
HAL Id: hal-03103092
https://amu.hal.science/hal-03103092v1

Submitted on 7 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kinetic modelling of evaporation and condensation
phenomena around a spherical droplet

Vinícius Braga Leite, Denize Kalempa, Irina Martin Graur

To cite this version:
Vinícius Braga Leite, Denize Kalempa, Irina Martin Graur. Kinetic modelling of evaporation and
condensation phenomena around a spherical droplet. International Journal of Heat and Mass Transfer,
2020, pp.120719. �10.1016/j.ijheatmasstransfer.2020.120719�. �hal-03103092�

https://amu.hal.science/hal-03103092v1
https://hal.archives-ouvertes.fr


Kinetic modelling of evaporation and condensation

phenomena around a spherical droplet
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Abstract

The steady evaporation and condensation phenomena around a spherical
droplet of the condensed phase of a vapor are investigated with basis on a
kinetic model to the linearized Boltzmann equation. The kinetic equation
is solved via a discrete velocity method which takes into account the dis-
continuity of the distribution function of molecular velocities on the spher-
ical interface. The calculations are carried out in a wide range of the gas
rarefaction and evaporation-condensation coefficient. The results obtained
via solution of the linearized Navier-Stokes equations with temperature and
pressure jump boundary conditions are also presented and compared to those
obtained via kinetic equation. A comparison between the linearized and non-
linear solutions of the kinetic model is also presented to show the limit of
applicability of the linearized approach.

1. Introduction

The evaporation and condensation phenomena are of great interest in
many fields such as environmental sciences, micro and nanotechnology, se-
curity of nuclear plants, etc. For instance, evaporation and condensation
processes in mini and microchannels have been widely used in air-cooled
condensers, in heat pipes and other devices for thermal control of different
systems. In particular, microchannel condensers [1] are used to increase per-
formance in heat transfer, to reduce components size and improve energy
efficiency. The authors of Ref. [2] state that innovative cooling technologies
must necessarily use the processes of boiling, evaporation and condensation
in novel reduced geometrical configurations intended for the heat transfer
enhancement. Moreover, according to Ref. [3], a big gap still exists between
the chip-level heat generation and the system-level heat removal in high per-
formance electronic systems, such as computers, electronics and solid-state
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lasers. Thus, one can say that evaporation and condensation phenomena play
an important role in the development of saving energy and environmentally
friendly new technologies.

The theory of evaporation and condensation has its foundations in the
classical kinetic theory of gases. Hertz [4] and Knudsen [5] provided the
molecular basis for understanding these phenomena in the free molecular
flow regime, where the intermolecular collisions are negligible. Later, Pao
[6, 7] and Thomas et al. [8] took into account the effect of the intermolecu-
lar collisions. These authors predicted theoretically the discontinuity of the
pressure and temperature profiles through a liquid-vapor interface and ex-
plained this phenomenon by the non-equilibrium state of a gas inside the
thin layer around the interface, the Knudsen layer. Labuntsov and cowork-
ers also contributed for the development of the kinetic theory of evaporation
and condensation inside the Knudsen layer, see e.g. Refs. [9, 10], and pro-
posed useful equations to describe both weak and strong evaporation and
condensation processes. Experimentally, the authors of Refs. [11–13] were
the first who have measured the temperature jump at the liquid-vapor inter-
face. Later, various campaigns were undertaken to measure the temperature
discontinuity at the interface under different physical conditions, e.g. Refs.
[14–18]. However, all experimental data on the temperature jump are very
scattered, ranging from 15K to 0.1K.

In practice, the Navier-Stokes (NS) equations, usually valid only under
equilibrium conditions, are widely used to describe phase transition phenom-
ena. For instance, according to Ref. [19], the hydrodynamic approach, which
is usually used in engineering models of diesel fuel droplet evaporation and
incorporated in relevant computational fluid dynamic codes, provides results
in disagreement with realistic diesel engines, so more general kinetic models
need to be employed.

Theoretical approaches for the modelling of the evaporation and con-
densation phenomena, based on the gas kinetic theory, e.g. Refs. [20–25],
confirm that the phase transition occurs only under non-equilibrium condi-
tions and that the continuity of the thermodynamic variables, such as tem-
perature and pressure, cannot be ensured. Most of these studies focus on
the evaporation-condensation in plane geometry of one or two condensed
phases and only few authors considered the evaporation from a spherical
droplet [21, 24, 26]. In Ref. [26] the problem of evaporation-condensation
on a spherical droplet was studied by implementing a linearized approach
for a kinetic model to the Boltzmann equation, while in Ref. [24] the same
problem was solved via the linearized Boltzmann equation. The asymptotic
analysis for small Knudsen number was proposed in Ref. [21]. The author of
Ref. [25] derived several useful correlations for the evaporation rate and in-
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terfacial heat transfer and compared them with the numerical results of [26].
The question on the limits of the applicability of the linearized kinetic type
equation for the simulation of the evaporation and condensation phenomena
are discussed only in the case of the plane geometry [27, 28]. In addition,
the influence of the non-complete evaporation-condensation was very often
ignored.

The objective of the present work is the modelling of the steady evap-
oration and condensation phenomena which take place on the surface of a
spherical droplet of the condensed phase of a vapor on the basis of the ki-
netic theory. The paper is organized as follows. First, the model proposed
by Shakhov [29] for the linearized Boltzmann equation, referenced here as
S-model, is solved numerically by the Discrete Velocity Method (DVM) im-
plemented to take into account the discontinuity of the distribution function
of molecular velocities around a convex body, see e.g. Refs. [30, 31]. Second,
the analytical solution is derived in the case of free molecular and hydrody-
namic regimes. In the hydrodynamic regime, the thermodynamic analysis is
used to obtain the temperature and pressure jump boundary conditions at
the liquid-vapor interface. Third, the non-linear S-model kinetic equation is
solved numerically by using the DVM in the velocity space and the Total
Variation Diminishing (TVD) type numerical scheme [32] for the approxima-
tion of the spatial derivatives, which does not require a special treatment for
the discontinuity of the distribution function on the convex droplet surface.
The mass and energy flow rates as well as the macroscopic characteristics of
the gas flow around the droplet due to the phase transition were calculated in
a range of the gas rarefaction which covers the free molecular, transition and
hydrodynamic regimes. Moreover, complete and non-complete evaporation-
condensation on the liquid-vapor interface were considered by varying the
evaporation-condensation coefficient. The linearized and non-linear results
were compared to find the limits of applicability of the linearized approach.

2. Statement of the problem

Let us consider a gas flow around its spherical condensed-phase droplet
of radius R0 caused by steady evaporation and condensation at the interface.
The temperature of the liquid droplet is supposed to be constant and equal to
Td. The corresponding saturation pressure, pd = psat(Td), could be calculated
by the Clausius-Clapeyron equation [33]. Far from the droplet the gas is at
thermodynamic equilibrium with pressure p0 and temperature T0, which are
different from the pressure and temperature of the droplet.

It is worth noting that the evaporation and condensation processes are
time dependent so that the droplet radius R0 and temperature Td are func-
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tions of time. However, according to the literature, see e.g. [34, 35], the
steady state solution is valid under the following assumptions: (i) the differ-
ence between the vapor density far from the droplet and at the interface are
very small so that the droplet condensation growth and evaporation depletion
can be considered as quasi-stationary processes and steady state solutions can
be applied; (ii) the droplet surface temperature is maintained constant by an
inner heat source within the droplet volume.

The gas rarefaction is characterized by the rarefaction parameter, δ, which
is inversely proportional to the well known Knudsen number, and defined here
as

δ =
R0

`0

, `0 =
µ0v0

p0

, v0 =

√
2kBT0

m
, (1)

where `0 is the equivalent molecular free path, v0 is the most probable molec-
ular velocity, kB is the Boltzmann constant and m is the molecular mass of
the gas particles. In case of rigid-spheres model, the viscosity of a gas, µ, is
related to the viscosity µ0 at the equilibrium temperature T0 as follows

µ(T ) = µ0

√
T

T0

. (2)

Note that the limit δ → 0 corresponds to the free molecular regime, while
the limit δ →∞ corresponds to the hydrodynamic or continuum limit.

In following we apply the S-model kinetic equation [29] to simulate the
behavior of the spherical condensed-phase droplet due to the evaporation
and condensation at the spherical surface. The kinetic equation is solved nu-
merically in its linearized and non-linear forms and the obtained results are
compared to establish the limits of applicability of the linearized approach.
The analytical solution obtained from the linearized equations of contin-
uum mechanics with appropriate temperature and pressure jump boundary
conditions is also presented and compared to the numerical solution of the
linearized model kinetic equation.

3. Kinetic equation

Considering the symmetry of the problem relatively to the center point,
the kinetic model proposed by Shakhov [29] for the Boltzmann equation in
the absence of external forces reads

∂f

∂t′
+ vr

∂f

∂r′
− vt
r′
∂f

∂θ
= ν(fS − f), (3)
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where f(t′, r′,v) is the distribution function of molecular velocities, t′ is the
time, r′ is the radial coordinate, and v=(vr, vΘ, vΦ) is the molecular velocity
vector, where vr, vΘ, and vΦ are the radial, polar and azimuthal compo-
nents in spherical coordinates (vp, θ, φ). Thus, in Eq. (3), vr=vp cos θ and
vt=vp sin θ denote, respectively, the radial and tangential components of the

molecular velocity vector v. Note that, vp =
√
v2
r + v2

t is the magnitude
of the molecular velocity vector, while θ and φ are its orientational angles.
The quantity ν is the molecular collision frequency which is assumed to be
independent of the molecular velocity and evaluated as

ν =
p

µ
, (4)

where µ, given in (2), is the viscosity of the gas at an arbitrary temperature
T . The Shakhov equilibrium distribution function fS reads

fS (n, T,V,q′) = fM
[
1 +

2mVq′

15n(kBT )2

(
mV2

2kBT
− 5

2

)]
,

fM (n, T,V) = n

(
m

2πkBT

)3/2

exp

(
−mV2

2kBT

)
,

(5)

where fM is the local Maxwellian distribution function; V = v−u′ is the pe-
culiar velocity vector, u′ = (u′r, 0, 0) is the bulk velocity vector; q′ = (q′r, 0, 0)
is the heat flux vector.

The macroscopic quantities corresponding to the gas number density, the
temperature, the bulk velocity and heat flux vectors, are calculated in terms
of the distribution function of molecular velocities, see e.g. Refs. [36, 37], as
follows

n(t′, r′) =

∫ ∞
0

∫ π

0

∫ 2π

0

f(t′, r′,v) dv, (6)

T (t′, r′) =
m

3nkB

∫ ∞
0

∫ π

0

∫ 2π

0

V 2f(t′, r′,v) dv, (7)

u′(t′, r′) =
1

n

∫ ∞
0

∫ π

0

∫ 2π

0

vf(t′, r′,v) dv, (8)

q′(t′, r′) =
m

2

∫ ∞
0

∫ π

0

∫ 2π

0

V 2vf(t′, r′,v) dv, (9)
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where dv = v2
p sin θdvpdθdφ. The mass and energy flow rates, which are the

quantities of practical interest, are also calculated in terms of the distribution
function of molecular velocities as

Ṁ ′ =

∫ ∞
R0

dA′
∫ ∞

0

∫ π

0

∫ 2π

0

mvf(t′, r′,v) dv, (10)

Ė ′ =

∫ ∞
R0

dA′
∫ ∞

0

∫ π

0

∫ 2π

0

v
mv2

2
f(t′, r′,v) dv, (11)

where dA′=8πr′dr′ is an area element of a spherical surface with radius r′.
On the droplet surface we assume that the fraction σ of incident molecules

condensates at the surface and then evaporates from it with the equilibrium
Maxwellian distribution function, while the fraction 1− σ is reflected under
the assumption of diffuse scattering. Therefore, the boundary condition at
the vapor-liquid interface is written as

f(t, R0,v) = σfs + (1− σ)fr at vr > 0, (12)

where fs and fr are the equilibrium Maxwellian functions given by

fi = ni

(
m

2πkBTs

)3/2

exp

(
− mv2

p

2kBTs

)
, i = s, r, (13)

where nd is the number density calculated from equation of state using the
droplet temperature and pressure as nd = pd/(kBTd) and nr is the num-
ber density calculated from the impermeability condition for the molecules
reflected diffusively from the surface.

Far from the sphere the gas is assumed to be in thermodynamic equilib-
rium so that

f∞ = lim
r′→∞

f(t′, r′,v) = fM0 , (14)

where the Maxwellian distribution function is given by

fM0 = n0

(
m

2πkBT0

)3/2

exp

(
− mv2

p

2kBT0

)
, (15)

where the number density n0 is calculated from the equation of state n0 =
p0/(kBT0).

In the numerical calculations, a maximum radial distance from the centre
of the spherical droplet is set to ensure the thermodynamic equilibrium far
from the sphere.
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It is worth mentioning that, although our problem concerns the steady
evaporation and condensation at the vapor-liquid interface, the time depen-
dence of the distribution function was maintained in this section, essentially
because the numerical method used for the solution of the non-linear kinetic
equation is based on the iteration in time, see Section 5.2. The implicit
numerical scheme is adopted here to decrease the computational time. How-
ever, the explicit scheme could be also applied to quantify the evaporation
rate in time.

4. Linearized approach

4.1. Linearized kinetic equation
To simulate the evaporation condensation phenomena, two thermody-

namic driven forces are introduced as follows

Xn =
|nd − n0|

n0

, XT =
|Td − T0|

T0

. (16)

Since the saturation pressure depends on the saturation temperature, these
two thermodynamic forces are not independent quantities and could be re-
lated by the Clausius-Clapeyron equation. However, in the frame of this
study, these forces are assumed as being independent from each other, to see
clearly the impact of each force on the evaporation process.

When the system is weakly disturbed from thermodynamic equilibrium,
the thermodynamic forces given in (16) are very small, i.e. Xn � 1 and
XT � 1. Therefore, the kinetic equation (3) can be linearized by representing
the distribution function of molecular velocities as

f(r′,v) = fM0
[
1 + h(n)(r′,v)Xn + h(T )(r′,v)XT

]
, (17)

where the Maxwellian distribution function corresponding to the gas equi-
librium state far from the spherical droplet is given by (15). The functions
h(n) and h(T ) are the perturbation functions due to the density and the tem-
perature deviations, Xn and XT , respectively. For further derivations, the
dimensionless quantities corresponding to the radial coordinate r, molecular
velocity vector c=(cr, cΘ, cΦ), bulk velocity vector u=(ur, 0, 0) and heat flux
vector q=(qr, 0, 0) are introduced as

r =
r′

R0

, c =
v

v0

, u =
u′

v0

, q =
q′

p0v0

. (18)

Thus, the representation (17) allows us to write the macroscopic character-
istics of the gas flow given in (6)-(9) as follows

n = n0(1 + ν(n)Xn + ν(T )XT ), T = T0(1 + τ (n)Xn + τ (T )XT ),

u = u(n)Xn + u(T )XT , q = q(n)Xn + q(T )XT .
(19)
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Moreover, the substitution of the representation (17) into the kinetic equation
(3) allows us to obtain two independent linearized kinetic equations for each
thermodynamic force which read

cr
∂h(i)

∂r
− ct
r

∂h(i)

∂θ
= δ

[
ν(i) +

(
c2 − 3

2

)
τ (i)

+2cru
(i)
r +

4

15
cr

(
c2 − 5

2

)
q(i)
r − h(i)

]
, i = n, T, (20)

where cr=cp cos θ and ct=cp sin θ denote the dimensionless radial and tan-
gential components of the molecular velocity vector c. The dimensionless
moments appearing on the right hand side of Eq. (20) corresponding to each
thermodynamic force are obtained from (19) and (6)-(9) as

ν(i)(r) =
2√
π

∫ ∞
0

∫ π

0

h(i)(r, θ, cp)e
−c2p dc, (21)

τ (i)(r) =
4

3
√
π

∫ ∞
0

∫ π

0

(
c2 − 3

2

)
h(i)(r, θ, cp)e

−c2p dc, (22)

u(i)
r (r) =

2√
π

∫ ∞
0

∫ π

0

cp cos θh(i)(r, θ, cp)e
−c2p dc, (23)

q(i)
r (r) =

2√
π

∫ ∞
0

∫ π

0

cp cos θ

(
c2 − 5

2

)
h(i)(r, θ, cp)e

−c2p dc, (24)

where dc=c2
p sin θ dcpdθ. For convenience, hereafter, the subscript “r” denot-

ing the radial components of the gas bulk velocity and heat flux is omitted.
From the boundary condition (12), the representation (17) leads to the

following linearized boundary conditions for the perturbation functions due
to Xn and XT

h(n)(1, θ, cp) = σ + (1− σ)n(n)
r , at cr > 0, (25)

h(T )(1, θ, cp) =

(
c2 − 3

2

)
+ (1− σ)n(T )

r at cr > 0, (26)
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where the parameters n
(n)
r and n

(T )
r are obtained from the impermeability

condition for the gas at the interface as

n(n)
r = −4

∫ ∞
0

∫ π

π/2

c3
ph

(n)(1, θ, cp) sin θ cos θ dcpdθ (27)

and

n(T )
r = −1

2
− 4

∫ ∞
0

∫ π

π/2

c3
ph

(T )(1, θ, cp) sin θ cos θ dcpdθ. (28)

Far from the sphere, the substitution of the representation (17) into (14)
leads to

h(i)
∞ = lim

r→∞
h(i) = 0, i = n, T. (29)

The infinite interval [0,∞) for the radial distance r is substituted by a fi-
nite interval [0, rmax], where the maximum distance rmax must be chosen to
guarantee the thermodynamic equilibrium far from the spherical droplet.

4.2. Thermodynamic analysis

From the mass and energy conservation laws we can show that the di-
mensionless mass and energy flow rates read

Ṁ =
Ṁ ′

4πR2
0mn0v0

= r2u, (30)

Ė =
Ė ′

4πR2
0v0p0

= r2

(
q +

5

2
u

)
, (31)

where Ṁ ′ and Ė ′ are defined in (10) and (11). Note that the quantities on
the right hand side of (30) and (31) are constant, i.e. they do not depend on
the radial coordinate.

According to the thermodynamics of irreversible processes [38], the en-
tropy production S can be written as

S = kB[J ′nXn + (J ′n + J ′T )XT ], (32)

where the thermodynamic fluxes are defined as

J ′n =

∫
n0v0u dA′, J ′T =

∫
n0v0q dA′, (33)
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and the thermodynamic forces Xn and XT are defined in (16). These ther-
modynamic fluxes satisfy the linear relations

J ′n = Λ′nnXn + Λ′nTXT , (34)

J ′n + J ′T = Λ′TnXn + Λ′TTXT , (35)

where Λij are the so called kinetic coefficients which satisfy the Onsager
reciprocity relation ΛnT=ΛTn. Thus, the mass and energy flow rates defined
in (10) and (11) can be written in terms of the thermodynamic fluxex J ′n and
J ′T as

Ṁ ′ = mJ ′n, Ė ′ = kBT

(
J ′T +

5

2
J ′n

)
. (36)

The advantage of using J ′n and J ′T instead of Ṁ ′ and Ė ′ is that the num-
ber of independent kinetic coefficients is reduced from four to three due to
the reciprocity relation. Moreover, the reciprocity relation represents an im-
portant criterion to verify the accuracy of the numerical calculations. For
convenience, the dimensionless kinetic coefficients are introduced as

Λij =
Λ′ij

4πR2
0n0v0

, i, j = n, T (37)

and are obtained from (10), (11), (34), (35) and (36) as

Λnn = r2u(n), ΛnT = r2u(T ), (38)

ΛTn = r2(u(n) + q(n)), ΛTT = r2(u(T ) + q(T )). (39)

Therefore, the reciprocity relation for the problem in question reads

u(T )(r) = u(n)(r) + q(n)(r). (40)

4.3. Analytic solution in the free molecular regime

When δ � 1, the intermolecular collisions can be neglected and, conse-
quently, the linearized kinetic equations given in (20) are reduced to

cr
∂h(i)

∂r
− ct
r

∂h(i)

∂θ
= 0, i = n, T. (41)
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Moreover, in this flow regime, the perturbation function of the incident parti-
cles at the interface corresponds to that far from the sphere, given by (29). As
a consequence, the boundary conditions given by (25) and (26) are reduced
to

h(n)(1, θ, cp) = σ at cr > 0, (42)

h(T )(1, θ, cp) = c2 − 2 +
σ

2
at cr > 0. (43)

The kinetic equations given in (41) can be solved analytically by employ-
ing the known method of the characteristics to solve a differential equation.
Thus, the solution of Eq. (41) subject to the boundary condition correspond-
ing to each thermodynamic force, given by (42) and (43), reads

h(n)(r, θ, cp) =

{
σ, 0 ≤ θ ≤ θ0,

0, θ0 < θ ≤ π,
(44)

h(T )(r, θ, cp) =

{
c2 − 2 +

σ

2
, 0 ≤ θ ≤ θ0,

0, θ0 < θ ≤ π,
(45)

where the angle θ0 is given by

θ0 = arcsin

(
1

r

)
. (46)

After substituting the solutions (44) and (45) into (21)-(24), the following
expressions for the macroscopic characteristics of the gas flow are obtained

ν(n)(r) =
σ

2

1−
√

1−
(

1

r

)2
 , τ (n)(r) = 0, (47)

ν(T )(r) = −(1− σ)

4

1−
√

1−
(

1

r

)2
 , τ (T )(r) =

1

2

1−
√

1−
(

1

r

)2
 ,

(48)

u(n)(r) =
σ

2
√
π

(
1

r

)2

, u(T )(r) =
σ

4
√
π

(
1

r

)2

, (49)
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q(n)(r) = − σ

4
√
π

(
1

r

)2

, q(T )(r) =
1√
π

(
1− σ

8

)(1

r

)2

. (50)

The dimensionless mass flow rate at the interface is obtained from (30)
as

Ṁ =
σ

2
√
π
Xn +

σ

4
√
π
XT , (51)

and corresponds to widely used Hertz-Knudsen formula for the mass flow
rate of vapor from the droplet. The energy flow rate is obtained from (31)
as

Ė =
σ√
π
Xn +

1√
π

(
1 +

σ

2

)
XT . (52)

4.4. Numerical solution for arbitrary gas rarefaction

The linearized kinetic equations given in (20) subject to the corresponding
boundary condition for each thermodynamic force are solved numerically by
applying the DVM, whose details can be found in the literature, see e.g. Ref.
[39]. Moreover, the split method proposed in Ref. [40] to deal with the prob-
lem of the discontinuity of the distribution function of molecular velocities on
the spherical interface is employed. In rarefied gas dynamics, the problem of
the discontinuity of the distribution function is a peculiarity inherent to gas
flows around convex bodies, see e.g. Ref. [41], and must be treated carefully
when a finite difference scheme is used. According to the analytic solutions
in the free molecular regime, given in (44) and (45), the discontinuity occurs
when θ=θ0. For small values of rarefaction parameter this behavior still re-
mains for θ=θ0 and, as a consequence, the numerical solution based on the
finite difference scheme to calculate the derivative ∂h/∂θ leads to a signifi-
cant numerical error. The split method consists on the decomposition of the
perturbation function into two parts as

h(i)(r, θ, cp) = h
(i)
0 (r, θ, cp) + h̃(i)(r, θ, cp), i = n, T, (53)

where h
(i)
0 satisfy the following partial differential equation

cr
∂h

(i)
0

∂r
− ct
r

∂h
(i)
0

∂θ
+ δh

(i)
0 = 0, (54)

subject to the boundary conditions

h
(n)
0 (1, θ, cp) = σ at cr > 0, (55)
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h
(T )
0 (1, θ, cp) = c2 − 2 +

σ

2
at cr > 0. (56)

The functions h̃(n) and h̃(T ) satisfy the kinetic equations given by (20), just
changing h(i) by h̃(i) (i = n, T ), with boundary conditions

h̃(i)(1, θ, cp) = (1− σ)ñ(i)
r at cr > 0, (57)

where

ñ(i)
r =

∫ ∞
0

∫ π

π/2

c3h̃(i)(1, θ, cp) sin θ cos θ dcpdθ. (58)

The advantage of this method is that the function h
(i)
0 is found analytically

by employing the method of the characteristics, while the function h̃(i) is
sufficiently smooth so that a finite difference scheme can be used and it
leads to a smaller numerical error. For convenience, the analytic solution h

(i)
0

(i = n, T ), for each thermodynamic force is presented in Appendix A. It is
worth noting that the moments given in (21)-(24) are also decomposed into
two parts due to the representation (53). Thus, they are written as

ν(i)(r) = ν
(i)
0 (r) + ν̃(i)(r), τ (i)(r) = τ

(i)
0 (r) + τ̃ (i)(r),

u(i)(r) = u
(i)
0 (r) + ũ(i)(r), q(i)(r) = q

(i)
0 (r) + q̃(i)(r),

(59)

where the quantities with tilde are calculated via the expressions given in
(21)-(24), just changing h(i) by h̃(i), while the quantities with subscript “0”

are calculated in terms of the function h
(i)
0 and their expressions are provided

in Appendix A. To show the typical behavior of the perturbation functions
h(n) and h(T ) depending on the angle θ for small values of δ when the DVM
with and without the split technique is employed, some figures are provided
as online supplementary material.

The kinetic equation for each thermodynamic force subject to the cor-
responding boundary condition and asymptotic behavior was solved via the
DVM with an accuracy of 0.1% for the gas flow macroscopic characteristics at
the vapor-liquid interface. The calculations were carried out in a range of the
gas rarefaction which covers the free molecular, transition and hydrodynamic
flow regimes. The Gaussian-Hermite quadrature was used to discretize the
molecular velocity space and calculate the moments of the perturbation func-
tion. The numerical technique to calculate the nodes and weights is described
in Ref. [42]. A central finite difference scheme was used to approximate the
derivatives appearing in the kinetic equation. The accuracy was estimated
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by varying the grid parameters Nr, Nθ and Nc, corresponding to the number
of nodes in the radial coordinate r, angle θ and magnitude of the molecular
velocity, cp. The values of these parameters, Nc and Nθ, were fixed at 12 and
200, respectively, while Nr varied according to the maximum value of radial
coordinate, rmax, so that the increment ∆r ∼ 10−3. The distance rmax was
chosen so that the dimensional distance r′max varied from 10`0 to 100`0 when
the rarefaction parameter varied from 0.01 to 10. Note that, from Eqs. (1)
and (18), the distance r′max can be written in terms of the equivalent mean
free path `0 as r′max = rmaxδ`0. In the limits δ → 0 and δ →∞, the numerical
solution was compared to those obtained analytically in the free molecular
and hydrodynamic regimes. The reciprocal relation (40) was verified within
the numerical error.

4.5. Hydrodynamic solution

When δ � 1, the problem can be solved via the linearized continuum
equations with appropriate pressure and temperature jump conditions at
the vapor-liquid interface. Although the modelling via the kinetic equation
provides more accurate information concerning the evaporation-condensation
process, in this flow regime the convergence of the numerical scheme based
on the discrete velocity method is very slow due to the large number of the
grid points necessary to guarantee the accuracy of the calculations. Then,
in this flow regime, it is more convenient to use the continuum equations.
In our notation, the linearized balance equations of mass, momentum and
energy read

d(r2u)

dr
= 0, (60)

dp

dr
= 0, (61)

d

dr

(
r2dT

dr

)
= 0, (62)

where the pressure is expressed via the equation of state of an ideal gas.
The solution of these equations requires the use of appropriate boundary
conditions which take into account the pressure and temperature jumps at
the vapor-liquid interface. Since the processes of heat and mass transfer at
the interface can be described by the non-equilibrium thermodynamics, the
boundary conditions for the pressure and temperature at the interface can be
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obtained from the inverted form of the flux-force relations. Thus, according
to Ref. [43], one can write

p = ps (1− ζPJn − ζTJT ) , at r = 1, (63)

T = Ts (1− ζTJn − ζTPJT ) , at r = 1, (64)

where the dimensionless thermodynamic fluxes Ji (i = n, T ) are introduced
as

Ji =
J ′i

4πR2
0n0v0

, (65)

and J ′i are defined in (33). The jump coefficients are obtained from the
kinetic theory, see e.g. Ref. [44], and in case of monoatomic gas under
the assumption of diffuse reflection of the fraction of particles which do not
condense at the interface read

ζP = 2
√
π

(
1

σ
− 0.40044

)
, ζT = 0.446658, ζTP = 1.042203. (66)

From the balance equations (60)-(62) and the vapor-liquid interface con-
ditions (63) and (64), the bulk velocity and temperature deviation of the gas
flow from equilibrium are obtained as follows

u(r) =
1

r2

[Xn + (1− ζTξ)XT ]

(ζP − ζ2
Tξ)

, (67)

τ(r) = − 1

r(1 + κ)

[ζTXn − (ζP − ζT)XT ]

(ζP − ζ2
Tξ)

, (68)

where

κ =
ζTP

2δ

γ

(γ − 1)

1

Pr
, ξ =

κ

ζTP

1

(1 + κ)
. (69)

In the previous expression, γ = cp/cv is the ratio of the specific heat capacities
and Pr is the Prandtl number. These parameters for a monatomic gas are
equal to 5/3 and 2/3, respectively.

According to the balance equation (61), the pressure is a constant quan-
tity. Therefore, since the temperature profile is known from (68), the density
deviation from equilibrium reads

ν(r) = −τ(r). (70)
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The heat flux is obtained from the Fourier law as

q(r) = − 1

r2

κ

ζTP(1 + κ)

[ζTXn − (ζP − ζT)XT ]

(ζP − ζ2
Tξ)

. (71)

Note that, in the limit δ → ∞, the expressions (67), (68) and (71) tend
to

u(r) =
1

ζPr2
(Xn +XT ), (72)

τ(r) = −1

r

[
ζT
ζP
Xn −

(
1− ζT

ζP

)
XT

]
, (73)

q(r) = − 1

r2

κ

ζTP

[
ζT
ζP
Xn −

(
1− ζT

ζP

)
XT

]
. (74)

The dimensionless mass and energy flow rates at the vapor-liquid interface
are calculated from (30) and (31). It is worth to underline that, in our
notation, the widely used Schrage relation [45] for the mass flow rate under
the assumption of very small driving forces reads

ṀSch =
σ

(2− σ)
√
π

(
Xn +

1

2
XT

)
. (75)

Thus, in order to compare the present results with those obtained from the
Schrage relation, the dimensionless mass flow rate at the interface obtained
from (30) and (72) is used and it reads

Ṁ =
1

ζP
(Xn +XT ), (76)

The comparison between the results obtained from the continuum approach
(76), the kinetic modelling and Schrage expression (75) is presented in Section
6.

5. Non-linear approach

5.1. Non-linear kinetic equation and boundary conditions

To establish the limits of applicability of the linearized approach, the
non-linear S-model kinetic equation (3) is solved numerically. Additionally
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to the dimensionless quantities introduced in (18), the defined dimensionless
variables are used in the following

f̂ =
fv3

0

n0

, t =
t′v0

R0

, n̂ =
n

n0

, T̂ =
T

T0

, µ̂ =
µ

µ0

. (77)

Thus, the dimensionless form of the kinetic equation (3) reads

∂f̂

∂t
+ cr

∂f̂

∂r
− ct
r

∂f̂

∂θ
= δn̂

√
T̂ (f̂S − f̂). (78)

The dimensionless boundary condition for solving the previous equation is
obtained from (12) as

f̂(t, 1, θ, cp) = σf̂s + (1− σ)f̂r, cr > 0. (79)

Moreover, far from the spherical droplet, the normalized distribution function
satisfies the initial condition obtained from (14) as

f̂(0, r, θ, cp) = f̂∞ = lim
r→∞

f̂(t, r, θ, cp) =
1

π3/2
e−c

2
p . (80)

The flow fields given in (6)-(9) are written in terms of the dimensionless
distribution function introduced here as

n̂(t, r) = 2π

∫ ∞
0

∫ π

0

f̂(t, r, θ, cp)dc, (81)

T̂ (t, r) =
2π

3n

∫ ∞
0

∫ π

0

[(cr − ur)2 + c2
t ]f̂(t, r, θ, cp)dc, (82)

ûr(t, r) =
2π

n

∫ ∞
0

∫ π

0

crf̂(t, r, θ, cp)dc, (83)

q̂r(t, r) = 2π

∫ ∞
0

∫ π

0

cr[(cr − ur)2 + c2
t ]f̂(t, r, θ, cp)dc. (84)

Once again, for convenience, the subscript “r” denoting the radial compo-
nents of the gas bulk velocity and heat flux is omitted as well as the super-
scriptˆfor dimensionless variables.

The dimensionless mass and energy flow rates are given by the previous
expressions (30) and (31).
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5.2. Method of solution

To obtain the flow parameters in the transitional regime, Eq. (78) is
solved numerically by applying the technique developed previously in Ref.
[32]. First, the DVM is applied to split the continuum molecular velocity
space cp in the governing equation (78) into discrete velocity set cpm , in
whichm = 1, 2, .., NcP . The Gaus-Hermite quadrature is used to calculate the
integrals in the velocity space cp appearing in the calculation of the gas flow
fields, given in (81)-(84). As a consequence, the velocity magnitudes cpm are
taken to be the roots of the Hermite polynomial of order NcP and associated
with their corresponding weights. Then the set of NcP kinetic equations,
corresponding to NcP values of discrete velocity cpm , is discretized in time
and space by finite difference method (FDM). The range of orientation angle θ
(0 ≤ θ ≤ π) is divided into Nθ uniform segments defined by θl, l = 0, 1, .., Nθ,
and the integrals in the angle θ appearing in (81)-(84) are calculated by the
Simpson 3/8 rule.

A maximum radial coordinate, rmax, is set and the gap between rmax and
r0 is divided into Nr equal intervals characterized by ri, i = 0, 1, .., Nr. Let
us denote the numerical solution of Eq. (78) at the time level k as fki,l,m =

f
(
tk, ri, θl, cpm

)
and define ∆tk = tk+1 − tk, ∆ri = ri+1 − ri, ∆θl = θl+1 − θl,

∆fk = fk+1
i,l,m − fki,l,m.

In this paper we are interested only in the steady-state solution, therefore
the fully time-implicit Godunov-type scheme is applied [46, 47] so that the
discretized form of the kinetic equation reads(

1

∆tk
+ cp cos θ

∂

∂r
− cp sin θ

r

∂

∂θ

)
∆fk = RHSk,

RHSk = nδT 1−ω
(
fS

k − fk
)
− cp cos θ

∂fk

∂r
+
cp sin θ

r

∂fk

∂θ
.

(85)

The left hand side of Eq. (85) is the implicit part, where the spacial deriva-
tives are approximated by the first order upwind scheme. The advantage
of this discretization is that the solution ∆fk can be obtained directly, i.e.
without calculation of the inverse matrix, just by marching in appropriate
direction. The right hand side of Eq. (85)

(
RHSk

)
is the explicit part,

where the spacial derivatives are approximated by the second order TVD-
like scheme. Minute details concerning the numerical scheme are provided in
Ref. [48]. The calculations were carried out for three pairs of temperature
Ts/T0 and density ns/n0 ratios and for the same values of rarefaction param-
eter and evaporation-condensation coefficient previously considered when the
linear approach was implemented. The grid parameters were chosen to en-
sure an accuracy of 0.1% for the moments of the distribution function. While
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the values of the parameters Nc and Nθ were fixed at 12 and 400, respectively,
the parameter Nr varied according to the value of the maximum radial coor-
dinate, rmax, so that the increment ∆ri ∼ 10−2 (i=0, ..., Nr). For the three
pairs of Ts/T0 and ns/n0 considered in the calculations, rmax was chosen so
that the dimensional quantity r′max=rmaxδ`0 varied from 10`0 to 100`0 as δ
varied from 0.01 to 10.

It is worth mentioning that the numerical method used to solve the non-
linear kinetic equation did not require a special treatment to deal with the
problem of the discontinuity of the perturbation function which appeared
when the DVM was employed to solve the linearized kinetic equation. To
show the behavior of the normalized distribution function f̂ on the angle θ
and fixed r and cp some figures are provided as online supplementary material
for small values of δ.

6. Results and discussion

We present the results in the following manner. First, the results obtained
numerically from the linearized S-model kinetic equation and the analytical
solution of the linearized Navier-Stokes equations subject to the pressure
and temperature jumps boundary conditions at the interface are presented
in order to show the limits of the applicability of this analytical solution in
terms of the rarefaction parameter. The cases of complete and non-complete
evaporation-condensation are considered. Then, the linearized and non-linear
numerical solutions of the S-model kinetic equation are compared to show
the limits of the linearized approach application.

6.1. Linearized approach

A comparison between the results of the present work, calculated using
the discrete velocity method, and those provided in Ref. [26], obtained via
the integral-moment method, is presented in Tables 1 and 2 for complete
evaporation-condensation at the liquid-vapor interface (σ = 1) and in a wide
range of the gas rarefaction. From these tables one can see a good agreement
between the results for the bulk velocities, u(n) and u(T ), and heat fluxes, q(n)

and q(T ), at the interface. The difference between the results is less than 2%
for u(n), u(T ) and q(T ), and less than 10% for q(n).

The results for the mass flow rate and heat flux from the sphere were also
compared to the results presented in Ref. [24], which were obtained from
the solution of the linearized Boltzmann equation for hard-spheres molecules
and complete evaporation-condensation at the interface. The comparison
is shown in Tables 3 and 4. For convenience, the results are presented in
terms of the temperature XT and pressure XP=Xn+XT driving forces as
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it was done in Ref. [24]. Moreover, the results are given as functions of
the parameter k=(

√
π/2)Kn introduced in Ref. [24], which is proportional

to the Knudsen number Kn and can be defined either in terms of the gas
viscosity or heat conductivity. As one can see from these tables, there is
a good agreement between the present results obtained via the numerical
solution of the linearized S-model kinetic equation and the data reported in
Ref. [24]. The difference between the results is smaller than 2% in the whole
range of the parameter k. The figures showing the comparison between
the present results and those from both Refs. [24, 26] for the mass flow
rate and heat flux is available as online suplementary material. The present
results are in a better agreement with those provided in Ref. [24] than
those obtained by the authors of Ref. [26]. It is worth noting that the
integral-moment method employed in Ref. [26] consists on obtaining a set
of integral equations for the moments of the distribution function and its
advantage is that only the physical space must be discretized. Nevertheless,
this method requires much more computational memory and CPU time than
that required by the discrete velocity method. Moreover, even with the
computational infrastructure available nowadays, the numerical solution of
the Boltzmann equation is still a hard task. Therefore, the implementation of
the model kinetic equation allows us to solve the problem with good accuracy
and moderate computational effort. Since the results of the present work and
those provided in Ref. [26] were obtained by the solution of the same kinetic
equation, one can conclude that the better agreement with the results from
the Boltzmann equation is due to the numerical scheme used in this work.

Figures 1-3 show the profiles of the bulk velocities, u(n) and u(T ), and heat
fluxes, q(n) and q(T ), as functions of the dimensionless radial coordinate r, for
the rarefaction parameter, δ, equal to 0.1, 1 and 10, respectively. For each
value of rarefaction parameter, four values of the evaporation-condensation
coefficient are considered, σ=0.1, 0.4, 0.6 and 1. In these figures, the dimen-
sionless radial distance r=10 corresponds to a dimensional radial distance
r′=10R0=10δ`0. According to these figures, the larger the rarefaction pa-
rameter the larger the bulk velocities in the vicinity of the sphere due to
the driving forces Xn and XT . The opposite behavior occurs for the heat
fluxes, i.e. the larger the rarefaction parameter the smaller the magnitude
of the heat fluxes in the vicinity of the spherical droplet. Note that q(n) is
negative, while q(T ) is positive. These figures also show us that the influence
of the evaporation-condensation coefficient, σ, on the bulk velocities u(n) and
u(T ), and heat flux q(n) is significant, while the influence on the heat flux
q(T ) can be neglected whatever the value of the gas rarefaction. In fact,
the heat flux q(T ) depends only on the temperature difference between the
droplet surface and the gas in equilibrium far from the droplet. The same
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qualitative behavior was found in Ref. [28], in which the problem of non-
complete evaporation-condensation between two parallel condensed phases
was simulated. For instance, in case of δ=10, the numerical results obtained
from the kinetic equation at the interface, given in Tables 5 and 6, show a
difference of about 93% for the bulk velocities u(n) and u(T ), and heat flux
q(n), when the evaporation-condensation coefficient varies from 1 to 0.1. On
the other hand, the difference for the heat flux q(T ) is less than 20%. These
results show us that the evaporation-condensation on the spherical droplet
depends not only on the gas rarefaction degree, but depends strongly on the
evaporation-condensation coefficient at the interface.

The comparison between the solution of the linearized kinetic equation
and the solution obtained from the Navier-Stokes equations given in (72) and
(71) is shown in Figure 4 for δ=10 and complete evaporation-condensation
at the interface. According to this figure, there is a good agreement between
both results. Thus, in order to do just an estimation of the evaporation
parameters from the spherical droplet, as well as of the flow fields around it,
the analytical solution obtained from the linearized Navier-Stokes equations
subjected to the temperature and pressure jump boundary conditions can be
used instead of the solution of the linearized kinetic equation. Tables 5 and
6 show the comparison in case of complete and non-complete evaporation-
condensation at the interface when δ=10. Note that, just for comparison,
the results obtained in the limit of δ → ∞, given in Eqs. (72) and (74),
were also included in the tables. Thus, as one can see from Tables 5 and 6,
there is a good agreement between the resuls, and such an agreement will be
improved with the increase of the rarefaction parameter. Moreover, a better
agreement depends on the use of more precise values of the pressure and
temperature jump coefficients. In the present work, the temperature and
pressure jump coefficients at the interface provided in Ref. [20] were used,
but these coefficients were calculated via the solution of the BGK-model
kinetic equation [49] and the variational method.

The comparison of the widely used Schrage formula (76) with the an-
alytical solution obtained from the linearized Navier-Stokes equations with
the temperature and pressure jump boundary conditions (75) at the inter-
face and the numerical solution of the linearized kinetic equation for δ = 10
are presented in Table 7. From this table it is clear that the analytical so-
lution derived from the Navier-Stokes equations shows a better agreement
with the numerical solution of the kinetic equation compared to the Schrage
expression. As it was mentioned previously, the discrepancy between the so-
lution of the kinetic equation for δ=10 and the analytical solution obtained
from the Navier-Stokes equations could be explained by the accuracy of the
coefficients involved in the temperature and pressure jump conditions.
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6.2. Comparison between linearized and non-linear S-model solution

The comparison of the results obtained from the linearized approach and
that from the solution of the non-linear kinetic equation are presented in
Tables 8-10 for different values of the rarefaction parameter and evaporation
coefficients. This comparison can only be done when the driving forces are
specified to calculate the macroscopic parameters from the numerical data
given by the linearized approach. Three pairs of the temperature ratios,
Ts/T0, and corresponding number density ratios, ns/n0, are chosen for this
comparison. According to Table 8, for very small deviation from the equi-
librium values, Ts/T0=1.01 and ns/n0=1.01, both approaches provide very
similar results, with a maximal deviation of less than 1% for the velocity and
around 2.5% for the heat flux. However, in practice, following the Clausius-
Clayperon equation [33], the small deviation in temperature leads to a de-
viation in pressure and, therefore, in the number density, ten times larger.
Thus, the results for the ratios Ts/T0=1.01 and ns/n0=1.1 are presented in
Table 9 for analysis. As it is clear from Table 9, in this case the difference be-
tween the bulk velocity and heat flux calculated by linearized and non-linear
approaches is larger, of the order of 4% for the velocity and 6% for the heat
flux. Finally, the larger temperature deviation is considered, corresponding
to 5% from its equilibrium value. In this case, according to the Clapeyron
data [33], the density deviation is ten times larger, i.e. ns/n0=1.5. As it is
clear from Table 10, a large discrepancy between linearized and non-linear
results are observed, of the order of 25% for both quantities, the macroscopic
velocity and the heat flux. It is to note that for all considered values of
the evaporation coefficient the difference between linearized and non-linear
results is maximum for the complete evaporation, σ = 1. Thus, accord-
ing to the results, the linearized approach could be applied only when the
temperature deviation is less than 5%.

7. Conclusion

The steady weak evaporation from or condensation onto a spherical con-
densed phase in its vapor was studied numerically by using the linearized and
non-linear S-model kinetic equations. When using the linearized approach,
the obtained results have been found in good agreement with those obtained
from the linearized Boltzmann equation (maximum difference of 2%) and
with those obtained from the solution of the S-model via the integral-moment
method (maximum difference of 10%) in the case of complete evaporation-
condensation at the interface. In the free molecular flow regime, the analyti-
cal solution was obtained in case of complete and non-complete evaporation-
condensation at the droplet surface. In the hydrodynamic regime, the lin-
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earized Navier-Stokes equations subjected to the temperature and pressure
jump boundary conditions were solved analytically and the obtained results
are in good agreement to those calculated from the numerical solution of the
the kinetic equation in the case of δ=10. The improvement of this agree-
ment could be probably reached when using the more precise values for the
pressure and temperature jumps at the interface. The widely used Schrage
expression for the mass flow rate was compared to that derived from the an-
alytical solution of the Navier-Stokes equations and also with the numerical
results obtained from the linearized kinetic equation when σ=0.1, 0.5 and 1.
It was found that the analytical solution of the Navier-Stokes equations with
the jump conditions provides the values of the mass flow rate closer to the
values obtained from the numerical solution of the S-model kinetic equation
than tha values predicted by the Schrage expression.

The non-linear S-model kinetic equation was solved by the implicit TVD
type numerical method, which does not need any special treatment for the
discontinuity of the molecular velocity distribution function at the interface.
The results obtained from the linearized and non-linear approaches were com-
pared for several typical ratios of temperatures and the number densities. It
was found that the linearized approach could be applied when the temper-
ature difference between the droplet surface and the gas in equilibrium far
from the doplet does not exceed 5%. If this difference is larger than 5%, the
non-linear approach must to be applied.

The results obtained in the present work show us a strong dependence of
the flow fields on the evaporation-condensation coefficient so that one can-
not always rely on the results for complete evaporation-condensation at the
liquid-vapor interface. In fact, a better understanding of the evaporation-
condensation at the interface of a spherical droplet relies on a better de-
scription of the phase transition at the interface of the droplet and further
investigation on this research topic must be encouraged. Moreover, since the
results available in the literature for non-complete evaporation-condensation
at the interface are still scarce, the results obtained in the present work
represent a significant contribution towards a better understanding of the
evaporation-condensation phenomena at the interface of spherical droplets.
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Supplementary material

Supplementary material is available.
Figures 1 and 2 show the comparison between our results and those

provided in Refs. [24, 26] for the mass and heat flux from the sphere as
functions of the rarefaction parameter and in case of complete evaporation-
condensation at the interface.

Figure 3 shows the profiles of the perturbation functions h(n) and h(T ) on
the angle θ at r=1.975 and molecular speed cp ≈ 2.3 obtained from the lin-
earized approach for small values of the rarefaction parameter and complete
evaporation-condensation at the interface. The solutions obtained from the
DVM with and without the split method are presented for comparison.

Figure 4 shows the profile of the normalized distribution function f̂ on
the angle θ at r=1.975 and cp ≈ 2.3 obtained from the linearized and non-
linear approaches for small values of the rarefaction parameter and complete
evaporation-condensation at the interface.
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Appendix A. Split method to solve the linearized kinetic equation

The differential equations given by (54) for each thermodynamic force
and subject to the corresponding boundary condition, given by (55) and (56),
are solved analytically via the method of characteristics and the solutions are
presented as follows

h
(n)
0 (r, θ, cp) =

σ exp

(
−δS
cp

)
, 0 ≤ θ ≤ θ0,

0, θ0 < θ ≤ π,

(A.1)

h
(T )
0 (r, θ, cp) =


(
c2
p − 2 +

σ

2

)
exp

(
−δS
cp

)
, 0 ≤ θ ≤ θ0,

0, θ0 < θ ≤ π,

(A.2)

where

S = r cos θ −
√

1− r2 sin2 θ (A.3)

is the distance between a point in the gas flow domain with Cartesian coordi-
nates (x, y, z) and a point on the spherical surface with Cartesian coordinates
(x0, y0, z0) directed towards -c.

The angle θ0 is given by

θ0 = arcsin

(
1

r

)
. (A.4)

Thus, from (21)-(24), the moments of the functions h
(i)
0 are written as

ν
(n)
0 (r) =

2σ√
π

∫ θ0

0

sin θI2(δS) dθ, (A.5)

τ
(n)
0 (r) =

4σ

3
√
π

∫ θ0

0

sin θ

[
I4(δS)− 3

2
I2(δS)

]
dθ, (A.6)

u
(n)
0 (r) =

2σ√
π

∫ θ0

0

sin θ cos θI3(δS) dθ, (A.7)

q
(n)
0 (r) =

2σ√
π

∫ θ0

0

sin θ cos θ

[
I5(δS)− 5

2
I3(δS)

]
dθ, (A.8)
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ν
(T )
0 (r) =

2√
π

∫ θ0

0

sin θ

[
I4(δS) +

1

2
(σ − 4)I2(δS)

]
dθ, (A.9)

τ
(T )
0 (r) =

4

3
√
π

∫ θ0

0

sin θ

[
I6(δS) +

1

2
(σ − 7)I4(δS)− 3

2
(σ − 2)I2(δS)

]
dθ,

(A.10)

u
(T )
0 (r) =

2√
π

∫ θ0

0

sin θ cos θ

[
I5(δS) +

1

2
(σ − 4)I3(δS)

]
dθ, (A.11)

q
(T )
0 (r) =

2√
π

∫ θ0

0

sin θ cos θ

[
I7(δS)+

1

2
(σ−9)I5(δS)− 5

4
(σ−4)I3(δS)

]
dθ.

(A.12)

The functions Im are defined as

Im(δS) =

∫ ∞
0

cmp exp

(
−c2

p −
δS

cp

)
dcp, (A.13)

and are calculated by using the power series representation given in Ref. [50].
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Table 1: Bulk velocities, u(n) and u(T ), at the liquid-vapor interface (r=1) in case of
complete evaporation-condensation (σ=1). Comparison with the numerical data of Ref.
[26].

u(n) u(T)

δ present work Ref. [26] present work Ref. [26]
0a 0.282 — 0.141 —

0.01 0.283 0.284 0.141 0.142
0.1 0.289 0.293 0.147 0.148
0.5 0.312 0.317 0.172 0.176
1 0.330 0.336 0.203 0.206
5 0.401 0.402 0.333 0.338
7 0.415 0.415 0.361 0.366
10 0.424 0.426 0.385 0.390
∞b 0.470 — 0.470 —
a Eq. (49), free molecular regime.
b Eq. (72), hydrodynamic regime.

Table 2: Heat fluxes, q(n) and q(T), at the liquid-vapor interface (r=1) in case of complete
evaporation-condensation (σ=1). Comparison with the numerical data of Ref. [26].

−q(n) q(T)

δ present work Ref. [26] present work Ref. [26]
0a 0.141 — 0.494 —

0.01 0.141 0.142 0.492 0.495
0.1 0.142 0.144 0.484 0.491
0.5 0.139 0.141 0.443 0.454
1 0.131 0.130 0.399 0.405
5 0.0673 0.0635 0.204 0.200
7 0.0548 0.0510 0.161 0.159
10 0.0394 0.0360 0.123 0.121
∞b 0.000 — 0.000 —
a Eq. (50), free molecular regime.
b Eq. (71), hydrodynamic regime.
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Table 3: Mass flow rates from the sphere in case of complete evaporation-condensation
(σ=1). Comparison with the numerical data of Ref. [24]. Here, the parameter k is related
to the rarefaction parameter δ as k=1/(γ1δ) with γ1=1.270042.

r2u(P ) -r2u(T )

k present work Ref. [24] present work Ref. [24]
0.1 0.419 0.417 0.0449 0.0441
0.2 0.389 0.385 0.0751 0.0740
0.4 0.358 0.351 0.108 0.106
0.6 0.340 0.334 0.121 0.120
1 0.323 0.317 0.133 0.132
2 0.305 0.301 0.141 0.139
4 0.294 0.292 0.142 0.141
6 0.291 0.289 0.142 0.141
10 0.288 0.286 0.142 0.141
20 0.285 0.284 0.142 0.141

Table 4: Heat fluxes from the sphere in case of complete evaporation-condensation (σ=1).
Comparison with the numerical data of Ref. [24]. Here, the parameter k is related to the
rarefaction parameter δ as k=3/(2γ2δ) with γ2=1.92284.

-r2q(P ) r2q(T )

k present work Ref. [24] present work Ref. [24]
0.1 0.0449 0.0441 0.195 0.193
0.2 0.0751 0.0741 0.312 0.314
0.4 0.108 0.106 0.436 0.441
0.6 0.122 0.120 0.496 0.503
1 0.133 0.132 0.552 0.558
2 0.141 0.139 0.600 0.600
4 0.142 0.141 0.619 0.619
6 0.142 0.141 0.625 0.625
10 0.142 0.141 0.629 0.629
20 0.142 0.141 0.632 0.632
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Table 5: Comparison between the results at the interface liquid-vapor due to the driven
force Xn: kinetic equation versus Navier-Stokes when δ=10.

u(n) -q(n)

σ Eq. (67) Eq. (72) kin. eq. Eq. (71) Eq. (74) kin. eq.
0.1 0.0294 0.0294 0.0292 0.00206 0.00206 0.00254
0.4 0.135 0.134 0.131 0.0094 0.0094 0.0114
0.6 0.224 0.223 0.213 0.0157 0.0156 0.0185
1. 0.477 0.470 0.426 0.0334 0.0330 0.0394

Table 6: Comparison between the results at the interface liquid-vapor due to the driven
force XT : kinetic equation versus Navier-Stokes when δ=10.

u(T ) q(T )

σ Eq. (67) Eq. (72) kin. eq. Eq. (71) Eq. (74) kin. eq.
0.1 0.0273 0.0294 0.0265 0.155 0.155 0.153
0.4 0.125 0.134 0.118 0.148 0.147 0.146
0.6 0.209 0.223 0.193 0.142 0.141 0.139
1. 0.444 0.470 0.385 0.126 0.124 0.123

Table 7: Comparison between the results obtained for the mass flow rate in the hydrodyd-
namic regime with those provided by the Schrage relation

T/T0 n/n0 Eq. (76) Eq. (75) kin. eq. (δ=10)
σ=0.1 1.01 1.01 5.877×10−4 4.454×10−4 5.573×10−4

1.01 1.1 3.232×10−3 3.118×10−3 3.185×10−3

1.05 1.5 1.616×10−2 1.559×10−2 1.593×10−2

σ=0.5 1.01 1.01 3.527×10−3 2.821×10−3 3.242×10−3

1.01 1.1 1.940×10−2 1.975×10−2 1.858×10−2

1.05 1.5 9.700×10−2 9.873×10−2 9.270×10−2

σ=1 1.01 1.01 9.410×10−3 8.463×10−3 8.157×10−3

1.01 1.1 5.175×10−2 5.924×10−2 4.664×10−2

1.05 1.5 2.590×10−1 2.960×10−1 2.332×10−1
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Table 8: Comparison between linear and non-linear results for the bulk velocity and heat
flux at the interface when T/T0=1.01 and n/n0=1.01.

u q
δ linear non-linear linear non-linear

σ=0.1 0.1 4.268×10−4 4.284×10−4 5.362×10−3 5.364×10−3

1 4.614×10−4 4.617×10−4 4.603×10−3 4.679×10−3

10 5.573×10−4 5.626×10−4 1.510×10−3 1.549×10−3

σ=0.5 0.1 2.152×10−3 2.158×10−3 4.867×10−3 4.523×10−3

1 2.454×10−3 2.453×10−3 3.795×10−3 3.889×10−3

10 3.242×10−3 3.265×10−3 1.277×10−3 1.293×10−3

σ=1. 0.1 4.360×10−3 4.356×10−3 3.403×10−3 3.446×10−3

1 5.339×10−3 5.323×10−3 2.679×10−3 2.746×10−3

10 8.157×10−3 8.169×10−3 8.500×10−4 8.557×10−4

Table 9: Comparison between linear and non-linear results for the bulk velocity and heat
flux at the interface when T/T0=1.01 and n/n0=1.1.

u q
δ linear non-linear linear non-linear

σ=0.1 0.1 2.971×10−3 2.977×10−3 4.112×10−3 4.123×10−3

1 3.039×10−3 3.050×10−3 3.597×10−3 3.615×10−3

10 3.185×10−3 3.214×10−3 1.281×10−3 1.339×10−3

σ=0.5 0.1 1.500×10−2 1.474×10−2 -1.823×10−3 -1.719×10−3

1 1.617×10−2 1.596×10−2 -1.515×10−3 -1.459×10−3

10 1.858×10−2 1.843×10−2 -5.491×10−5 4.473×10−5

σ=1. 0.1 3.040×10−2 2.911×10−2 -9.379×10−3 -9.147×10−3

1 3.518×10−2 3.380×10−2 -8.874×10−3 -8.562×10−3

10 4.664×10−2 4.493×10−2 -2.501×10−3 -1.542×10−3
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Table 10: Comparison between linear and non-linear results for the bulk velocity and heat
flux at the interface when T/T0=1.05 and n/n0=1.5.

u q
δ linear non-linear linear non-linear

σ=0.1 0.1 1.486×10−2 1.501×10−2 2.056×10−2 2.088×10−2

1 1.519×10−2 1.552×10−2 1.799×10−2 1.803×10−2

10 1.593×10−2 1.669×10−2 6.407×10−3 6.394×10−3

σ=0.5 0.1 7.502×10−2 6.889×10−2 -9.116×10−3 -6.904×10−3

1 8.086×10−2 7.594×10−2 -7.576×10−3 -6.069 ×10−3

10 9.270×10−2 9.037×10−2 -2.745×10−4 1.414 ×10−3

σ=1. 0.1 1.520×10−1 1.125×10−1 -4.690×10−2 -3.977×10−2

1 1.759×10−1 1.472×10−1 -4.437×10−2 -3.376×10−1

10 2.332×10−1 1.972×10−1 -1.250×10−2 9.454×10−3
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