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ARTICLE OPEN

Single-cell profiling reveals the trajectories of natural killer cell
differentiation in bone marrow and a stress signature induced
by acute myeloid leukemia
Adeline Crinier1, Pierre-Yves Dumas2,3,4, Bertrand Escalière1, Christelle Piperoglou5, Laurine Gil1, Arnaud Villacreces3,4, Frédéric Vély1,5,
Zoran Ivanovic4,6, Pierre Milpied1, Émilie Narni-Mancinelli 1 and Éric Vivier 1,5,7

Natural killer (NK) cells are innate cytotoxic lymphoid cells (ILCs) involved in the killing of infected and tumor cells. Among human
and mouse NK cells from the spleen and blood, we previously identified by single-cell RNA sequencing (scRNAseq) two similar
major subsets, NK1 and NK2. Using the same technology, we report here the identification, by single-cell RNA sequencing
(scRNAseq), of three NK cell subpopulations in human bone marrow. Pseudotime analysis identified a subset of resident CD56bright

NK cells, NK0 cells, as the precursor of both circulating CD56dim NK1-like NK cells and CD56bright NK2-like NK cells in human bone
marrow and spleen under physiological conditions. Transcriptomic profiles of bone marrow NK cells from patients with acute
myeloid leukemia (AML) exhibited stress-induced repression of NK cell effector functions, highlighting the profound impact of this
disease on NK cell heterogeneity. Bone marrow NK cells from AML patients exhibited reduced levels of CD160, but the CD160high

group had a significantly higher survival rate.
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INTRODUCTION
Natural killer (NK) cells are large granular lymphocytes in the ILC
family. NK cells are endowed with the capacity to kill stressed cells,
such as infected cells and tumor cells, without specific prior
activation, in humans and mice.1 NK cells express an array of
inhibitory and activating receptors, the engagement of which
regulates NK cell activation. Inhibitory receptors are essential for
sensing decreases in or total absence of constitutively expressed
self MHC-I molecules on target cells. Decreases in MHC-I
expression reduce the strength of the inhibitory signals delivered
to NK cells, rendering these cells more prone to activation.2,3 NK
cell activation results from the engagement of activating
receptors, such as the activating isoforms of Ly49 and KIRs,
natural cytotoxicity receptors (NCRs), SLAM (signaling lymphocyte
activating molecule)-related receptors, NKG2D and CD16, which
can induce NK cell activation by initiating different signaling
pathways.4 The NCR family is composed of three molecules:
NKp30 (NCR3, CD337) and NKp44 (NCR2, CD336), which are
expressed in humans, and NKp46 (NCR1, CD335), which is
expressed in all mammals and is highly conserved between
humans and mice. NKp46 is expressed mostly by NK cells and
ILC1 cells but is also present on a small population of

T lymphocytes and a subset of ILC3 cells (NCR+ ILC3 cells) in
mucosa.5–7

NK cells are present in blood and in primary and secondary
lymphoid organs, including the spleen, bone marrow, liver, lymph
nodes, lungs, tonsils, skin, uterus, and gut.8 The NK cell
compartment consists of several subsets differing in maturation
status. Human NK cells are defined as CD3− CD14− CD19− CD56+

lymphocytes. They can be classified into subsets on the basis of
the intensity of cell surface CD56 expression. Two principal NK cell
subsets are found in the bloodstream in healthy individuals:
CD56dim CD16+ NK cells and CD56bright CD16− NK cells.9–11 The
phenotypic differences between these cells are associated with
functional differences: CD56bright CD16− NK cells are less cytotoxic
than CD56dim CD16+ cells but produce greater amounts of
cytokines in response to exposure to environmental cues, such as
interleukin (IL)-12 and IL-18.9 We recently used high-throughput
scRNAseq to investigate the heterogeneity of the NK cell
compartment in the blood and spleen of humans and mice.12

We identified two subsets conserved in human and mouse blood
and spleen: NK1 and NK2 cells. In humans, the CD56dim

NK1 subset had high levels of cytotoxic activity, whereas the
transcriptome of CD56bright NK2 cells was enriched in gene
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ontology (GO) terms relating to the secretion of cytokines and
chemokines, consistent with previous findings. We also found two
tissue-specific human NK subsets resident in the spleen, which we
named hNK_Sp3 and hNK_Sp4. hNK_Sp3 cells resembled
CD56bright NK2 cells, whereas hNK_Sp4 cells seemed to be more
mature than hNK_Sp3 cells and more closely resembled the
NK1 subset.
Several studies have suggested that CD56bright CD16− cells can

develop into CD56dim CD16+ NK cells. Indeed, CD56bright NK cells
constitute the main NK cell population shortly after hematopoietic
stem cell transplantation and subsequently disappear as CD56dim

cell levels rise, 3 months after transplantation.13 Purified CD56bright

NK cells cocultured in vitro with synovial fibroblasts display
downregulation of CD56 and a phenotype consistent with that of
CD56dim NK cells.14 In vivo, adoptive transfer of CD56bright NK cells
into immunodeficient NOD-SCID recipient mice led to a
CD56dimCD16+ phenotype in the blood, spleen, and lymph nodes
10 days later.14 Finally, CD56bright NK cells have been shown to
have longer telomere repeats than CD56dim NK cells, suggesting
that they are less mature than CD56dim NK cells.14

In both humans and mice, the expansion of a particular
population of NK cells, called “adaptive NK” or “memory NK” cells,
has been described during cytomegalovirus (CMV) infection.15

These adaptive NK cells persist long after the contraction of the
anti-CMV immune response and are capable of more powerful
effector functions upon reinfection. Adaptive NK cells have also
been described following the activation of NK cells by cytokines16

or exposure to hantavirus infection,17 herpes simplex virus 2
infection18 or influenza vaccination in humans.19 Adaptive NK cells
express the cell surface activating receptor NKG2C in humans and
also express the maturation marker CD57, and they lack many
transcription factors and signaling proteins, including FCRγ, PLZF,
Siglec-7, EAT-2, and SYK.20–22

Acute myeloid leukemia (AML) is a hematological malignancy
characterized by bone marrow invasion of proliferative, clonal
immature myeloid cells.23 Blast cells replace normal hematopoietic
cells and exploit the normal bone marrow microenvironment to
survive and to support disease expansion, also affecting immune
cells. NK cells from AML patients display low levels of cell surface
NCR expression, which is associated with impaired cytotoxicity.24,25

Conversely, higher levels of NKp30 and NKp46 on the cell surface
have been linked to better outcomes.26,27 Downregulation of other
activating receptors, including DNAM-1, NKG2C and 2B428–30 and
upregulation of inhibitory receptors, such as NKG2A,28,31 on the
surface of NK cells from AML patients also contribute to the low
cytotoxicity and IFN-γ secretion levels of these cells.32

Here, we used unsupervised scRNAseq and unsupervised graph-
based clustering to investigate human bone marrow NK cell
heterogeneity under physiological conditions and at AML
diagnosis. As previously found for the blood and spleen, healthy
bone marrow contained NK1 and NK2 cells and an additional
CD56bright-like resident NK cell subset, NK0 cells, from which NK1
and NK2 cells may differentiate. Comparison of transcriptomic
profiles between NK cells from healthy and AML-derived bone
marrow further revealed that AML profoundly modified the bone
marrow NK cell compartment. Thus, AML affects NK cells at the
pathological site.

RESULTS
High-throughput scRNAseq identifies adaptive NK cells in human
bone marrow
We investigated the heterogeneity of human bone marrow NK
cells with the 10x Genomics high-throughput droplet-based
scRNAseq pipeline, which can be used for unbiased transcriptomic
characterization of thousands of cells simultaneously.33 We
analyzed ~24,000 flow cytometry-sorted NK cells, defined by their
SSC/FSC profile and as CD3− CD14− CD19− CD45+ CD56+ cells,

from the bone marrow of eight healthy donors. We verified that
the transcriptomic profile of the sorted cells contained the core NK
cell signature previously defined12 (data not shown). We
confirmed that Lin− CD56+ helper-like ILCs were absent from
this population via module score analysis comparing single-cell
human NK cell and helper-like ILC gene signatures, as previously
described.10,34 This evaluation resulted in the removal of only ten
contaminating helper-like ILCs from the ~24,000 cells analyzed
(Fig. 1A). We analyzed bone marrow NK cell heterogeneity by
projecting cells into two dimensions by uniform manifold
approximation and projection (UMAP) analysis. UMAP analysis
revealed the clustering of human bone marrow NK cells into four
different subsets, hereafter referred to as hNK_Bm1, hNK_Bm2,
hNK_Bm3, and hNK_Bm4 (Fig. 1B). The three main NK cell subsets
(hNK_Bm1, hNK_Bm2, and hNK_Bm3) were common to all
samples, whereas the hNK_Bm4 subset was absent from some
donors (Fig. 1C,D). We nevertheless checked the accuracy of
hNK_Bm4 cell identification by a machine learning approach (data
not shown).
We first focused on hNK_Bm4 cells and identified 139

differentially expressed genes distinguishing this cluster from
the other human bone marrow NK cell subsets: 88 of these genes
were downregulated and 51 were upregulated in hNK_Bm4 cells
(Fig. 1E and Supplementary Table S1A). We found that compared
with the other human bone marrow NK cell subsets, hNK_Bm4
cells had lower expression levels of the KLRB1 and CD7 genes,
encoding activating receptors; KLRC1 (encoding NKG2A) and
SIGLEC7, encoding inhibitory receptors; IL2RB, encoding the IL-2/
IL-15Rβ (CD122) surface receptor essential for the development
and differentiation of NK cells;35 and FCER1G (FcRγ) (Fig. 1E). By
contrast, hNK_Bm4 cells had higher expression levels of genes
encoding NK cell-associated effector proteins (CCL5, GZMM, and
GZMH)9,10 and ZEB2, encoding a transcriptional regulator involved
in terminal NK cell maturation.36 GO term analysis revealed that
the transcriptome of hNK_Bm4 cells was specifically enriched in
NK cell effector functions, such as positive regulation of interferon
(IFN)-γ production, NK cell-mediated cytotoxicity and granzyme-
mediated apoptotic signaling (Fig. 1F). The hNK_Bm4 subset also
displayed upregulation of several genes relating to the class II
major histocompatibility complex (MHC), T cell costimulation, and
the regulation of T cell activation and proliferation (Fig. 1F). The
hNK_Bm4 subset was identified in three of the five donors
seropositive for human cytomegalovirus (HCMV) (Supplementary
Table S2A). FCER1G downregulation (Fig. 1E,G) and GO term
enrichment for antigen presentation and T cell activation (Fig. 1E)
are other properties exhibited by adaptive NK cells.37–40 We
therefore investigated whether the hNK_Bm4 subset could be
considered to correspond to adaptive NK cells. We established
canonical and adaptive NK cell gene signatures by analyzing the
transcriptomic profiles of human blood CD3− CD56dim CD57+

NKG2C+ adaptive NK cells and CD3− CD56dim CD57− NKG2C−

canonical NK cells from a public genome-wide bulk RNAseq
dataset41 (Supplementary Fig. S1). Unsupervised hierarchical
clustering (Supplementary Fig. S1A) and principal component
analysis (PCA) (Supplementary Fig. S1B) segregated the samples
into two groups corresponding to adaptive and canonical NK cells.
A bilateral comparison of the two populations identified 912
genes among the total gene set as differentially expressed
(Supplementary Table S1B). These genes included KLRC2 (encod-
ing NKG2C) (Supplementary Fig. S1C), which was overexpressed in
adaptive NK cells. The expression of this gene is associated with
the adaptive phenotype of NK cells during cytomegalovirus
infection.42 The top 200 genes in both of these gene signatures
intersected broadly with the genes detected in our scRNAseq
dataset, which included 173 of the top 200 driver genes in the
adaptive gene signature and 174 of the top 200 driver genes in
the canonical gene signature (Supplementary Fig. S1D), indicating
comparability. Module score analysis comparing the adaptive and
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Fig. 1 A Single-cell module score10,34 for each of the bone marrow NK cell samples sorted from eight different healthy donors for the NK and
ILC gene signatures defined by10 and,8 respectively. Cells are color-coded according to donor origin. B UMAP of healthy human bone marrow
NK cells from eight donors. Cells are color-coded according to the defined subset. C UMAP of 23,684 healthy human bone marrow NK cells
from eight donors, identifying four subsets of NK cells. Cells are color-coded according to donor origin. D Percentage of each healthy bone
marrow NK cell subset across the eight donors. Subsets are color-coded as above. E Scatter plot of the genes differentially expressed between
NK cells from the hNK_Bm4 cluster and NK cells from the other three clusters. Genes displaying significant differential expression (p < 0.05) are
represented by yellow dots, and selected genes are highlighted. F Selected Gene Ontology terms displaying enrichment in hNK_Bm4 cells.
The Benjamini–Hochberg-corrected −log10 p value calculated by a hypergeometric test is reported. The black dotted line indicates the
threshold of significance set at −log10(0.05). G Feature plot showing the relative expression levels of the FCER1G gene in each of the 23,762
healthy human bone marrow NK cells. HModule score for the CD56dim CD57+ NKG2C+ adaptive and CD3− CD56dim CD57− NKG2C− canonical
NK cell gene expression profiles obtained from reanalysis of the data of,41 for each of the human healthy bone marrow NK cells, at the single-
cell level. I Violin plots showing the distribution of module scores for CD56dim CD57+ NKG2C+ adaptive cells and for each blood NK cell
grouped by subset. Statistical significance was assessed by the Kruskal–Wallis test with Dunn’s multiple comparison test, and p values were
adjusted by the Benjamini-Hochberg method. *p value < 0.05, **p value < 0.01, ***p value < 0.001, ****p value < 0.0001
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canonical gene signatures of each of the bone marrow NK cell
subsets revealed that the gene expression profile of hNK_Bm4
cells most closely resembled that of adaptive NK cells (Fig. 1H).
Violin plots of the module scores among the subsets also revealed
significant enrichment of the gene signature of adaptive NK cells
in hNK_Bm4 cells (Fig. 1I). The hNK_Bm4 subset therefore had a
transcriptomic profile different from that of conventional NK cells
but closely resembling that of adaptive NK cells, suggesting that
adaptive NK cells may populate the bone marrow of some HCMV-
seropositive individuals.

Three NK cell subsets are present in human bone marrow under
physiological conditions
For further characterization of the heterogeneity of bone marrow
NK cells among donors, we removed the hNK_Bm4 adaptive NK
cell-like NK cell subset, which was absent from some donors, from
the analysis. Unsupervised hierarchical clustering (data not shown)
and UMAP analysis of the remaining ~23,000 human bone marrow
NK cells again clustered the cells into three different subsets:
hNK_Bm1, hNK_Bm2, and hNK_Bm3 (Fig. 2A). These three subsets
were present in all samples (Fig. 1C, D). Significant differential
expression between the hNK_Bm1, hNK_Bm2, and
hNK_Bm3 subsets was observed for 255 of the genes composing
the three different transcriptomic signatures of bone marrow NK
cells (Fig. 2B, Supplementary Table S1C). No significant individual-
specific phenotype or batch effect was observed in the
unsupervised hierarchical clustering analysis (data not shown),
and the NK subsets from a given individual did not cluster
together on the PCA score plots (Fig. 2C). Instead, PC1 and PC2,
accounting for 42% and 22% of the variance, respectively, and
unsupervised hierarchical clustering (data not shown) segregated
the eight donors into three different groups corresponding to the
hNK_Bm1, hNK_Bm2, and hNK_Bm3 subsets (Fig. 2C). PC1 sepa-
rated the hNK_Bm1, hNK_Bm2, and hNK_Bm3 subsets. The
hNK_Bm3 subset was also separated from the hNK_Bm1 and
hNK_Bm2 subsets by PC2. The GNLY and GZMB genes associated
with cell cytotoxicity were identified as drivers for hNK_Bm1 along
PC1. CD160, encoding an NK cell activating receptor, and CCL3 and
CCL4, encoding chemokines, were identified as drivers of the
hNK_Bm2 subset, whereas ZFP36L2 (which is involved in
lymphocyte hematopoiesis43,44) and DUSP2 (a regulator of the
ERK pathway) were drivers of the hNK_Bm3 subset along PC1 and
PC2 (Fig. 2D).
We then analyzed the top ten genes encoding secreted

proteins, cell membrane markers and transcription factors
expressed in hNK_Bm1, hNK_Bm2, and hNK_Bm3 cells (Fig. 2E).
hNK_Bm1 cells displayed upregulation of genes associated with
cytotoxic factors (FGFBP2, GZMB, GZMH, and PRF1) and over-
expressed FCGR3A (encoding CD16), which is characteristic of the
CD56dim NK cell subset;38–40 moreover, these cells overexpressed
S1PR5, which encodes a sphingosine 1-phosphate receptor
promoting NK cell egress from the lymph nodes and bone
marrow45 (Fig. 2E). The hNK_Bm2 subset transcriptome displayed
enrichment with genes encoding soluble factors associated with
NK cell effector functions (CCL3, CCL4, XCL1, XCL2, GZMK, and
CCL3L1), amphiregulin (AREG), the activating receptor encoded by
CD160, the activation marker encoded by CD69, and the
chemokine receptor encoded by CXCR6, which is involved in ILC
egress from the bone marrow46 (Fig. 2E). Like hNK_Bm2 cells, the
hNK_Bm3 subset displayed higher expression levels of GZMK,
XCL1, XCL2, and AREG, but these cells also displayed upregulation
of the LTB, SELL (encoding CD62L) and CD44 genes encoding
adhesion molecules associated with homing and anchorage in the
bone marrow47,48 (Fig. 2E). Biological process enrichment analysis
revealed specific enrichment of the hNK_Bm1 subset transcrip-
tome in the FcγR signaling pathway, the granzyme-mediated
apoptotic signaling pathway and cytolysis (Fig. 2F). By contrast,
the transcriptomes of both the hNK_Bm2 and hNK_Bm3 subsets

displayed enrichment in chemokine and cytokine responses,
cytokine production and cytokine-mediated signaling. The
hNK_Bm2 subset transcriptome was more strongly enriched in
responses, and the hNK_Bm3 subset transcriptome was more
specifically enriched in IL-2 production. These results thus reveal
the presence of three different subsets of human bone marrow NK
cells under physiological conditions.

The three human bone marrow NK cell subsets encompass an
NK1-CD56dim-like subset, an NK2-CD56bright-like subset and an
additional CD56bright-like subset
We then compared the transcriptomic signatures of the three
human bone marrow NK cell subsets with those of the blood and
splenic NK1 and NK2 subsets, which resembled CD56dim and
CD56bright cells, respectively, and two additional spleen-specific
hNK_Sp3 and hNK_Sp4 human NK cell populations, as previously
described.10,12 Gene signature heatmaps (Fig. 3A–C) and module
score analysis (Supplementary Fig. S2A–C) revealed that
hNK_Bm1 cells corresponded to NK1, the related splenic hNK_Sp1
and CD56dim NK cells, consistent with the pattern of FCGR3A
expression. hNK_Bm2 corresponded to NK2, the related hNK_Sp2
and CD56bright NK cells (Fig. 3A, B and Supplementary Fig. S2A–C).
Further analysis revealed that the hNK_Bm3 subset shared part of
the NK2 gene signature but was most similar to the minor
hNK_Sp3 subset residing in the spleen (Fig. 3A, C and
Supplementary Fig. S2C). No hNK_Sp4 subset signature was found
in bone marrow NK cells (Fig. 3C).
Flow cytometric analysis of bone marrow NK cells revealed that

the expression of CD160 and CD52 (CAMPATH-1) on the surface of
CD56bright cells was mutually exclusive, further discriminating
between hNK_Bm2 and hNK_Bm3, respectively, as previously
reported for hNK_Sp2 and hNK_Sp3 in the spleen12 (Fig. 3D).
These analyses showed that the human bone marrow NK cell
compartment consists mostly of CD56dim NK cells (~50%), with a
few CD56bright-like CD160+ CD52− NK cells (~10%) and CD56bright

CD160− CD52+ NK cells (~5%) (Fig. 3E). The protein levels of
perforin, KIR2DL2/2DL3 and KIR2DL1/2DS1 were higher in
CD56dim-like cells than in CD56bright-like CD160+ CD52− NK cells
and CD56bright CD160− CD52+ NK cells, confirming our transcrip-
tomic data (Fig. 3F, G). The hNK_Bm2 subset was characterized by
higher levels of CD122, CD27, and CD69, whereas hNK_Bm3 cells
had higher levels of CD127 (Fig. 3F, G).
Together, these results demonstrate that the hNK_Bm1 and

hNK_Bm2 subsets resemble the NK1-CD56dim and NK2-CD56bright

subsets, respectively, which also reside in the blood and spleen in
humans. The third subset, hNK_Bm3, most closely resembled the
hNK_Sp3 population resident in the spleen and absent from the
bloodstream.

The NK0 subset has features consistent with a role as the
precursor of both the NK2 and NK1 subsets
We then investigated whether the four NK cell subsets identified
in the bone marrow reflected differences in maturation status.
KLRC1 was expressed at higher levels in the hNK_Bm2 and
hNK_Bm3 subsets, whereas expression of the KIR2DL3 and
KIR3DL1 killer cell immunoglobulin-like receptor (KIR) genes was
restricted to the hNK_Bm1 subset (Fig. 4A–C). These results
suggest that the hNK_Bm1 subset is more mature than the
hNK_Bm2 and hNK_Bm3 subsets because a decrease in cell
surface expression of NKG2A and a concomitant increase in KIR
expression have been associated with human NK cell differentia-
tion.49 We then searched for a developmental path across bone
marrow NK subsets by applying the pseudotime algorithm
Monocle DDRTree, which computationally orders the transcrip-
tomic profiles of cells along a trajectory without prior information
about their clustering.50 The pseudotime algorithm ordered the
cells along a trajectory segregating our ~24,000 bone marrow NK
cells into two branches and four clusters. These four clusters
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Fig. 2 A UMAP of 23,033 healthy human bone marrow NK cells from eight donors, without hNK_Bm4, identifying three subsets of NK cells.
Cells are color-coded according to the defined subset. B Heatmap of the 255 genes tested with the Wilcoxon rank sum test separating the
23,033 healthy human bone marrow NK cells into subsets. Cells are plotted in columns according to subset source. Genes are shown in rows
and ranked by adjusted p values < 0.05. Gene expression is color-coded on a scale based on the z-score distribution, from −2.5 (purple) to 2.5
(yellow). The squares indicate specific transcriptomic signatures of human bone marrow NK cell subsets. C Principal component analysis on
the three healthy human bone marrow NK cell subsets in each sample based on the mean expression levels of genes with differential
expression. D Driver genes for each cell subset, accounting for 20% of the total variance for each PC. E Top ten most highly expressed genes
among the total gene set and among genes encoding secreted proteins, cell membrane markers and transcription factors with significant
differences among the three healthy human bone marrow NK cell subsets. Gene symbols and annotations were retrieved from public
databases. Cell membrane protein-encoding genes are color-coded in orange, transcription factor-encoding genes in dark blue, secreted
protein-encoding genes in red and genes encoding other proteins in gray. Genes are ranked by p value. F Selected Gene Ontology terms
displaying enrichment in the three healthy human bone marrow NK cell subsets. The Benjamini–Hochberg-corrected −log10 p value
calculated by a hypergeometric test is reported. The black dotted line indicates the threshold of significance set at −log10(0.05)
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Fig. 3 A Heatmap showing the hNK1 and hNK2 gene expression profiles of each of the three healthy human bone marrow NK cell subsets.
B Heatmap showing the hNK_Sp1, hNK_Sp2, hNK_Sp3, and hNK_Sp4 gene expression profiles of each of the three healthy human bone marrow NK
cell subsets. C Flow cytometric analysis of healthy bone marrow NK cells, showing CD52, CD160, and CD56 cell surface expression in one
representative healthy donor. D Frequencies of the indicated cell populations among total bone marrow NK cells from five healthy donors. E FACS
profiles of the indicated cell surface markers in the CD56dim, CD56bright CD160+ CD52−, and CD56bright CD160− CD52+ cell subsets in one
representative healthy donor. F Mean fluorescence intensity of the cell surface markers shown in E for each of the five healthy donors. Statistical
significance was assessed by Friedmann’s analysis with Dunn’s post hoc test on paired subset data, and p values were adjusted by the
Benjamini–Hochberg method. The error bars indicate the mean (±SD) values. *p value < 0.05, **p value < 0.01, ***p value < 0.001, ****p value < 0.0001

Single-cell profiling reveals the trajectories of natural killer cell. . .
A Crinier et al.

6

Cellular & Molecular Immunology _#####################_



Fig. 4 A Feature plot of the relative expression level of the KIR2DL1 gene in each of the 23,066 healthy human bone marrow NK cells. B Feature
plot of the relative expression level of the KIR2DL3 gene in each of the 23,066 healthy human bone marrow NK cells. C Feature plot of
the relative expression level of the KLRC1 gene in each of the 23,066 healthy human bone marrow NK cells. D Pseudotime inference of the bone
marrow NK cell trajectory in one representative healthy donor from the eight studied donors, with cells color-coded according to the
corresponding bone marrow NK cell subset identified by UMAP. E Module score for the CD34+ CD38+ CD123− CD45RA+ CD7+ CD10+ CD127−

bone marrow NKP gene expression profile obtained by reanalysis of the data of51 for one representative healthy donor by the pseudotime
algorithm. FModule score for the CD3− CD56+ NKp46+ bone marrow mature NK cell gene expression profile obtained by reanalysis of the data
of51 for one representative healthy donor by the pseudotime algorithm. G Violin plot showing the distribution of the module scores for CD3−

CD56+ NKp46+ mature NK cells among each human healthy bone marrow NK cell subset, grouped by subset. H Pseudotime inference by the
pseudotime algorithm from an starting point selected as the most distal cell of the hNK_Bm3 subset in one healthy donor representative of the
eight studied donors. The scale indicates the maturation state, from dark blue (least mature) to yellow (most mature). I Pseudotime inference of
the splenic NK cell trajectory in one healthy donor representative of the three studied donors, with cells color-coded according to the
corresponding splenic NK subset identified by UMAP, as previously described by.12 J Violin plot showing the distribution of the module scores
for CD3− CD56+ NKp46+ mature NK cells among each human healthy splenic NK cell subset, grouped by subset. K Pseudotime inference by the
pseudotime algorithm from an starting point selected as the most distal cell of the hNK_Sp3 subset in one healthy donor representative of the
three studied donors. The scale indicates the maturation state, from dark blue (least mature) to yellow (most mature)
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overlapped perfectly with the hNK_Bm1, hNK_Bm2, hNK_Bm3,
and hNK_Bm4 subsets defined by UMAP, providing additional
support for our previous conclusions. The hNK_Bm3 subset was
located at the intersection of two branches linking the hNK_Bm1-
hNK_Bm4-hNK_Bm3 and hNK_Bm2-hNK_Bm3 subsets (Fig. 4D).
We then tried to define the starting point of the putative

developmental trajectory by comparing our dataset with an NK cell
precursor (NKP) gene signature. We examined the transcriptomic
profiles of bone marrow Lin− CD34+ CD38+ CD123−CD45RA+

CD7+ CD10+ CD127− NKP and CD3− CD56+ NKp46+ mature NK
cells from a public genome-wide RNAseq dataset.51 Unsupervised
hierarchical clustering separated the samples into two main
branches on the basis of a precursor or a mature NK cell
phenotype, suggesting that these two populations can be
differentiated on the basis of a specific transcriptomic pattern
(Supplementary Fig. S3A). PCA confirmed this finding, as mature
NK cells clustered away from progenitors along a combined PC1
and PC2 axis, accounting for 30.7% and 16.6% of the total variance,
respectively (Supplementary Fig. S3B). Bilateral comparison of the
two populations identified 448 genes from the total gene set as
differentially expressed, with 265 upregulated in NK cells and 183
upregulated in progenitors (Supplementary Fig. S3C, Supplemen-
tary Table S1D). Mature NK cells had increased levels of CD160,
FCGR3A, GZMB, and CCL3 expression, whereas NK cell progenitors
displayed upregulation of TCF4 and RAG2, which are expressed
during NK cell development52 (Supplementary Fig. S3C). These
gene signatures broadly intersected with the genes detected by
our scRNAseq analysis, with 263 genes from the mature NK cell
signature and 160 genes from the progenitor gene signature found
in our dataset (Supplementary Fig. S3D). Module score analyses
comparing the NKP and mature NK cell gene signatures among
bone marrow NK cell subsets were performed on the develop-
mental trajectory defined by the pseudotime algorithm (Fig. 4E, F).
These analyses revealed that the hNK_Bm3 subset displayed
specific enrichment for the NKP signature, whereas the hNK_Bm1
and hNK_Bm4 subsets were enriched for the mature NK cell profile
(Fig. 4E, F). Violin plots of the NK gene signature module scores also
showed that the hNK_Bm3 subset was the least mature (Fig. 4G).
The hNK_Bm3 subset was, therefore, defined as the starting point
of the pseudotime developmental trajectory (Fig. 4H).
Pseudotime analysis with Monocle DDRTree revealed a specific

developmental trajectory of human bone marrow NK cells, with
the CD56bright-like hNK_Bm3 minor subset differentiating into the
NK1-CD56dim-like hNK_Bm1 subset and a distinct NK2-CD56bright-
like hNK_Bm2 subset (Fig. 4H). The NK1-CD56dim-like hNK_Bm1
and NK2-CD56bright-like hNK_Bm2 subsets followed different
developmental pathways. hNK_Bm4, the adaptive NK cell subset,
appeared to arise at a later time point from the hNK_Bm1 subset
(Fig. 4H). Similar results were obtained with another pseudotime
algorithm (PAGA Tree from Dynverse), providing additional
support for our putative differentiation trajectory (data not
shown).
In addition to the bone marrow, we reanalyzed our previous

splenic dataset12 with the recently developed pseudotime
algorithm Monocle DDRTree. Pseudotime analysis ordered the
splenic NK cells into two branches and four clusters corresponding
to the hNK_Sp1, hNK_Sp2, hNK_Sp3, and hNK_Sp4 subsets (Fig. 4I).
The hNK_Sp3 subset was identified as the least mature, with the
hNK_Sp2, hNK_Sp1, and hNK_Sp4 subsets sequentially more
mature (Fig. 4J). Thus, in the spleen, as in the bone marrow, a
minor CD56bright-like hNK_Sp3 subset differentiates into the NK1-
CD56dim-like hNK_Sp1 subset and a distinct NK2-CD56bright-like
hNK_Sp2 subset (Fig. 4K). Thus, hereafter, we refer to the
CD56bright-like hNK_Bm3 and CD56bright-like hNK_Sp3 subsets as
NK0 (Supplementary Fig. S4). The hNK_Sp4 subset, an additional
minor CD56dim splenic NK cell subset for which no corresponding
subset was found in the bone marrow, seemed to differentiate
from the NK1-CD56dim-like hNK_Sp1 subset.

Acute myeloid leukemia affects the transcriptome of human bone
marrow NK cells
Acute myeloid leukemia (AML) is a specific bone marrow disease
known to be associated with strong impairment of NK cell
function in the periphery.27 We therefore investigated the
impact of AML on the heterogeneity of bone marrow NK cells.
We analyzed ~15,000 flow cytometry-sorted bone marrow NK
cells, defined as CD3− CD14− CD19−CD34− CD56+ cells,
obtained from eight AML patients at diagnosis (Supplementary
Table S2B). Module score analysis comparing human NK cell and
helper-like ILC gene signatures resulted in the removal of 39 ILC-
like cells (Supplementary Fig. S5A). UMAP analysis on the
remaining cells revealed the existence of several NK cell subsets
(Fig. 5A), but their assignment on the basis of donor origin
showed that these clusters had a strong donor phenotype
(Fig. 5B). There was no conserved NK cell subset in the AML
patients (data not shown). Moreover, there was no conserved NK
cell subset when AML patients were considered according to the
same French–American–British classification of AML (data not
shown). We then investigated whether module score analysis
could be used to compare the specific signatures of each of the
hNK_BM subsets to this AML dataset (Supplementary Fig. S5B–E).
Module score analysis was performed on the UMAP representa-
tion of total NK cells from the AML patients (Supplementary
Fig. S5B–E). A high level of transcriptomic heterogeneity was
observed at the patient level for both subset composition and
percentage. Based on protein levels, we detected heterogeneity
in the percentages of the CD56bright and CD56dim subsets
among the AML samples (Fig. 5C). Thus, AML strongly affected
the transcriptomic profile of bone marrow NK cells, making it
impossible to analyze their heterogeneity with classical annota-
tion tools.
We therefore further investigated the effects of AML on bone

marrow NK cells by analyzing a mixture of bone marrow NK cells
from healthy donors and AML patients. UMAP analysis of the
∼38,700 bone marrow NK cells revealed that NK cells clustered
differentially according to the clinical status of the donor (Fig. 5D).
In total, 197 genes were differentially expressed between bone
marrow NK cells from healthy donors and those from donors with
AML: 90 genes were upregulated in NK cells from healthy donors,
and 107 genes were upregulated in NK cells from donors with
AML (Figs. 5E, Supplementary Figs. S6 and S7 and Table S1E). Bone
marrow NK cells from AML patients had higher expression levels
of interferon-induced genes (IFI44L, IFI6, IFIT3, and IFI44), HLA
molecule-encoding genes (HLA-DPB1, HLA-DPA1, HLA-DRB5, and
HLA-DRB1), ZEB2, and KLF2, which encode transcription factors
controlling NK cell maturation36 and survival,53 respectively. By
contrast, NK cells from the bone marrow of healthy donors
displayed higher expression levels of genes encoding NK cell
effector molecules (CCL3, CCL4 and GZMM) and genes encoding
surface receptors (CD16 (FCGR3A), CD161 (KLRB1), NKG2A (KLRC1),
CD300A, FcγR (FCER1G), KIR2DL3, KIR2DL1, and CD160) (Fig. 5E and
Supplementary Fig. S6 and Table S1E). The higher level of CD160
expression in bone marrow NK cells from healthy donors than in
bone marrow cells from donors with donors with AML was
confirmed by flow cytometric assessment of protein levels (Fig. 5F).
We then further investigated the potential role of CD160 in AML
pathogenesis and progression by studying the clinical outcomes
of cancer patients in the TCGA database. The survival rates of
patients with CD160high AML were much higher than those of
patients with CD160low cancer, suggesting that CD160 is an
antitumor biomarker in AML (Fig. 5G). In addition, bone marrow
NK cells from healthy donors displayed stronger expression of
genes involved in regulating NK cell effector functions (DOCK2,
EVL, LCK, RAP1B, LAT, JAK1, CORO1A, and FGR54–61), PTPN6
(encoding SHIP-1), and ITGB2, which has been reported to
promote the NK cell response62,63 (Fig. 5E and Supplementary
Fig. S7 and Table S1E).
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Fig. 5 A UMAP of 15,005 human bone marrow NK cells from eight donors with AML. Cells are color-coded according to the defined subset.
B UMAP of 15,005 human bone marrow NK cells from eight donors with AML. Cells are color-coded according to donor origin. C Frequencies
of CD56bright and CD56dim cells among CD3− CD56+ or CD3− CD14− CD19− CD56+ cells from seven healthy donors and 22 donors with AML
from the pooled data of two independent experiments. D UMAP of 38,691 human bone marrow NK cells from eight healthy donors and eight
donors with AML. Cells are color-coded according to the donor’s clinical status. E Scatter plot of the genes differentially expressed between
healthy and AML NK cells. Genes displaying significant differential expression (p value < 0.05) are represented by yellow dots, and selected
genes are highlighted. F Frequencies of CD160-expressing cells among the total CD3− CD14− CD19− CD56+ NK cell population from five
healthy donors and seven donors with AML. Statistical significance was assessed by Friedmann’s analysis with Dunn’s post hoc tests on paired
subset data, and p values were adjusted by the Benjamini–Hochberg method. The error bars indicate the mean (±SD) values. *p value < 0.05,
**p value < 0.01, ***p value < 0.001, ****p value < 0.0001. G Kaplan–Meier overall survival curves for AML patients from TCGA stratified by the
CD160 expression level. The optimal cutoff for patient stratification was obtained with a Cox proportional hazards model, and the p value was
calculated by the log-rank test. CD160high group (≥7.427, n= 78); CD160low group (<7.427, n= 83)
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Biological process enrichment analysis revealed enrichment in
the GO terms “response to cytokine” and “type I interferon
signaling pathways” in bone marrow NK cells from AML patients
(Fig. 6A) relative to bone marrow NK cells isolated from healthy
individuals. By contrast, NK cells purified from healthy bone

marrow displayed enrichment in the GO terms “NK cell-mediated
cytotoxicity”, “FcγR signaling pathway”, “exocytosis”, “response to
IL-12” and “IL-15-mediated signaling pathways”. Collectively, these
results suggest that bone marrow NK cells from healthy donors
have a more activated phenotype than those isolated from AML

Fig. 6 A Selected Gene Ontology terms displaying enrichment in healthy and AML samples. The Benjamini−Hochberg-corrected −log10
p value calculated by a hypergeometric test is reported. The black dotted line indicates the threshold of significance set at −log10(0.05).
B Frequencies of CD107+ and IFN-γ+ cells among CD3− CD56+ NK cells from five healthy donors and five donors with AML from the pooled
data of two independent experiments. Statistical significance was assessed by Friedmann’s analysis with Dunn’s post hoc tests on paired
subset data, and p values were adjusted by the Benjamini–Hochberg method. The error bars indicate the mean (±SD) values. *p value < 0.05,
**p value < 0.01, ***p value < 0.001, ****p value < 0.0001. C Heatmap of selected Gene Ontology terms related to gene expression, the stress
response and metabolism. The Benjamini–Hochberg-corrected −log10 p values calculated by a hypergeometric test are reported on a scale
from 0 to 6. The red star indicates the threshold of significance set at −log10(0.05)
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patients, which displayed a strong type I IFN response signature.
Indeed, upon simulation with phorbol myristate acetate and
ionomycin, higher frequencies of IFN-γ-producing NK cells were
detected in healthy donors than in AML patients, consistent with
the above findings (Fig. 6B). We extended our analysis of NK cell
transcriptomic profiles further by assessing the enrichment in GO
terms related to cell metabolism (Fig. 6C). Relative to bone marrow
NK cells from healthy individuals, bone marrow NK cells from AML
patients displayed enrichment in GO terms associated with the
regulation of gene expression through the processes of transcrip-
tion, splicing, and epigenetic modifications; the regulation of
macromolecules; and metabolic processes and stress-related
signaling. These results highlight the impact of AML on bone
marrow NK cells.

DISCUSSION
The main objective of this study was to address, from an unbiased
transcriptome-wide perspective, the heterogeneity of NK cells in
human bone marrow under physiological conditions and at the
time of diagnosis of acute myeloid leukemia, a hematologic
malignancy of the bone marrow.
We report here four different clusters of Lin−CD56+ cells in

bone marrow—hNK_Bm1, hNK_Bm2, hNK_Bm3, and hNK_Bm4—
the last of which was not present in all donors. The unsupervised
hierarchical clustering results were further validated by machine
learning algorithms, supporting the robustness of our analysis. By
contrast, scRNAseq profiling of Lin− CD7+ cells from healthy
human bone marrow identified six NK cell clusters,64 with CD7
expressed by both progenitor and mature ILCs.65 Our analysis of
Lin− CD56+ cells was thus expected to yield different results.
However, similarities may exist between the two studies, as the
‘mature’ and ‘terminal’ populations characterized by PRF1, GZMB,
S100A6, FCGR3A, LGALS1, and SPON2 expression64 resembled the
hNK_Bm1 subset; the “active” and “transitional” populations
expressing CCL3, XCL2, PI3KR1, IRFD1, and FOS64 resembled the
hNK_Bm2 subset; and the CD56bright subset64 resembled the
CD56bright hNK_Bm3 subset, with the expression of IL7R, CD44,
LTB, XCL1, GZMK, SELL, and XCL2.
We identified three subsets of NK cells, including the conserved

NK1-CD56dim-like and NK-CD56bright-like subsets, in the bone
marrow of all healthy humans. Both the NK1 and NK2 subsets are,
therefore, present in the blood, spleen, and bone marrow. This
finding is consistent with the origination of NK cells in the bone
marrow and with their release into the bloodstream and continual
recirculation throughout the body, leading to the population of
several organs, including the spleen.9,11 Consistent with our
previous findings,12 we observed that the NK1-CD56dim subset
had a transcriptomic profile enriched in markers of cytotoxic
activity, whereas the transcriptomic profile of NK2-CD56bright cells
was more heavily enriched in genes involved in the response to
cytokines and chemokines. Preliminary data indicated that NK1
and NK2 cells were also present in nonlymphoid organs, such as
the duodenum and lungs, but these findings require further
exploration.
We detected an additional NK0 CD56bright-like subset, originally

identified as hNK_Bm3, which resembled the hNK_Sp3 subset
residing in the human spleen.12 NK0 cells were not found in the
blood, explaining the previous lack of detection of this subset. The
cells of this population expressed high surface levels of CD56
(CD56bright) and had a transcriptomic signature similar to that of
the CD56bright NK subset but could be distinguished from NK2
cells on the basis of their higher levels of CD52 and CD127
expression and lower levels of CD160 expression. Additional
experiments are necessary to clarify the real relationship between
the hNK_Bm3 subset and the conventional CD56bright NK subset.
We found that the transcriptome of NK0 cells displayed specific
enrichment with genes associated with the NK cell precursor (NKP)

signature. The pseudotime algorithm Monocle DDRTree, which
infers developmental trajectories from scRNAseq data, showed
that bone marrow NK0 (hNK_Bm3) cells can differentiate into both
NK1 and NK2 cells (Supplementary Fig. S4). Our data thus show
that a minor subset of the CD56bright NK cell population, the
subpopulation of tissue-resident CD56bright CD127+ CD160−

CD52+ cells (referred to hereafter as NK0 cells) can give rise to
other NK2/CD56bright CD160+ CD52− cells and to NK1/CD56dim-
perforinhigh cells under physiological conditions. These results are
consistent with those of previous studies showing that CD56bright

NK cells can differentiate into CD56dim NK cells13 and provide the
first demonstration, at the transcriptomic level, of such differ-
entiation in humans in vivo. NK1 and NK2 cells appeared at the
end of the two branches on the pseudotime trajectory, suggesting
that these two populations are not developmentally related. This
observation may explain why not all CD56bright cells differentiate
into CD56dim cells.14 However, upon cytokine-induced activa-
tion,66 coculture with synovial fibroblasts or transfer into NOD/
SCID mice,14 CD56bright NK2-like cells can differentiate into
CD56dim NK cells. These results thus suggest that under certain
circumstances, circulating CD56bright NK2-like NK cells in periph-
eral blood can also give rise to CD56dim-like cells. However, it
remains to be determined whether this phenomenon naturally
occurs without external manipulation and to what extent the
CD56dim-like subset generated resembles the conventional
CD56dim subset.
Similar analyses of the human spleen showed that splenic NK0

(hNK_Sp3) cells can also differentiate into both NK1 and NK2 cells.
It was long supposed that NK cells develop exclusively within the
bone marrow, but it is now clear that there is enrichment of some
NK cell precursors in extramedullary tissues.67 The biological
relevance of extramedullary NK cell differentiation and the
mechanisms governing this process remains to be determined.
In this study, we also used public datasets containing

transcriptomic profiles of canonical and adaptive NK cells51 to
define the first transcriptomic signature of human adaptive NK
cells. Based on transcriptomic data, we detected adaptive NK cells
in the bone marrow of human CMV-seropositive individuals. The
presence of adaptive NK cells was correlated with CMV
seropositivity, but not all CMV-seropositive donors had detectable
(at least by transcriptome analysis) adaptive NK cell subsets. These
results were consistent with those of a previous study by Schlums
and coworkers showing that not all CMV-seropositive individuals
have circulating adaptive NK cells.40 Thus, adaptive NK cells
appear to be present in the bone marrow, in addition to the blood
and spleen.
A population of tissue-resident NK cells, ltNK cells, has recently

been described.68 These cells are absent from the blood but can
account for ~29% of NK cells in the bone marrow, ~45% of splenic
NK cells and ~56% of NK cells in lymph nodes.68 ltNK cells have
a CD69+ CXCR6+ cell surface phenotype but disparate levels of
CD56 and CD16,68 suggesting that this population, at least the
CD56bright and CD56dim subsets, is heterogeneous. The transcrip-
tomes of the hNK_Bm3 and hNK_Sp3 subsets, corresponding to
our NK0 tissue-resident progenitors, were not enriched in the
transcriptomic signature of ltNK cells defined by bulk RNAseq on
flow cytometry-sorted CD69+ CXCR6+ cells.69 Given that in
RNAseq, the gene expression profile of the considered population
is averaged and that ltNK cells have a heterogeneous surface
phenotype, these cells may also have a heterogeneous transcrip-
tomic profile, preventing their identification at the transcriptomic
level by scRNAseq.
We tried to explore the heterogeneity of the bone marrow NK

cell compartment in AML patients at diagnosis. We found that
each sample had a unique specific transcriptomic profile,
preventing subset assignment. A similar patient-specific pattern
was also recently observed for the expression of NKp30 and
CD27 on the surface of NK cells from AML patients.70 We were
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nevertheless able to extract a transcriptomic signature of NK
cells under AML disease conditions relative to physiological
conditions. Bone marrow NK cells from AML patients had a
transcriptomic profile enriched in genes involved in responses
to cytokine and type I interferon signaling pathways. Consistent
with the well-known impairment of NK cell function during
AML,24,25,27 NK cells isolated from healthy individuals had a
transcriptomic profile enriched in genes involved in cell
cytotoxicity, the FcγR receptor signaling pathway, exocytosis,
and the response to IL-12 and IL-15 signaling pathways,
indicating a more activated NK cell phenotype for these cells
than for those isolated from AML patients. Indeed, higher
percentages of bone marrow NK cells from healthy donors
produced IFN-γ upon PMA/ionomycin stimulation than did than
bone marrow NK cells from AML patients. In addition, the
impairment of NK cells from AML patients at the site of disease
onset was consistent with the capacity of AML blasts to affect
NK cells in vitro.31,71,72 The exact mechanism by which tumor
cells affect NK cells remains to be determined.
Bone marrow from AML cancer patients also exhibited down-

regulation of mRNA expression of CD160, whose protein expres-
sion was also found to be downregulated. Moreover, among AML
patients, higher CD160 levels correlated with better survival,
suggesting that CD160 could be a marker of interest in AML. This
glycoprotein activates the effector functions of NK cells.73

However, the biological relevance of CD160 signaling at the
surface of NK cells in the context of AML awaits further
investigation.
Overall, our study identified an NK0 CD56bright-like subset as the

precursor of the NK1-CD56dim and NK2-CD56bright subsets. In
addition, our findings regarding AML revealed that NK cells
undergo donor-specific cancer-associated editing and provided
further evidence of profound NK cell impairment in the bone
marrow at diagnosis.

EXPERIMENTAL MODEL DETAILS
Samples
Frozen healthy bone marrow samples were recovered from filters
used for allogeneic hematopoietic graft preparation. The use of
such cells for scientific research is approved by the French
authorities in accordance with the regulations in force (authoriza-
tion DC 2018-3143). Frozen bone marrow samples obtained from
patients with AML at diagnosis were selected from an anonymized
database registered with the “Commission Nationale de l’Informa-
tique et des Libertés” (the French data protection agency;
authorization no. FbP1089790#) and provided by the “Centre de
Ressources Biologiques Cancer, Bordeaux Biothèques Santé” at
Bordeaux University Hospital. Written informed consent was
obtained from each patient for the use of his/her biological
samples for research, in accordance with the Declaration of
Helsinki. Detailed information about the donors is provided in
Supplementary Table S2. This study was performed in accordance
with French law (Art. L.1243-1 and Art. L.1245-2 of the French
Public Health Code).

DETAILED METHODS
Cell preparation and NK cell enrichment
Samples were maintained in liquid nitrogen, transported on dry
ice and stored either in liquid nitrogen or at −80 °C if processing
was planned shortly after arrival. On the day of processing,
samples were thawed and put in RPMI+ 20% FCS medium
containing DNase I (Roche). Cells were then washed with DPBS+
5% FCS+ 2mM EDTA. Cell viability was assessed with Trypan Blue
dye. Cells were then transferred into a 5mL FACS tube and
washed with FACS buffer. NK cells were then enriched by
magnetic labeling of the contaminating cells with a Miltenyi

Biotec NK cell isolation kit, leading to specific enrichment of
unlabeled NK cells.

NK cell sorting by flow cytometry
After enrichment, cells were washed and incubated at a dilution of
1/50 with mouse serum (Sigma-Aldrich) for 10 min at 4 °C. Cells
were stained with anti-CD3 (clone UCHT1, FITC, Beckman Coulter),
anti-CD14 (clone RMO52, FITC, Beckman Coulter), anti-CD19 (clone
J3-119, FITC, Beckman Coulter) anti-CD45 (clone HI30, APC-Cy7,
Biolegend) and anti-CD56 (clone N901(NKH-1), PE, Beckman
Coulter) antibodies for 30min at 4 °C. We added an anti-CD34
(clone 581, FITC, BD Biosciences) antibody to the lineage to sort
AML samples. Cells were then washed twice with DPBS and
incubated in DPBS with a dead cell marker for 10 min at 4 °C. Cells
were washed again and sorted in an Influx or Melody cell sorter
from BD (Becton Dickinson, San Diego, USA).

Single-cell RNA sequencing
After sorting, cells were washed in DPBS+ 0.04% BSA, as
recommended by the 10x Genomics sample preparation protocol,
and kept on ice until counting was performed. We used a 10x
Genomics Chromium single-cell 3’ v2 kit and protocol to prepare
the libraries. HalioDx (Marseille, France) performed RNA sequen-
cing on the NextSeq 500 platform with a sequencing depth of at
least 50,000 reads per cell.

Flow cytometric assessment of the cell surface phenotype
Frozen bone marrow from healthy donors and a set of AML
patients different from that used for scRNAseq analysis was
thawed, treated with DNAse I (Roche), and stained the following
day with antibodies against CD122 (clone Mik-β3, BV786, BD
Biosciences), CD127 (clone HIL-7R-M21, Pe-Cy7, BD Biosciences),
CD14 (clone M5E2, BUV737, BD Biosciences), CD16 (clone 3G8,
BUV737, BD Biosciences), CD160 (clone BY55, Alexa Fluor® 488, BD
Biosciences), CD19 (clone SJ25C1, BUV737, BD Biosciences), CD27
(clone M-T271, PerCP-Cy™5.5, BD Biosciences), CD3 (clone UCHT1,
BUV496, BD Biosciences), CD45 (clone 2D1, APC-H7, BD Bios-
ciences), CD52 (clone 4C8, Alexa Fluor® 647, BD Biosciences), CD56
(clone B159, Pe-Cy7, BD Biosciences), CD69 (clone FN50, BV605, BD
Biosciences), perforin (clone δG9, PE-CF594, BD Biosciences),
KIR2DL2/L3/S2 (clone GL183, PE-Cy5, Beckman Coulter), CD45
(clone HI30, APC-Cy7, Biolegend), and KIR2DL1/S1 (clone 11PB6,
PE-Vio770, Miltenyi Biotec), and the dead cell marker (BV510,
Invitrogen). Samples were analyzed in a Canto II cytometer from
BD (Becton Dickinson, San Diego, USA) or on a Fortessa cytometer
with UV configuration from BD (Becton Dickinson, San Diego,
USA). NK cells were defined as CD3− CD56+ or CD3− CD14−

CD19− CD56+ cells. Statistical significance was assessed by
Friedmann’s analysis with Dunn’s post hoc test on paired subset
data or with Dunn’s test, and p values were adjusted by the
Benjamini–Hochberg method. *p value < 0.05, **p value < 0.01,
***p value < 0.001, ****p value < 0.0001.

Flow cytometry to assess NK cell functionality
Frozen bone marrow from healthy donors and a set of AML
patients different from that used for scRNAseq analysis was
thawed, treated with recombinant DNAse I (150 U, Roche) and
then dispensed the following day into U-bottom 96-well plates at
a density of 5 × 105 PBMCs/well. Cells were incubated for 4 h at 37
°C in the presence of Golgi Stop (1/1500; Becton Dickinson), anti-
CD107 antibodies (anti-CD107a clone H4A3 and anti-CD107b
clone H4B4, FITC, Becton Dickinson), PMA (2 ng/mL) and
ionomycin (500 ng/mL). Cells were then washed in PBS supple-
mented with 2% FCS and 1mM EDTA and stained by incubation
for 30min at 4 °C in buffer containing an anti-CD3 antibody (clone
SK7, PerCP-Cy5.5, Becton Dickinson), an anti-CD56 antibody (Clone
N901, APC, Beckman Coulter), and 2% normal mouse serum
(Sigma Aldrich). Cells were fixed and permeabilized and were then
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incubated with 2% paraformaldehyde (PermWash; Becton Dick-
inson) for 10min in the dark at room temperature. They were then
stained by incubation for 30 min at 4 °C with an anti-IFNγ antibody
(clone 4S-B3, PE, Becton Dickinson). Samples were analyzed in a
Canto II cytometer from BD (Becton Dickinson, San Diego, USA).
NK cells were defined as CD3− CD56+ cells. Statistical significance
was assessed by Dunn’s test, and p values were adjusted by the
Benjamini–Hochberg method. *p value < 0.05, **p value < 0.01,
***p value < 0.001, ****p value < 0.0001.

QUANTIFICATION AND STATISTICAL ANALYSIS
Preprocessing of samples
Raw FASTQ files were processed with CellRanger software (v3.0.0
or 3.0.1), which performs alignment, filtering, barcode counting
and UMI counting. CellRanger software was used to align reads
with the GRch38 genome. Low-quality cells were excluded in an
initial quality-control step, which removed genes expressed in
fewer than three cells and cells expressing fewer than 200 genes.
Cells with less than 10% ribosomal genes in samples from healthy
controls and less than 15% ribosomal genes in samples from
patients with AML were excluded. We also excluded cells with a
UMI count of more than three median absolute deviations from
the median value. In total, 23,850 healthy and 15,046 AML cells
were retained for further analysis. Library size normalization was
performed on the gene expression values for each cell barcode
after UMI collapsing, with scaling by the total number of
transcripts and multiplication by 10,000. The data were then log-
transformed before further downstream analysis with Seurat.74

Sample analysis
We first considered each donor separately. We selected genes
with a high variance using the FindVariableGenes function with
default parameters. We then reduced the dimensionality of our
data by PCA and selected the number of variable PCs retained by
random sampling. Cells were clustered with Seurat’s FindClusters
function with the Louvain algorithm. We tested a range of cluster
resolution parameters and selected the parameter validated by
the machine learning approach of Valentine Svensson used in one
of our previous studies (http://www.nxn.se/valent/2018/3/5/
actionable-scrna-seq-clusters).12 We removed cells assigned to
clusters accounting for <2% of the cells to avoid doublets, and we
also removed a small cluster of cells from two donors that were
clustered away from the other clusters and probably resulted from
ILC contamination (87 cells from one donor and 32 cells from the
other donor). These cells had a high ILC score (as shown below).
We also removed a donor-specific subset of 37 cells not found in
seven other donors. We checked for the absence of any remaining
contamination with the SingleR package.75 For visualization, we
applied RunTsne and RunUmap to the cell loadings of the
previously selected PCs with default parameters to view the cells
in two dimensions. We identified cluster markers with FindAll-
Markers, with the parameter only.pos set to TRUE, to obtain only
upregulated genes as markers of a cluster relative to all other cells.
Marker genes were defined as genes with an adjusted p value of <
0.05 by the nonparametric Wilcoxon rank-sum test.

Pooled sample analysis
We pooled samples with the CellRanger aggregate function and
subjected them to normalization to equalize the read depth
between libraries. We performed regression on the runs to
overcome a batch effect that divided human healthy bone
marrow NK cell samples into two categories on the basis of
processing. We created three different pools of samples: a pool
of healthy donor bone marrow NK cells, a pool of bone marrow
NK cells from donors with AML and a pool combining
these other pools. We then analyzed the pooled samples as
described above.

Assessment of NK cell purity
We checked for ILC contamination in these pools by scoring
our cells with the AddModuleScore function (Seurat) and the
gene signatures described by34 for ILCs and10 for NK cells. The
ILC signature was obtained from34 by selecting the genes from
the NK vs ILC1, 2, and 3 comparison that were upregulated in
ILCs and for which the p value was <0.05. The NK cell gene
signature was obtained from10 by merging the list of CD56bright

CD16− vs CD56dim CD16+ upregulated gene with the list of
CD56bright CD16− vs CD56dim CD16+ downregulated genes,
both of which were sorted with an FC of >2. This step resulted in
the additional removal of 10 cells from the bone marrow of
healthy donors and 41 from the bone marrow of donors
with AML.

Unsupervised hierarchical clustering
We calculated the mean expression levels of genes with
differential expression across clusters and performed hierarchical
clustering with these values. For all samples, the Euclidean
distance was used for samples, genes and clusters.

Principal component analysis
PC clustering analysis was performed with the Ade4 package on
the mean expression level of all genes among clusters. The gene
loadings for PC1 and PC2 corresponded to the genes making the
largest contributions, which accounted for 20% of the total
information for each PC.

Heatmap
Heatmaps were generated from the scaled expression (log-
normalized UMI counts) values for the discriminating gene sets
defining each subset, with an adjusted p value of <0.05 by the
nonparametric Wilcoxon rank-sum test. The color scale is based on
the z-score distribution.

Gene annotations
Cell membrane protein, secreted protein and transcription
factor annotations were retrieved from public databases (UniProt,
MGI, and NCBI for mice and UniProt, GeneCards, and The
Human Protein Atlas for humans). Genes encoding transcription
factors were defined as such only if “transcription factor
activity” was found among the GO annotations for the gene to
prevent the confusion of cofactors and coregulators with
transcription factors.

GO enrichment analysis
We performed GO enrichment analysis with BiomaRt76 and the
GOstats package.77 Enrichment scores (p values) for selected GO
annotations were calculated by a hypergeometric statistical test
with a significance threshold of 0.05. The data were plotted as the
−log10 p values after Benjamini–Hochberg correction. The
significance threshold was set at −log10(0.05).

Comparison with known NK cell subsets
Module scores for CD56bright, CD56dim, hNK1, hNK2, hNK_Sp1,
hNK_Sp2, and hNK_Sp3 gene expression profiles, as defined by10

and12 were determined with the AddModuleScore function of
Seurat for each of our NK cells at the single-cell level. Briefly, the
mean expression level of each gene in the defined expression
profiles was calculated for each cell, and the aggregated
expression for the control gene sets was then subtracted. All
analyzed genes were binned on the basis of the mean expression
level, and the control genes were randomly selected from each
bin. Violin plots were used to assess the distribution of module
scores for each NK cell grouped by subset. Statistical significance
was assessed by the Wilcoxon rank sum test with continuity
correction or by the Kruskal–Wallis test with Dunn’s multiple
comparisons test, with p value adjustment by the

Single-cell profiling reveals the trajectories of natural killer cell. . .
A Crinier et al.

13

Cellular & Molecular Immunology _#####################_

http://www.nxn.se/valent/2018/3/5/actionable-scrna-seq-clusters
http://www.nxn.se/valent/2018/3/5/actionable-scrna-seq-clusters


Benjamini–Hochberg method. *p value < 0.05, **p value < 0.01,
***p value < 0.001, ****p value < 0.0001.

Pseudotime analysis
For bone marrow cells, we performed pseudotime analysis with
Monocle 3 (v0.1.3), and the cells were filtered with Seurat, as
described above, for each sample individually. We imported
Seurat clustering and NK/NKP scoring metadata into the
analysis. The starting point of the trajectory was defined as
the endpoint of the branch with the highest NKP signature
score.
For splenic cells, we used our previously published dataset12

and again performed pseudotime analysis with Monocle 3
(v0.1.3). The starting point of the trajectory was defined as the
endpoint of the branch with the lowest mature NK cell score,
and cluster assignments were retrieved from our previous
analysis.

Definition of the NK cell vs. NKP gene signature
Affymetrix CEL files were analyzed with the limma package
(v3.34.9) with RMA normalization. Genes with an adjusted p value
of <0.01 were considered to be differentially expressed.

Definition of the canonical vs. adaptive NK cell gene signature
RNA-seq analysis was performed with the DESeq2 package
(v1.26.0). Genes with a log2 fold change in expression of >1 and
an adjusted p value of <0.05 were considered to be differentially
expressed.

Analysis of TCGA data
Analysis of TCGA data was performed with Xena, developed by
the University of California Santa Cruz.78 The TCGA dataset for
acute myeloid leukemia was selected, and the overall survival of
patients stratified by the intensity of CD160 expression was
analyzed via the Kaplan–Meier method. The optimal cutoff value
for patient stratification is given, and the p value indicated in the
plot was calculated with the log-rank test.

DATA AND SOFTWARE AVAILABILITY
All sequencing data will be deposited in the NCBI GEO repository
and will be accessible in GEO. The schematic representation in
Fig. S4 was designed with BioRender.
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