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Abstract

Soil organisms play a major role on litter deconip@s process and nutrient cycling in forest
ecosystems. These organisms are extremely sensiterevironmental conditions such as soll
temperature and moisture conditions which contreirtdemographic parameters and activity.
The ongoing climate change can therefore direcligct soil biota communities and the
processes they drive. Besides, climate change Isanralirectly affect soil biota by altering
tree functional traits (e.g., N, Ca, Mg, water hoidcapacity) with cascading effects on the
litter quality. The aim of this study was to detamnthe relative effects of increased drought
and litter type on microbial biomass (bacteria amehgi) and mesofauna abundance
(Collembola and Acari) in three experimental sitegresentative of the three main forests
encountered in the northern part of the MeditemanBasin (dominated by eith@uercus
pubescens, Quercus ilex or Pinus halepensis) where rainfall exclusion experiments were
taking place. At each site, and in each precigitatreatment (natural and amplified drought
plots), we collected and transplanted foliage rtté.e., species x drought level). After two
years, we reported a litter species eff€rtpubescens litter presented consistently the higher
abundance of all soil biota groups compare@itdex andP. halepensis litters in each forest.
Surprisingly, despite that the amplified drougleatment induced a modification of the litter
guality, we did not reported an indirect reduceécpitation effect on soil biota parameters.
While Oribatid Acari abundance decreased with afmeplidrought in all three forest types,
the direct effects on the other soil biota grougsenforest-dependent. I halepensis forest,
amplified drought resulted in higher bacterial dodgal biomasses but lower Collembola
abundance. IQ. ilex forest both Collembola and predatory Acari abureardecreased with
amplified drought. In addition, the positive retatships between Collembola and Oribatida
abundances and litter mass loss disappeared ung#ifiad drought conditions in bot.

ilex andP. halepensis forests. These results suggest a key role playécih Mg, specific leaf
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area (SLA) and water holding capacity (WHC) as ehsvof soil biota parameters. Finally, the
study highlights that within the same Mediterraneagion, climate change could differently
alter the soil organisms inhabiting the litter lag@d their contributions to the decomposition

process depending on the tree species and sal piotip considered.

Keywords. climate change; Mediterranean forest; mesofaunayraoiganism; plant-soil

(below-ground) interactions; solil biota.

1. Introduction

Litter is one of the basal elements of a food welt tontrols nutrient turnover, carbon
sequestration and the overall ecosystem functiofdgll et al., 2012; Gobat et al., 2013).
Among soil biota, mesofauna (mainly Collembola &uwéri) drives many biotic interactions
which are fundamental for structuring the soil fomelb and decomposing leaf litter. Firstly,
microbi-detritivore organisms (e.g., Collembola @dibatid Acari) participate directly to the
micro-fragmentation of leaf litter, but also contnacrobial communities through grazing and
dispersing spores and mycelium (Berg and LaskovZ§ldp; Chahartaghi et al., 2005; Scheu
et al.,, 2005; Anslan et al.,, 2016). Secondly, p@da(e.g., Mesostigmatid and some
Prostigmatid Acari) regulate microbi-detritivoreganisms by feeding on them (Koehler,
1999; Schneider and Maraun, 2009; Thakur et alL5P@nd then indirectly control the leaf
litter decomposition.

Chemical and physical characteristics of the lgtdristrongly control soil mesofauna
demographic parameters and interactions (Hattenkzhet al., 2005; Chomel et al., 2016;
Santonja et al., 2018; Aupic-Samain et al., 20W)der the specific Mediterranean climatic
conditions (summer drought and episodic drying/téng cycles; Larcher, 2000; Sardans and

Pefiuelas, 2013; Gauquelin et al.,, 2018), trees rgineproduce sclerophyllous leaves
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(Codteaux et al., 1995) characterized by high iigroncentration (Tian et al., 1992; Gallardo
and Merino, 1993), low specific leaf area (Wrightak, 2005; Pallardy, 2010) and high
diversity and concentration of specialized metdbsl{i.e., terpene and phenolic compounds;
Macchioni et al., 2003; Fernandez et al., 2009)esEh particular characteristics of
Mediterranean trees could potentialy lead to distitter quality control over soil mesofauna
compared to the other temperate forests for whitgr hutrient contents (e.g., C, N and P) are
frequently reported as key drivers of soil mesofademographic parameters (Jandl et al.,
2003; Martinson et al., 2008; Jacob et al., 2008aMufi and De Long, 2020). However, to
our knowledge, only few studies investigated tHieat of litter quality on soil mesofauna in
Mediterranean forests (e.g., Barba et al., 201@itdsga et al., 2017; Aupic-Samain et al.,
2019), necessitating deeper investigation to im@rour mechanistic understanding of such
relationships.

Among terrestrial biomes, Mediterranean ecosyst@msecognized as being the most
sensitive to climatic change (Sala et al., 2000y &er et al., 2005). Regional climate models
for the Mediterranean Basin predict a warming ofi°G. and a decrease of annual
precipitations by 30% for the end of the’2®ntury, which will result in an intensificatior o
summer drought events (Giorgi and Lionello, 200BCC, 2013; Polade et al., 2014).
Therefore, by decreasing water availability, climahange in Mediterranean ecosystems may
have a direct negative impact on soil microorgasiqeng., Sardans and Pefuelas, 2010;
Talmon et al., 2011) and mesofauna (e.g., Tsiafeukl., 2005; Santonja et al., 2017). In
addition, climate change may indirectly impact mabial and mesofaunal communities by
altering litter quality and quantity produced bymis as climatic conditions strongly control
plant growth and survival and consequently leaf lgttet traits (Wright et al., 2005; Sardans
and Pefuelas, 2007; Rodrigdeamirez et al., 2017). Indeed, previous studiesrted that

experimental decrease in water conditions imploegel nutrient content (Chen et al., 2013;
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Santonja et al., 2019) and higher specialized noditabcontent (Herndndez et al., 2004;
Munné-Bosch and Pefiuelas, 2004) with potential thagaascading effects on soil biota
(Allison et al., 2013; Garcia-Palacios et al., 2@18antonja et al., 2019). In addition, oaks
and pines are dominant tree genera that structle temperate and Mediterranean forests
(Ellenberg, 1988; Quézel and Médail, 2003). As @akl pine forests exhibit different
microclimatic and soil properties (e.g., pH, sgpe¢, humus forms; Table 1; Gauquelin et al.,
2016) as well as chemically and structurally ddfer litters (oak leavess. pine needles;
Aupic-Samain et al., 2019; Santonja et al., 200#),could expect that climate change may
distinctly affect soil biota in these two forespgs. However, our current understanding of
soil biota responses to climate change drivers adikérranean oak and pine forests is still
limited by a lack of studies addressing conjoirttig relative contributions of environmental
conditions and leaf litter quality and both direstd indirect effects of climate change on
these organisms.

In this context, we set up a 2-year litter transpxperiment in the three main forests
encountered in the northern part of the MeditermanBasin Quercus pubescens, Quercus
ilex and Pinus halepensis dominated forests) in which we manipulated the amwuof
precipitation (naturals. amplified drought), the litter species identitedf / needle litters
from the three tree species) and the litter typt#el$ collected from natural or amplified
drought plots) in order to determine their relatieects on soil biota, including both
microbial (bacteria and fungi) and mesofaunal (A@ard Collembola) communities. We
hypothesized that i) microbial biomass and mesathuabundance associated with
decomposing oak leaves are higher compared to peselles due to lower amount of
refractory coumpounds (e.g., specialized metal®)it@) reduced precipitation directly
decreases microbial biomass and mesofaunal abumdahavater availability is a strong

constraining environmental factor; iii) reduced qyp&ation indirectly decreases microbial
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biomass and mesofaunal abundance due to a dedredsaf/ needle litter quality (e.g.,
increased specialized metabolite content) andaw)bsota will be more sensitive to reduced
precipitation in oak compared to pine forests wisai biota is already conditioned by more

constraining environmental conditions (e.qg., litentent).

2. Materials and M ethods

2.1. Study site

The study was concurrently set up in three Meditezan experimental sites (Table 1).
The first is the Oak Observatory at the “Observatoie Haute Provence” ¢BP) locatedn
the Luberon Natural Regional Park (433%26'N; 5°1757.84'E), in Provence, SE France
(Gauquelin et al., 2011). This oak forest is dortr@daby deciduous downy oak){ercus
pubescens Willd.). The second site is located in the PuéchaBtate Forest (43°44'30” N;
3°35’40” E) in Occitanie, SE France (Misson et 2010). This oak forest is dominated by the
evergreen holm oalQercus ilex L.). The third site is located in the departmerfitaest of
Font-Blanche (43°14°25”N; 5°40°'40”E) in Provenc&E France (Simioni, 2011). This is a
mixed forest, but Aleppo pinePinus halepensis Mill.) is the most abundant species,
contributing around 70% of the basal area. Duriregttvo years of field experiment, the mean
annual precipitation ranged from 635.6 mm inBhéalepensis forest to 1020.9 mm in th@.
ilex forest, while the mean annual temperature ranged 12.3°C in th&). pubescens forest
to 14.1°C in the°. halepensis forest (Supplementary Fig. S2).

In order to simulate the intensification of the snem drought period, each site is
equipped with a rain exclusion device reducing apipnatively 30% of annual precipitation
(similar to climatic models projection — A2 scemaiGiorgi and Lionello, 2008; IPCC, 2013).

In the Q. pubescens forest the rain exclusion device consists of a 18 #® m rainout-shelter



144  above the canopy which dynamically excluded préaiijpns by deploying automated shutters
145 during rainfall events of the vegetation growingasen (i.e., from spring to autumn)
146  (Supplementary Fig. S2a). In th@. ilex and P. halepensis forests the rain exclusion is
147  performed by using fixed PVC gutters installed betbe forest canopy, excluding about 30%
148  at each rainfall event (Supplementary Fig. S2b@nth each site, we compared control plots
149  (natural drought - ND) and rain exclusion plots fdifred drought — AD) (Table 1 and
150  Supplementary Fig. S1).

151

152 2.2. Litter collection

153 Freshly abscised leaves and needle®.gbubescens, Q. ilex andP. halepensis were
154  collected in ND and AD plots over the litterfallrped in 2014. For that, litter traps were used
155 during the abscission period that occurred fromeJtm September for the needld. (
156  halepensis) and from October to November for the leav€s (lex and Q. pubescens).

157  Immediately after collection, the leaves/needles=vagr dried at room temperature and stored
158 until the beginning of the experiment. Seveaahfjuots of senescent leaves or needles were
159 also frozen at -20 °C, freeze-dried for 72 h armligd prior to chemical analyses.

160

161  2.3. Experimental design

162 Plant litter decomposition was studied over 730sdaging the litterbags method
163  (Swift et al., 1979). In December 2014, 10 g (imigglent dry weight) of senescent leaves or
164 needles of eithe®. pubescens, Q. ilex andP. halepensis collected from trees either in ND or
165 AD plots were placed in a 4-mm mesh litterbag (2B0xcm) designed to allow colonization
166 by microbes and mesofauna. Litter transplants weaele between each site for the three
167  species considered, i.e., a litter bag containeglitter of each species placed on each forest

168  site, under the two precipitation conditions, iD and AD (see Fig. 1).
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Thus, the experiment consisted in 36 treatment aaatibns corresponding to 3 forest
sites Q. pubescens, Q. ilex andP. halepensis forests) x 3 litter specieQ( pubescens, Q. ilex
andP. halepensis) x 2 litter types (litters collected from ND or Aplots) x 2 precipitation
treatments (ND and AD) (Fig. 1). Each modality Backplicates for a total of 180 litterbags.
Litterbags were placed perpendiculary to the gsitrstem inQ. ilex and P. halepensis
forests and under the rain exclusion device in@h@ubescens forest by using 5 transects
(i.e., 5 replicates of the 6 litterbag modalititegjuidistant from each other (1 m distance
between the 5 transects and 0.6 m between theéefblgs). Transects were oriented E-W.
They were placed on the ground after the removéhelitter layer and fixed to the soil with
galvanized nails to prevent movement by animalwiad. The litter layer was then replaced
over the litterbags. In December 2016, i.e., af&® days of decomposition, all the litterbags

were harvested and sealed in plastic bags to préverfurther loss of biological material.

2.4. Initial litter characteristics

Initial litter quality of the three litter speci€®. pubescens, Q. ilex andP. halepensis)
collected from the two precipitation treatments (MDd AD) was determined from five
samples.

Carbon (C) and nitrogen (N) concentrations wererd@ned by thermal combustion
on a Flash EA 1112 series C/N elemental analyzeerfio Scientific®, Waltham, MA,
USA). Phosphorus (P) and cations, i.e., calcium),(Gadium (Na), potassium (K) and
magnesium (Mg), were extracted from 80 mg of graghlitter with 8 ml of HN@and 2 ml
of H,0O,. Then, samples were heated at 175 °C for 40 mngwsmicrowave digestion system
(Ethos One, Milestone SRL, Sorisole, Italy). Afteis mineralization step, every sample was
adjusted to 50 ml with demineralized water. P catregion was measured colorimetrically

using the molybdenum blue method (Grimshaw et1&89). 100 pl of sample, 100 ul of



194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

NaOH, 50 pl of mixed reagent (emetic tartrate amthanium molybdate solution) and 50 pl
of ascorbic acid were mixed directly in a 96 welicraplate. After 45 min at 40 °C, the
reaction was completed, and P concentration wasumes at 720 nm using a microplate
reader (Victor, Perkin Elmer, Waltham, MA, USA).t@as concentrations were determined
by atomic absorption spectrophotometer. Total phencompounds were measured
colorimetrically by the adapted method of Pefuelaal., (1996) using gallic acid as standard
(expressed as equivalent acid gallic). 250 mgttdrlsample were extracted in 20 ml of a 70
% aqueous methanol solution, shaken for 1 h, aed thtered (0.45 pm filter); 50 pl of
filtered extract were mixed with 200 ul of satuchlgueous N&Os (to stabilize the color
reaction), 1650 ul of distilled water and 100 plif&iocalteu reagent (Folin and Denis,
1915). After 30 min, the reaction was completed] #me concentration of phenolics was
measured at 765 nm on a UV/Vis spectrophotometberfiio Scientific®, Waltham, MA,
USA). Lignin, cellulose and hemicellulose as wedl water soluble compounds (WSC)
concentrations of initial litter materials were el@hined according to the Van Soest extraction
protocol (Van Soest, 1963) using a fiber analyEdodrsac 24, Ankom, Macedon, NJ, USA).
All concentrations were expressed in migaj litter dry weigh.

To determine the Water Holding Capacity (WHC), atti@af or needle were soaked in
distilled water for 24 h, drained and weighed. @ngweight was determined after drying the
samples at 60 °C for 48 h. WHC was calculated assfnweight / dry weight) x 100 and

expressed in % (Santonja et al., 2015). Specifaf llegea (SLA) was calculated as the ratio

between leaf area (determined by using the Imagpftware;_https://imagej.nih.gov/ij/, MA,

USA) and dry weight and was expressed ifi grhof dry weigh.

2.5. Mesofauna extraction and identification



218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

Mesofauna was extracted from one litterbag usiregTiligren funnel method for 10
days (Berlese, 1905). Collected arthropods wenedtm 70 % ethanol, counted by using a
binocular microscope and separated between Colllemarw Acari, with different suborders
for the latter: Oribatid, Mesostigmatid and Prostadid Acari (Gisin, 1960; Hopkin, 1997).
Collembola and Oribatid Acari were assigned as ohiedetritivores and Mesostigmatid and
Prostigmatid Acari as predators (Coleman et alQ42@onoso et al., 2013; Crotty et al.,

2014; Santonja et al., 2017).

2.6. Litter mass loss estimation
After mesofauna extraction, the litter samples wegeze-dried (Lyovac GT2) for 72

h and the remaining dry mass (%) after 730 daykobmposition was calculated.

2.7. PLFA analyses

Since, the phospholipid fatty acids (PLFA) are asBaecomponents of all living cells
(Tollefson and McKercher, 1983; Zelles, 1999) watkvide structural diversity (Zelles, 1997,
Tornberg et al., 2003), we used PLFA as biomarkérktter microbial communities. The
PLFA were extracted from freeze-dried ground litecording to the method from Buyer and
Sasser (2012) with modifications. Four ml of Blifhyer extractant containing 4 pl of 1,2-
dinonadecanoyl-sn-glycero-3-phodphocholine (C18\anti® Polar lipids, Inc.) as internal
standard were added to 0.5 g of samples. Lipidarapn was performed by solid-phase
extraction (SPE) on Phenomenex® (Strata SI-1 wihniy of silica, 55 um, 70 A). The
resulting fatty acid methyl ester (FAMES) were gsall by gas-chromatography/mass-
spectrometry (GC-MS) on an Agilent 7890 system goed with an MSD5977A Network
mass detector, an ALS7693 automatic injector anti&-MS apolar column (30 m x 0.25

mm x 0.25um; J&W Agilent Technologies) and MassHunter sofeva@ualitative analysis
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of FAMEs resulted by retention time comparison FAMVES mixture (range between C4 to
C24). The total PLFA concentration was used as ureasf the total microbial biomass,
while fungal and bacterial biomasses were estim#itesugh PLFA markers summed
(Frostegard and Baath, 1996). Biomasses were esquatés g g dw of litter. Among the 24
identified PLFAs in the samples, 12 microbial sfed?’LFAs were analysed. The fatty acids
i15:0, al15:0, i16:0 and i17:0 were used as biomarkar Gram-positive bacteria; 1657,
18:1nv7 and cy19:0 were used as biomarkers of Gram-n&ghb#cteria; 15:0, 17:0 were used
as general bacterial markers and #81were used as biomarkers of methane oxidizing
bacteria (Frostegard et al., 1993). The total b@ttELFA biomass was calculated by adding
Gram-positive, Gram-negative and general bactbraharkers while 18:®@6,9 was used as a

biomarker of fungi (Badath and Anderson, 2003; Klaared Baath, 2004).

2.8. Statistical analysis

Statistical analyses were performed using a conibmaf univariate and multivariate
techniques with R software (version 3.3.1). Sta@stsignificance was evaluated in all cases
at P < 0.05. Normality and homoscedasticity of the daals were checked using Shapiro-
Wilk and Levene tests, respectively.

To analyse the differences of the initial charastes of the three litter specie®.(
pubescens, Q. ilex andP. halepensis) and the two litter types (leaves or needles ctaig from
trees in ND or AD plots) we performed a Principlen@ponent Analysis (PCA) followed by
pairwise tests with permutational multivariate gsek of variance (PERMANOVA;
Anderson, 2005) using treglonis function of thevegan package (Oksanen et al., 2007, 2013).

Four-way analyses of variance (ANOVA), followed Bwkey tests for post-hoc
pairwise comparisons, were used to test the effettforest site, litter species identity,

precipitation treatment, litter type and their natetions on the 5 soil biota parameters
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previously log-transformed: abundances of CollerapoOribatida, and predator and
biomasses of bacteria and fungi. The full modelsevtken simplified to determine the most
parsimonious models using th#edge function of MuMIn package (Barton, 2016), an
established model selection procedure with bottvdod and backward selection algorithms,
which ranks all candidate models (all possible coaiions of the initial explanatory
variables included in the full model) based onltvweest Akaike Information Criterion (AIC).
Thus, litter type treatment initially included inet full models, was never retained in the most
parsimonious models.

Finally, Spearman correlations were performedrtb litter mass loss after 24 months
of decomposition to the 4 soil biota directly inwvedl in the decomposition process (bacteria,

fungi, Collembola and Oribatida).

3. Results

3.1. Initial litter characteristics

The PCA (Fig. 2) and PERMANOVA (Pseu#f@rer speciess 42.5,P = 0.001) revealed a
considerable variation of initial litter quality tseeen the three plant species. The first axis of
the PCA (43 % of the variance explained) discrirteddeaves of). pubescens from leaves
of Q. ilex with higher SLA, Mg and lower Na and lignin contemt the former. The second
axis of the PCA (34 % of the variance explainedfidguishedP. halepensis from the two
Quercus species, with a higher WSC concentration andheropposite, lower WHC, Ca and
hemicellulose concentrations in the former. In addj PERMANOVA revealed an effect of
litter type (i.e., leaves or needles collected friwees in ND or AD plots; Pseud@ner type =
3.3 ;P =0.033) indicating a modification of litter qugliunder amplified drought conditions,

as well as an interaction between litter specias later type (Pseudéiter species x litter type



293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

2.4; P = 0.046) indicating a modification of litter traitacconding to the tree species
considered. AD induced an increase of Mg and Nabfith oak species, a decrease of Ca
content the three tree species (Supplementary T@bleSLA and WHC decreased with AD
for the twoQuercus species but did not change férhalepensis (Supplementary Table S1).
Finally, AD induced an increase of leaf phenolioitemt forQ. ilex whereas no change was

observed foQ. pubescens leaves and. halepensis needles (Supplementary Table S1).

3.2. Microbial community

Bacterial and fungal biomasses were respectively 1&nd 15% higher inQ.
pubescens litter compared to the two other litters (Table R2g. 3a and b) and were not
affected by the litter type (i.e., leaves or negdtellected from trees in ND or AD plots,
Supplementary Fig. S3). The effect of AD on micebliiiomass was dependent on the forest
considered (significant forest x precipitation naietion, Table 2). AD treatment had no effect
on the fungal or bacterial biomasses in@hgubescens or Q. ilex forests, but increased them

by 29 % in theP. halepensis forest (Fig. 4a and b).

3.3. Soil mesofauna

We collected a total of 27 292 individuals of marihropods from all the litterbags.
Collembola were the most abundant microbi-detrigvarthropods (49 %), compared to
Oribatida (39 %), while predatory Acari represent@d of the microarthropods community.
As reported for microbial biomass, mesofaunal alhnod varied according to litter species
identity but was not affected by litter type (TaleSupplementary Fig. S3). The abundance
of all mesofauna groups associatedQo pubescens litter was always two times higher

compared t®. ilex andP. halepensis litters (Fig. 3c-e).
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Except for Oribatid Acari, forest type and prea@gibn treatment interactively affected
Collembola and predator abundances (significargsfiox precipitation interaction, Table 2).
AD treatment did not affect Collembola abundanceQinpubescens forest but decreased
Collembola abundance by 46 % and 48 9%Qirilex andP. halepensis forests, respectively.
Consequently, the Collembola abundance was sirtalal across the three Mediterranean
forests under AD treatment (Fig. 4c). The AD treatiirhad a significant effect only in tk
ilex forest, with a 50 % decrease of the predator adueel (Fig. 4d). Finally, Oribatid Acari
abundance was respectively 87 % and 62 % high@r ilex forest compared tQ. pubescens
andP. halepensis forests (Fig. 5a) and was reduced by 33 % undecaéddlitions in the three

forest types (Fig. 5b).

3.4. Relationships between soil biota parameters and litter mass|oss

While Collembola and Oribatida abundances weretipesr correlated with litter
mass loss under ND condition in bogh ilex and P. halepensis forests (Table 3), these
relationships disappeared under AD conditions. édaliola abundance was only marginally
correlated with litter mass loss under ND treatmer®). pubescens forest (Table 3), and this
trend also disappeared under drier conditions.llyifangal biomass was positely related to

litter mass only imMQ. ilex forest under AD conditions (Table 3).

4. Discussion

Our study highlighted that litter identity strongtpntrols soil biota in Mediterranean
forests after a 24-month field litterbag experiménteach of the three fore€p, pubescens
litter had consistently more abundance of all sota groups compared @. ilex and P.
halepensis litters. Our results suggest a key role playedCly Mg, specific leaf area (SLA)

and water holding capacity (WHC) as drivers of &adta parameters. In addition, amplified
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drought differently affects soil biota with an iease in microbial biomass and a decrease in
soil fauna abundance. However, except for Oribafdari, negative effect of amplified
drought were dependent on the forest considererpriSugly, amplified drought did not

indirectly affect the solil biota by altering thedrlitter quality.

4.1. Effects of litter traits on soil biota

We provided clear evidence that soil biota commesitre strongly controlled by
litter species identity, but we only partly confirmar first hypothesis of higher abundance of
soil biota in oak compared to pine forests. Morecfgely, the abundance of all soil biota
associated witlQ. pubescens litter was higher compared . ilex andP. halepensis litters,
whatever the forest in which the litter decompod@dpubescens leaves exhibited higher
specific leaf area (SLA) and water holding capa@HC) compared t®. ilex leaves andp.
halepensis needles. Higher litter SLA has been reported Wude an increase in water
availability (Castro-Diez et al., 1997; Makkoneragf 2012, 2013) or in habitat structure for
Collembola (Kalinkat et al., 2013; Santonja et 2018; Aupic-Samain et al., 2019). WHC is
a physical trait corresponding to the litter akitiv hold the water, which is necessary for soill
biota development and activity (Pflug and Wolte2601; Makkonen et al., 2012, 2013;
Santonja et al., 2017). In additio, pubescens leaves also exhibited higher Ca and Mg
concentrations than the two other litters. Ca padit affects fungal growth and activity
(Eriksson et al., 1990; Jenkins and Suberkropp5)1L88ad is a key constitutive of invertebrate
cuticles (Cairns and Yan, 2009). Mg plays an imgatrtrole in the growth and metabolic
functions of microbial cells (Walker, 1994) and aa essential element for invertebrates
required for enzymatic reactions, nerve connectimnsmuscle function (National Research
Council, 2005). Some previous studies identifieésth physical (SLA and WHC) and

chemical (Ca and Mg) litter traits as importantvdrs of the litter decompaosition process in
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Mediterraean forests (GareRalacios et al., 2016a), wich support our studyatestrating for

the first time that these litter traits directlyntml soil biota in Mediterranen forests and then
ecosystem processes. However, we acknowledge dilabista parameters were analysed
only at one sampling time in the present studye(afB80 days of decomposition in litterbags),
preventing an extrapolation to soil biota dynantlm®ughout litter decomposition time and

necessiting additional experimentations to cordartfindings.

4.2. Direct and indirect effect of precipitation treatment on soil biota

We confirmed our second hypothesis that decregsiagipitation directly affects of
soil biota biomass and abundance. Conversely, \@endt evidence an indirect effect of
amplified drought on soil biota mediated by a shftitter quality at intraspecific level (Fig.
2), in contrast to our third hypothesis. In a cliem@hange context, these findings clearly
highlight that reduced water availability prevaie intraspecific shift in litter quality due to
plant water stress as a major driver of soil baatanmunities in our Mediterranean forests.

In temperate forest ecosystems, bacteria and fanmegoften positively correlated with
soil water availability (e.g., Pflug and Wolter§)(&; Taylor and Wolters, 2005; Lensing and
Wise, 2007). In Mediterranean ecosystems, in ceptthe regular summer droughts could
have select adapted phenotypes among microbialesp@criquet et al., 2000; Curiel Yuste et
al., 2014; Pereira et al., 2019), leading to ongalkvor an absence of drought effect on soil
bacterial and fungal communities (Wilkinson et 2002. Sherman et al., 2012; Curiel Yuste
et al., 2014). In addition, higher mortality andvir fecundity rates were reported for both
Collembola and Acari under drier condition, due datiered physiological processes
(Holmstrup et al., 2001; Houck, 2012; Poinsot-Bakxrgand Barra, 1991), species behavior
(Verhoef and van Selm, 1983) or predator-prey augon (Santonja et al., 2017).

Consistently with these previous studies, microlimmass was not negatively affected,
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while soil fauna abundance decreased under antpliieought in the three studied
Mediterranean forests.

Except for Oribatida Acari, the drought responsiethe soil biota varied according to
the forest type considered. I halepensis forest, we observed lower Collembola abundance
but higher microbial biomass with the amplified aigbt treatment. Since Collembola are
known to be microbial feeders (Maraun et al., 2083) soil microbial communities to be
drought-tolerant in Mediterranean ecosystems (Saeret al., 2012; Curiel Yuste et al.,
2014), higher microbial biomass under reduced prdion could be the result of lower
Collembola feeding activity on them. Moreover, spkred microorganisms species could
also benefit on specific conditions frof halepensis forest (higher specialized metabolites
from P. halepensis litter) to proliferate at the expense of genetaisecies. In contrast, @.
ilex forest we reported lower Collembola and predatdcari abundances with amplified
drought, but no differences in microbial biomasisic8 Acari Mesostigmata and Prostigmata
are active predators of Collembola (Koehler, 1996hneider and Maraun, 2009) and are
more drought-tolerant than Collembola (Santonjalet2017), this finding could suggest that
amplified drought imQ. ilex forest led to a negative cascading effect fromedabola to their
predators. However, iQ. pubescens forest we observed no effect of reduced precipitabn
Collembola, nor on their basale resource (micraaisgas) and nor on their predators (Acari).
An explanation may lie in the differences among phecipitation reduction set-ups used in
three Mediterranean forests: precipitation reduct{e30%) in theQ. pubescens forest is
concentrated in the summer months, as expecteldebglitnatic models (IPCC, 2013; Polade
et al.,, 2014), while imQ. ilex and P. halepensis forests, reduced precipitation is effective
throughout the year. As sampling was done in wjrgeil biota was likely able to recover
from the amplified summer drought @ pubescens forest, given that precipitation patterns,

and not only the amounts, could impact the soitebi@d previous assessment of the soill
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microbial community associated to litter performedhe same). ilex forest in 2013 reported
a significant decrease of their biomass under dieglidrought (Garcia-Palacios et al.,
2016b), which was not significantly confirmed in d@enber 2016 by the present study. In
addition, Santonja et al., (2017) reported a nggaéffect of amplified drought on both
Collembola and Oribatid Acari in the same studigdpubescens forest between 2012 and
2013, while this negative effect was maintainedydat Oribatid Acari for the present study.
Such discrepancies among studies could be expldiyped number of factors, among which
are the year to year climatic differences, anddifferent sampling periods and methods. The
experiment of Santonja et al., (2017) in epubescens forest was performed just after the
installation of the rain exclusion device in 201hi the present study was performed 5
years later. As Oribatid Acari exhibit lower disgar ability (Hopkin, 1997), lower fecundity
rate (Houck, 2012) or higher habitat specializafdfehner et al., 2016) than Collembola, we
could also speculate why these Oribatid Acari aié rsegatively affected by amplified
drought treatment after several years, while Cdelm were able to adapt to the drier
conditions. Finally, while increasing Collembolada@ribatida abundances were positively
related to litter mass loss @. ilex and P. halepensis forests, amplified drought conditions
suppressed these relationships. This last findigglights that, in addition to the impact on
soil biota demographic paramaters, drier envirortaleronditions alter the contributions of

soil organisms to the processes they drive in Medihean forests.

5. Conclusion

The focus of this study was to assess how littatityuand reduced precipitation drive
soil biota in three Mediterranean forests. We mieviclear evidence that soil biota
communities are strongly controlled by litter tsaiith a common pattern for all taxonomic

groups studiedQ. pubescens litter exhibited the highest microbial biomassed aresofaunal



442  abundances in comparison@oilex andP. halepensis litters whatever the forest in which the
443  litter decomposed, likely due to a better microtetb{SLA and WHC) as well as nutritive
444  resource (Ca and Mg) conditions. Surprisingly, desphe amplified drought treatment
445  inducing a modification of litter quality, we dicdbhobserve an indirect climate change effect
446  on soil biota due to this intraspecific shift ittdr quality. However, we observed a direct
447  effect of amplified drought on soil biota and theantributions to the litter decomposition
448  process with different response patterns dependmgoth the taxononomic group and the
449  Mediterranean forest considered.
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764  Tables

765

766 Table 1. Main characteristics of the three studied fore®&T and MAP correspond
767  respectively to the annual mean values of temperadnd precipitation between 2008 and
768 2019 in natural precipitation (ND) and amplifieddght (AD) plots (Supplementary Fig. S2).
769  These values did not significantly differ betwebe forest sites (One-way ANOVASgE=
770 0.6;P > 0.05, Kjte = 1.7;P > 0.05 and Ee = 1.8;P > 0.05 for MAT, MAP in ND plots and

771 MAP in AD plots, respectively).

772
Forests Quercus pubescens Willd. Quercus ilex L. Mixed Pinus halepensis Mill.
Oak Observatory at the
Sites Observatoire de Haute Puéchabon Font-Blanche
Provence (OsHP)
Location 43056'115" N, 05042' 642" E  43°44'29"N, 3°35' 45"E 43°14'27" N, 5°40'45" E
Altitude a.s.l. (m) 650 270 425
MAT (°C) 12.6 14.0 13.7
MAP ND (mm) 866.3 955.4 605.0
MAP AD (mm) 639.5 698.9 441.6
Soil type pierric calcosol rhodo-chromic luvisol leptosol
Soil texture clay clay loam clay
Soil pH 6.76 6.6 6.8
Surface rocks cover (%) 23 75 50
Dominant tree species Quercus pubescens Willd. Quercus ilex L. mixed Pinus halepenSIs Mill. /
Quercus ilex L.
Buxus sempervirens L.
Other dominant plant Acer monspessulanum L Phyllirea latifolial L. Quercus coccifera L.
species Cotinus coggygria Scop. Pistacia terebinthus L. Phyllirea latifolia L.
Juniperus oxycedrus L.
Tree density (stems/ ha) 3503 4500 3368
Forest structure even-age (70 years) even-age (74 years) uneven-age (61 years)
Type of rain exclusion Dynamic system : moving roof Permanent system : PVC Permanent system : PVC
system device gutters gutters
Rain exclusion system
dimensions (mZ;/ 300 140 625
ﬁ}?tgﬁ:tci'g:m device 2012 2003 2009
773
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775 Table 2. Effects of the forest typeQuercus pubescens, Quercus ilex and Pinus halepensis

776  forests), litter species identity, precipitatiomatment (naturavs. amplified drought), and
777  their interactions on microbial (bacterial and fahgiomasses) and mesofaunal (Collembola,
778  Oribatida, and predator abundances) parameters=diegrees of freedonk-values and
779  associatedP-values (with the respective symbols * o 0.05, ** for P < 0.01, and *** for
780 P < 0.001) are indicated. Litter type treatment watsally included in the full models but it

781  was never retained in the most parsimonious models.

782
Bacteria Fungi Collembola Oribatida Pteda
df F P F P F P F P F P
Forest (F) 2 2.9 3.3 * 16.9 10.8 ¥ 29.0
Species (S) 2 7.6 wohk 7.5 ok 12.0 rrk 20.2 rrk 6.9 *x
Precipitation (P) 1 0.9 15 4.6 * 11.9 rkx 0.2
FxS 4 25 2.4
FxP 2 3.4 * 3.4 * 6.1 ** 2.1 4.1 *
783

784



785 Table 3. Matrix of Spearman correlations between litter mésss after 24 months of
786  decomposition and the 4 soil biota directly invalva the decomposition process (bacteria,
787  fungi, Collembola and Oribatida) according to foreise and precipitation treatmeMalues
788 in this matrix can range from -1.0 to 1.0, with in@icating perfectly correlated variables and
789  -1.0 indicating perfectly negative correlationsgrgficant correlations are indicated with the
790 respective symbols *** foP < 0.001, ** forP < 0.01, * forP < 0.05 andnsfor P < 0.07. ND

791 = natural drought and AD = amplified drought.

792
Q. pubescens forest Q. ilex forest P. halepensis forest
ND AD ND AD ND AD
Bacteria -0.10 -0.13 -0.14 0.29 -0.17 0.10
Fungi -0.10 -0.18 -0.14 0.42* -0.18 0.07
Collembola 0.34™ 0.11 0.53** 0.19 0.36* 0.09
Oribatida 0.10 -0.08 0.61*** 0.29 0.45** 0.34
793

794



795  Figures

796

797 Fig. 1. Schematic design of the field experiment. First, @o#lected senescent leaves or
798 needles in three forest siteQuercus pubescens forest Quercus ilex forest or Pinus
799  halepensis forests) according to the two precipitation treatins (natural or amplified drought
800 plots). Second, we performed a 2-year litter decmsitpn experiment using the two litter
801 types of the three litter species placed in the pnexipitation treatments of the three forests.

802 ND = natural and AD = amplified drought.

803
Q. pubescens forest Q. ilex forest P. halepensis forest
(O;HP) (Puéchabon) (Font-Blanche)
ND plots i AD plots NDplots . | ADplots ND plots j AD plots
® | |
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806 Fig. 2. Principal Component Analysis (PCA) based on theiritsal litter traits (arrows),
807 arranged by litter species identit@uercus pubescens, Quercus ilex and Pinus halepensis)
808 and litter type (leaves / needles collected froeegrin ND or AD plots) showed by colored
809 circles. Qp=Q. pubescens, Qi= Q. ilex, Ph=P. halepensis, ND = natural and AD = amplified
810 drought, WSC= Water Soluble Compounds, C = CarlsuA= Specific Leaf Area, Mg =
811 Magnesium, Ca = Calcium, WHC = Water Holding CapaciN = Nitrogen, P =

812  Phosphorous, and Na = Sodium.
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Fig. 3. Effects of litter species identity on bacterial miass (a), fungal biomass (b),
Collembola abundance (c), Oribatida abundance r{d)@edator abundance (e). Values are
means * SE; n = 60. Microbial biomass is expresagdug. g littelf and mesofauna
abundance as nb of individuals. g litteDifferent letters denote significant differences

between treatments from ANOVA analysis with a < b.
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832

Fig. 4. Bacterial biomass (a), fungal biomass (b), Collelakabundance (c) and predator

abundance (d) according to the forest type andtieipitation treatment (Table 2). Values

are means = SE; n= 30. Microbial biomass is expss pg. g littér and mesofauna

abundance as nb of individuals.g litterDifferent letters denote significant differences

between treatments from ANOVA analysis with a < b. D = natural and AD = amplified

drought.
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Fig. 5. Effect of (a) forest site(fuercus pubescens forest in white Quercus ilex forest in grey
and Pinus halepensis forest in black) and (b) precipitation treatmeND( plot in white and
AD plot in black) on Oribatida abundance. Values lsreans =+ SE; n = 60 for (a) and n = 90
for (b). Abundance is expressed as nb of indivislgalitterl and pg. g litterl, respectively.
Different letters denote significant differencesvilmen treatments with a < b. ND = natural

and AD = amplified drought
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Highlights

- Chemica (Ca, Mg) and physical (WHC, SLA) litter characteristics drive soil biota.
- Drier conditions lead to higher microbial biomass but lower mesofauna abundance.
- Drier conditions ater plant litter quality without cascading effect on soil biota.

- Drier conditions suppress soil fauna-litter decomposition efficiency relationships.
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