to be null.

3. Parameters of distance estimation

3.1. Definition of distances calculated

The optic flow sensor is fixed at the blade tip of the helicopter
to measure the optical flow generated by the tangential speed of
the sensor (see Figure 1). The proposed methods in this paper
is developed for the hovering flight condition.

As explained in Section 2, the distance D between the sensor
and a potential obstacle can be evaluated by measuring the time
delay between the two visual signals provided by the photode-
tectors of the optic flow sensor. The estimation of this delay
requires a minimum number of samples M (using for exam-
ple cross-correlation method described in next sections), cor-
responding to a recording time Tr. However, during the mea-
surement time Tr, the rotor continues to rotate, involving the
distance D and so the measured delay change within the M
measurement (illustrated in Figure 1): the estimated delay is
therefore an average value of the delays.

Due to the number of measurement M required to detect the
time delay between the two signals measured by the sensor, all
distances inside a defined cone are averaged in only one mea-
surement D. This cone can be theoretically expressed as fol-
lows:

α =
2π
Nt

(7)

Figure 1: An optic flow sensor (in green) is placed at the tip of an helicopter
blade. The yellow area is used to evaluate a distance using measurement made
inside a cone of chosen size α. Measured distances between the sensor and the
surface inside the yellow area are averaged into a single value D.

where Nt is the chosen number of sector around the helicopter
such that all the measurement made in this sector are used to
evaluate an unique average distance D (yellow area in Figure 1).
M can so be calculated as follows:

M = floor
(

Fa

Nt ∗ΩHz

)
(8)

where ΩHz is the rotation velocity at hovering flight in Hz, Fa
is the acquisition frequency and the f loor() function gives the
nearest integer up.

The value of Nt must be chosen by taking into account the
constraints described in Section 3.2.

3.2. The smallest obstacle detected

Figure 2: Parameters to evaluate the size of the smallest obstacle which can
be detected with Nt . Left: largest obstacle which can be seen by the sensor
considering the cone of vision ∆φ. Right: smallest obstacle which can be seen
by the sensor considering the cone of vision ∆φ.

Let define R the distance between the sensor and the center
of rotation. Let define also an obstacle at a distance D from the
sensor and thus a distance D+R from the center of rotation (see
Figure 2). In a first step, we can define the length L seen by the
sensor when the blade performed the angular displacement α as
follows:

L = 2 tan
(
α

2

)
(D + R) . (9)
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In a second step, we can consider also the length ` seen at a
distance D by the cone of vision of the sensor ∆φ at each instant
defined by:

` = 2 tan
(
∆φ

2

)
D. (10)

If we make the assumption that one photo-sensor sees only
one object at a given time, an obstacle can be detected if it oc-
cupies the overall viewing angle ∆φ. Moreover, since all mea-
sured distances inside L are averaged, the object can be detected
if all the distances occupy at least one half of the viewing an-
gle α (i.e, 1

2 L). Finally, an object can be perfectly detected at a
distance D if it features a size equal or larger than 1

2 L + `.
Thus, the minimum size Lmin can be expressed as follows: or

Lmin =
1
2

L + ` = Lmin = tan
(
α

2

)
(D + R) + 2 tan

(
∆φ

2

)
D. (11)

The minimum length 1
2 L seen by the cone α must be larger

than the length `, i.e. 1
2 L ≥ `. Thus, by considering 1

2 L ≥ `, we
have:

α ≥ 2atan
(
2 tan

(
∆φ

2

)
D

D + R

)
. (12)

Since ∆φ is small and D
D+R < 1, a general condition can be

defined such that α ≥ 2∆φ. From (7), one can define a condition
on Nt such that:

Nt ≤ floor
(
π

∆φ

)
. (13)

where the f loor() function gives the nearest integer up. From
(13), Nt = floor

(
π

∆φ

)
allows to obtain the maximum accuracy

and to detect the smallest obstacle possible. A smaller value of
Nt leads to a larger number of measurement M, which is inter-
esting when the acquisition frequency is low (see (8)). How-
ever, a too small Nt involves a reduction of the smallest obsta-
cles which can be detected due to the average of the distances
estimated, that’s why we recommend to take Nt ≥ 12.

If an obstacle is smaller than Lmin, there is no guarantee that
this obstacle could be detected reliably. However, this obstacle
can disturb the detection and the estimation of an other obstacle
placed behind it. The minimum size Lmin could be adjusted
because the further away the object is, the more difficult it will
be to detect.

4. The cross-correlation method

4.1. The discrete normalized temporal cross-correlation
method

Let us take two signals S 1 (t) and S 2 (t) constituting the out-
puts from two adjacent photosensors and s1 (k) and s2 (k) are
taken to denote their discrete version where t = k ∗ dt, dt being
the sample time. T is the discrete version of τ, so that τ = Tdt.

The discrete normalized temporal cross-correlation
(DNTCC) can be expressed as follows:

c (T, k) =

∑k
m=k−M s1 (m) s2 (m + T )√∑k

m=k−M

(
s2

1 (m)
)∑k

m=k−M

(
s2

2 (m + T )
) (14)

where M corresponds to the number of elements of s1 and s2
used to evaluate the cross-correlation. Without any loss of gen-
erality, (14) can be transform such for ∀k > M + T

c (T, k) =

∑k
m=k−M s1 (m − T ) s2 (m)√∑k

m=k−M

(
s2

1 (m − T )
)∑k

m=k−M

(
s2

2 (m)
) (15)

=
Σ12 (T, k)

√
Σ1 (T, k + 1) Σ2 (k + 1)

(16)

where s1 (k) is the latest measurement of S 1 (t), Σ1 (T, k) =∑k
m=k−M s2

1 (m − T ), Σ2 (k) =
∑k

m=k−M s2
2 (m) and Σ12 (T, k) =∑k

m=k−M s1 (m − T ) s2 (m).
To find the maximum correlation, c (τ, t) must be evaluated

using different values of τ. To define these τ and in order to
reduce the number of calculations and to avoid overloading our
sensor’s calculator, DNTCC is calculated taking only a limited
number of delays τ corresponding to previously chosen distance
range, as described in the following subsection.

4.2. List of delay τ

Finding the exact distance between the sensor and the ob-
stacle with a temporal cross-correlation involves testing a large
number of delay τ, which makes for long computational times.
Our method does not involve attempting to exactly determine
the distance D: first because the optic flow does not give accu-
rate measurements in all cases, and secondly, because it is often
not necessary to know D beyond a specific level of accuracy,
especially when the obstacle is far away. Therefore, instead
of searching for the real distance, the method will determine
which distance D̃, out of a whole list of possible predefined dis-
tances Ldtest =

[
d1 d2 d3 . . . dn0

]
is nearest to D. It

will therefore determine which τ̃ out of a whole list of prede-
fined delay Lτtest =

[
τ1 τ2 τ3 . . . τn0

]
is nearest to the

real delay τ. Only time delay featuring on the list Lτtest are
therefore used to calculate the cross-correlation c (T, k).

From a predetermined list of possible distances Ldtest where
i ∈ [1 . . . n0] and (5) and (1), the list of associated delay Lτtest
can be calculated as follows:

Lτtest (i) =
∆φ

Ve
Ldtest(i)

+ Ωe
. (17)

This method considerably reduces the number of operations
required to find the maximum correlation between s1 (t) and
s2 (t).

5. Moving Cross-correlation

5.1. New calculating NCC coefficient

Since a distance must be estimated at each angle, no min-
imum value of the NCC coefficient is imposed to considered
the correlation valid, unlike many methods using NCC: the dis-
tance with the highest correlation coefficient is considered to be
the correct value. Thus, as described in equation (18), the NCC
coefficient calculus can be simplified by removing the sum Σ2 .
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Moreover, the cross-correlation function indicates the point
in time where the signals are best aligned, but actually the sign
of this correlation is here not important: only values around
zeros are an indication that there is no correlation. Thus, since
the square function is an operation that requires computational
resource, the following NCC coefficient was proposed to reduce
computation time

c (T, k) =
(Σ12 (T, k))2

Σ1 (T, k + 1)
(18)

where the calculation of Σ1 (T, k) and Σ12 (T, k) is described in
the following Section 5.2.

5.2. The new method of calculating NCC
Calculating the cross-correlation coefficient (18) can be ex-

tremely time consuming because the sums Σ1 (T, k) , Σ2 (k) and
Σ12 (T, k) have to be recalculated at each instant k. Closely in
line with [11], an iterative process is proposed here to reduce
the number of operations required and thus to reduce the com-
putational time.

Equation (18) can also be written as follows:

Σ12 (T, k + 1) =

k+1∑
m=k+1−M

s1 (m − T ) s2 (m)

=

k∑
m=k−M

s1 (m − T ) s2 (m) + s1 (k + 1 − T ) s2 (k + 1)

− s1 (k − M − T ) s2 (k − M)
= Σ12 (T, k) + s1 (k + 1 − T ) s2 (k + 1)
− s1 (k − M − T ) s2 (k − M) (19)

Likewise, one can write:

Σ1 (T, k + 1) = Σ1 (T, k) + s2
1 (k + 1 − T )

− s2
1 (k − M − T ) (20)

where s1 (k + 1) and s2 (k + 1) are the newly measured signals
at instant k and s1 (k − M − K) and s2 (k − M − K) are former
measurements stored in memory.

Then, Σ1 (T, k + 1)and Σ12 (T, k + 1) can be calculated faster
using previous sums, and the two new measurements and stor-
ing in memory the latest N = 1

dt maxi=1:n0 (Lτtest (i)) values of
each signal. The correlation c (T, k + 1) is obtained in this way
using (18) with updated sums instead of re-calculating further
sums at each iteration. This method significantly reduces the
computational burden without any loss of accuracy and without
increasing the size of the memory required to compute the time
delay.

Note that this method induces us to keep the same time in-
terval Lτtest (i) between each iteration of the sums Σ1 (T, k) and
Σ12 (T, k): due to the constraints defined in Section 4.2, the rel-
ative velocity Ve and the rotation Ωe have to be kept constant.

5.3. Algorithm
The Algorithms 1 and 2 describe the method used to calcu-

late the NCC and the distance to be estimated in real time. To
implement them, the following parameters are defined:

• Lτtest (i) ∀i ∈ [1 . . . n0] is the list of time delays to be tested,

• LTtest (i) =
Lτtest(i)

dt ∀i ∈ [1 . . . n0] is the list of discrete de-
lays to be tested,

• n2 = M is the number of elements of s2 used to calculate
the cross-correlation,

• n1 = 1+n2+maxi=1...n0 (LTtest (i)) is the number of elements
of s1 used to calculate the cross-correlation,

• LS 1 = 0n1×1 is the list of measurement of S 1 stored,

• LS 2 = 0n2×1 is the list of measurement of S 2 stored,

• Lsum1 = 0n0×1and Lsum12 = 0n0×1 are the lists of sums Σ1
and Σ12.

• S tart S ave = 0 Boolean variable used to end the initial-
ization procedure.

Require: ∀i ∈ [1...n0] choose Lτtest (i) and so LTtest (i) %
Choose delays to test.
Do Algorithm 2 Calculation of D. % At each new
measurement, calculation of the estimated distance D
if (k > max (LTtest)), then

S tart S ave = 1 % End of the initialization. While
k < max (LTtest), lists LS 1 and LS 2 are not full: evaluation
of distance D can not be correct.
j = 1

end if
if S tart S ave == 1 then

LD ( j) = D % stock the estimate distance D.
j = j + 1

end if

Algorithm 1: Main algorithm

These algorithms can be used to determine the distance D at
each new data acquisition by moving the 2π

Nt
area of one mea-

surement at each new data.

5.4. Selection and average of the Ntt distances to display

Let consider Ndata equal to the total number of data measured
during one turn of the rotor. Using previous algorithm 1, Ndata
distances are estimated during one turn. Since Ndata can be very
large, it is recommended to define a number Ntt of distances D2
to display, where the Ntt distances D2 estimated are the average
of Ndata

Ntt
previous distances estimate, i.e for i ∈ {1...Ntt}

D2(i) =

i∗N2∑
k=(i−1)∗N2+1

LD(k)
N2

(21)

where N2 =
Ndata
Ntt

. Every sample of the distance array D2 is
spaced by an angle 2π

Ntt
around the rotor circle.
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S 2,old = LS 2 (1)
LS 1 ← [LS 1 (2 : n1) , s1 (k)]
LS 2 ← [LS 2 (2 : n2) , s2 (k)]
S 2,new = S 2 (k)
cmax = −1
for i = 1 : L0 do

ii = LTtest (i)
S 1,new = LS 1 (n1 − ii)
iii = ii + n2
S̄ 1,old = S 1 (n1 − iii).
Lsum1 (i) = Lsum1 (i) +

(
S 1,new

)2
−

(
S 1,old

)2

Lsum12 (i) = Lsum12 (i) + S 1,newS 2,new − S 1,oldS 2,old
if (Lsum12 (i))2 > cmaxLsum1 (i), then

cmax =
(Lsum12(i))2

Lsum1(i)
τest = Lτtest (i) % stock the estimate delay
corresponding to the maximum correlation.
Dest = Ldtest (i) % if Ve constant, the estimate
distance can directly be stocked.

end if
end for

Algorithm 2: Calculation of D

5.5. Comparison between the present method and the Sum-
Table Method

Tables 1 and 2 compare the number of arithmetical op-
erations and the memory requirements between the classical
method of NCC calculation, the Sum-Table Method developed
in [11] and the present method, after all these methods have
been adapted for real-time implementation.

The Sums Table method is described in greater detail in
[11]. It is worth noting that the Sum-Table Method and our
proposed method require much less operations than the classic
NCC. Note also the Sum-Table Method uses less basic oper-
ations (sum, subtraction, multiplication and division) than our
method, but requires several root square operators which re-
quired iteration algorithm (see for example [14]): since a single
root operation require several iterations (depending of the ac-
curacy asked by the programmer) each using several sums and
multiplications. If the Sum-Table Method used only 5n0 + 5 ba-
sic operations compare to the 10n0 basic operations used by
our method, the additional n0 root square operators used by
the Sum-Table Method involves many faster operation than the
5n0 additional basic operations used by our proposed method,
which so requires less operation and computational time. Fi-
nally, our method uses less data to store in memory than the
Sum-Table Method (see Table 2).

6. Experimental results

6.1. Matlab results

In this section, the results obtained with the algorithm pre-
sented in Section 5.3 are presented. The visual motion sensor

designed and developed in this study was based on an off-the-
shelf photosensor array (iC-LSC from the company iCHaus, 1 )
consisting of 2 rows of 4 photodiodes 300 m×800 µm (see Fig-
ure 3). A fixed-gain current amplifier is integrated into each
photodiode. To be able to sense a large number of contrast-
ing objects, the photosensors in each column were paired to in-
crease the sensitive surface two-fold to 300 µm×1600 µm. Only
the two central pixels were used here to measure the optic flow.
A combination of two lenses of focal length 25 mm and 3.6 mm
forming the optic, were mounted on the one-dimensional 4-
pixel array (see Figure 5). The calibration process, as described
in [19], gives an average ∆φ = 0.0122. Signals are filtered so as
to keep the frequency in the [Fb, Fh] = [1, 800] Hz range. This
range was determined experimentally so as to obtain the most
satisfactory velocity measurements.

To test our sensor, a bench (Figure 4) rotating at an angular
velocity of Ωr = [907, 1260]◦/s] ([2.5, 3.5] Hz) was built. The
sensor is fixed on an arm R = 1 m in length, so a tangential
velocity Vt = 15.8 m/s. When the bench rotates, the moving
sensor assesses the distance to the surrounding objects placed
in the experimental room (see figure 4). Signals s1 and s2 are
acquired for 1 s by means of a NI data acquisition board (NI
USB 6229) at an acquisition frequency of 80 kHz. Each angular
position of the rotating arm was measured 50 times: the mean
value and variance are presented in the results. The distances
were estimated a posteriori using Matlab after the acquisition
of 1 s of signal.

We choose Ldtest (i) =[
0, 0.25, . . . , 3, 3.5, 4 . . . , 7, 8, 9

]
m so

n0 = 21, dt = 1.25e − 05 and Nt = 36 or Nt = 60. We choose
to display Ntt = 60 estimated distances.

Figure 3: optic flow sensor.

Figures 6 and 7 show experimental results obtained using
the proposed method for Nt = 36 (green) and Nt = 60 (blue)
in Figure 6 and Figure 7), corresponding to M = 888 and
M = 533. One observe that, overall, the room’s distances are
estimated with a good accuracy, except the corners and long dis-
tances. A computing time of 0.378 s was required to process the
1 s of measurement, thus making it possible to implement this
method in real time. Our method makes it possible to obtain
a large number of distance measurements, faster than a clas-
sical method cross-correlation method (1.125 s to measure 24
distances around the circle). This new approach also makes it

1http://www.ichaus.de
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classic NCC Sum-Table Method Proposed method
Initialization

Construction of σs2
1

(k,T ) 0 M multiplication, 0M addition

Construction of σs2
2

(k) 0 M multiplications, 0M additions

Construction of σs1 s2 (k,T ) 0 n0 M multiplications, 0n0 M additions

Calculation of Σ1 0 0 n0 M multiplication,
n0 M addition

Calculation of Σ2 0 0 0

Calculation of Σ12 0 0 n0 M multiplication,
n0 M addition

Total operations: 0 (2n0 + 4) M 4n0 M

Main program

Construction of σs2
1

(k,T ) 0 1 multiplication, 01 addition

Construction of σs2
2

(k) 0 1 multiplication, 01 addition

Construction of σs1 s2 (k,T ) 0 n0 multiplications, 0n0 additions

Calculation of Σ1
M multiplications, 1 subtraction 2n0 multiplication,

M additions n0 addition, n0 subtraction

Calculation of Σ2
n0 M multiplications, n0 subtractions 0n0 M additions

Calculation of Σ12
n0 M multiplications, n0 subtractions 2n0 multiplication,

n0 M additions n0 addition, n0 subtraction

Normalization n0 root square operators, n0 root square operators,
n0 divisions, n0 multiplications n0 divisions, n0 multiplications n0 multiplication, n0 divisions

Total operations: (4n0 + 2) M + 2n0 5n0 + 5 10n0
+n0 root square operators +n0 root square operators +0 root square operators

Table 1: Arithmetic Operations. n0 is the number of delays tested, M the number of elements of s1 and s2 used to evaluate the cross-correlation.

NCC Sum-Table Method Proposed method
Initialization

Construction of σs2
1

(k,T ) 0 M data 0
Construction of σs2

2
(k) 0 M data 0

Construction of σs1 s2 (k,T ) 0 n0M data 0
Calculation of Σ1 0 0 n0 data
Calculation of Σ2 0 0 0
Calculation of Σ12 0 0 n0 data

Total data: 0 (n0 + 2) M data 2n0 data

Main program
Data of S 1 M data 1 data M data
Data of S 2 R data R data R data

Construction of σs2
1

(k,T ) 0 M data 0
Construction of σs2

2
(k) 0 n0M data 0

Construction of σs1 s2 (k,T ) 0 n0M data 0
Calculation of Σ1 1 data 1 data n0 data
Calculation of Σ2 1 data 1 data 0
Calculation of Σ12 1 data 1 data n0 data

Total data: M + R + 3 (2n0 + 1) M + R + 4 M + R + 2n0

Table 2: Number of data to be stored in memory for evaluate the Normalization (18). n0 is the number of time delays tested, M is the number of elements of s1 and
s2 used to calculate the cross-correlation. R = M +

max(Lτ)
dt is the total length (in terms of the number of samples) of the signal used in the motion estimation.
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Figure 4: Rotating bench test in the experimental room. (1) sensor + lenses. (2)
arm used to hold the sensor. (3) weight for balancing the test bench. (4) motor
and reduction gear. (5) power supply. For an arm of R = 1 m in length here, the
tangential velocity is Vt = 15.8 m/s (about 57 km/h).

Figure 5: Combination of two lenses with focal lengths of 25 mm and 3.6 mm
forming a minimalistic OF sensor.

possible to perform a new distance estimation at each new mea-
surement which means that the maximal number of estimated
distances is equal to the number of measurements performed.

Figure 6 and 7 show the estimated distance for Nt = 36 and
Nt = 60, corresponding to M = 888 and M = 533. It is worth
noting that the average value is similar in both case, but with
a larger variance for Nt = 60 due to a smaller M. Indeed, in-
creasing M means that the distances were estimated by taking
a larger number of measurements, thus covering a larger part
of the room. Although the distance estimation obtained could
be smoothed by filtering the false peaks due to errors in the
calculations. As a consequence, small obstacles placed in the
landscape were not detected accurately.

Figure 6 features a low variance showing that the estimated
distance is accurate and repeatable. A peak at 200◦ was ob-
served, corresponding to the furthest distance estimated, but its
related variance is lower or equal to 1 m for a distance of 6 m.

Moreover, one can observe that the mean error is in most case
lower than 0.5 m and even 0.25 m. Since the best theoretical ac-
curacy imposed by the list Ldtest is 0.25 m for distances smaller
than 3 m and 0.5 m for distances smaller than 7 m, we can con-
clude our method estimates distance with a suitable accuracy.
Peaks in the error correspond to the corners of the room, where
the visibility is critical and very complex due to the geometrical

shape.
The velocity of a large scale helicopter’s rotor is around 4 Hz

with blade of 4 m. Tangential velocity tested in our experiment
is lower compared with a sensor fixed at the tip of a real heli-
copter blade, but very similar if the sensor is fixed at 1 m from
the rotor center. Moreover, these first results are promising and
more experimentation with a longer arm are planed.

Figure 6: Distance estimated using the proposed method. Bench test is placed
inside the central circle. Thick circles are spaced one meter apart, and distance
between thick and thin circle correspond to 0.5m. Red : true distance. Blue :
Nt = 60.

6.2. Real time computation performances

In this section, algorithms were implemented in realtime on-
board a micro-controller (teensy 3.6) in C language. Due to the
relatively limited computational resource, an acquisition fre-
quency of 15 kHz was used. An obstacle of size 1 m at a dis-
tance of 2.5 m was added (see red rectangle in figure ) to pro-
pose a different configuration from the one shown in figure 6.
Each angular position of the rotating arm was measured twice
and the mean value of the estimated distance is plotted in figure
8. The distances were estimated after an acquisition of 1 s of
signal.

We choose Ldtest (i) =
[

0.1, 0.2, . . . , 6.8, 7
]

m so
n0 = 36, dt = 6.66e − 05 s and n2 = M = 215 sample.

A computing time of 0.06 s was required to process the 1s of
measurement, thus making it possible to implement this method
in real time. Note since the acquisition frequency is much lower
than the one used, this computation time is much lower than the
one obtained with Matlab. However, it is worth noting that the
obstacle of 1 m was perfectly detected at a distance of 2.5 m,
confirming the theory exposed in Section 3.2.

In this study, tests were performed on a 1 m-long arm. During
experiments not shown in this paper, we succeeded in obtain-
ing a stable and accurate estimation of the distance for an arm
as small as 0.4 m. A smaller arm could not but used due to the
degradation of the translational OF when the arm becomes too
small. Our method of obstacle detection can not be considered
well-suited for MAVs yet, because it will require further exper-
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Figure 7: Comparison between real distances and the distances obtained at the
velocity Ωr = 907◦/s. Red : true distance. Green: Nt = 36. Blue: Nt = 60.

iments. However, our method can be considered suitable for
helicopters of relatively large size.

7. Conclusion

This study proposes an implementation of a minimalist op-
tical flow sensors to fix on a helicopter’s blades, in order to
estimate the distance to an obstacle using an OF-based method.
Our sensor and method required few computational resource
and a small number of components to be implemented (only
two photodiodes, electronic amplifiers and an adequate lens).
In this sense, it is an energy efficient design that makes our par-
simonious sensor find its place in technologies for sustainable
development goals (see [23]). The OF-based method of dis-
tance assessment presented here involves calculating normal-
ized cross-correlations to determine the time delay between two
signals. A special method was developed to reduce the time re-
quired to compute the correlations calculated in the OF process-
ing without any loss of accuracy, associated with a choice of
distances to test. A new algorithm is presented for implement-
ing the method in real time. The results of the experimental
tests show that distances to obstacles can be determined much
faster with the new method presented here than with the clas-
sical method. Moreover, these results show a stable estimation
of the distance with a small variance and an estimation error
lower than 0.5 m for distances up to 6 m, corresponding to the
accuracy required for such system.

In the near future, we will try to reduce the size of the arm
on which the sensor is fixed in order to make our non-emissive
optical anti-collision system suitable for MAVs.

Figure 8: Comparison between real distances and the distances obtained at the
velocity Ωr = 1404◦/s by means of realtime computation implemented on-
board a microcontroller (teensy board). An additional obstacle (red rectangle)
was placed at a distance of 2.5 m from the center. Red : true distance.
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