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In the present paper, a variational method is applied to solve the Boltzmann equa-

tion based on the true linearized collision operator for hard-sphere molecules and

the Cercignani-Lampis boundary conditions. This technique allows us to obtain an

explicit relation between the first- and second-order thermal slip coefficients and

the tangential momentum and normal energy accommodation coefficients, defined

in the frame of the Cercignani-Lampis scattering kernel. Comparing the theoreti-

cal results with the experimental data from Yamaguchi et al., J. Fluid Mech., 795,

690 (2016), a pair of accommodation coefficients has been extracted for each noble

gas considered in the experiments. Then, these values have been used to compute,

by means our variational technique, the temperature-driven mass flow rates and

the outputs have been compared with the measurements for Helium, Neon and

Argon. Good agreement has been obtained between the theoretical and the exper-

imental data, within the range of validity of the proposed second-order slip model.

For all the gases analyzed, the tangential accommodation coefficient is found to

be much larger than the normal energy coefficient. The general trend, according

to which, by increasing the molecular weight of the different gases, the values of

both accommodation coefficients also increase, is confirmed in this study.
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I. INTRODUCTION

Accurate modeling of gas-surface interaction is very important for external rarefied gas

flows, such as those around shuttles and satellites, as well as for internal rarefied or small-

scale flows, like those in micro-electro-mechanical systems or in gas shale reservoirs, both

characterized by large surface area to volume ratios. The rarefaction level of a gas can be

quantified by the rarefaction parameter, i.e. the ratio between a characteristic dimension

of a flow and the molecular mean free path of a gas. The most reliable description of

rarefied gas flows is provided by the Boltzmann equation (BE)1. The boundary condi-

tions for the BE must be formulated on a probabilistic ground, by specifying the relation

between the velocity distribution function of the reflected and the incident gas molecules

on the solid surface, the so-called scattering kernel1. In the case of low rarefaction level,

the gas flow can be still simulated in the frame of the continuum modeling based on the

Navier-Stokes-Fourier system2 or on higher-order expansions as the 13 moment equations

(R13)3. However, the implementation of special boundary conditions, like the velocity

slip and temperature jump on gas-solid interfaces, is necessary to take into account the

rarefaction effects. All these conditions involve the viscous-slip, the thermal-slip and the

temperature-jump coefficients, which depend on the gas-solid surface interaction through

the accommodation coefficients. Different scattering kernels can be found in the litera-

ture: Maxwell4, Cercignani-Lampis (CL)5, Epstein6, Klinc & Kuščer7,8, Dadzie-Méolans9

and some others. These proposed models have one or several adjustable parameters that

can be associated with the accommodation processes of physical quantities. For example,

the Cercignani-Lampis model includes two parameters: the accommodation coefficient of

the tangential momentum, αt, and the accommodation coefficient of the kinetic energy

due to the normal velocity, αn. However, the most popular and easy to use scattering

kernel is the Maxwell model, characterized by only one parameter α, which is the accom-

modation coefficient of all molecular properties. Therefore, in general, one can associate α

either with the accommodation of the tangential momentum or with the accommodation

of energy. Despite this ambiguous interpretation, the Maxwell model has been success-

fully applied to describe various isothermal flows driven by a pressure gradient, both at

the microscale and at low-pressures10–15. In fact, in this case, when the temperature of

the system is kept constant, the momentum exchange mechanism assumes a dominant

role and the accommodation coefficient can be identified with the tangential momentum
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accommodation coefficient (TMAC)16. In a different situation, when only an exchange of

energy takes place between a gas and a surface, without the macroscopic gas motion, the

thermal or energy accommodation coefficient is introduced in the frame of the Maxwell

model, to characterize the peculiarity of this type of interaction17–21. However, for the ma-

jority of gas flows, where exchanges of both momentum and energy exist, i.e. pressure and

temperature gradients are present at the same time, the interpretation of this single coef-

ficient becomes problematic. In all these cases, one can resort to the Cercignani-Lampis

scattering kernel which contains two different adjustable parameters: αt and αn.

Several attempts have been made to extract, for different gases, both the tangential

momentum, αt, and the normal energy, αn, accommodation coefficients simultaneously,

see Refs. [ 22], [ 23]. The author of Ref. [ 22] used the experimental data given in

Ref. [ 11] to obtain the accommodation coefficient of the tangential momentum from the

Poiseuille flow and then, that related to the normal energy from the measurements of the

thermomolecular pressure difference for the same gas24. But it was not possible to find

a pair of coefficients that could fit both experiments. The authors of Ref. [ 23] solved

numerically the linearized Boltzmann equation with the Lennard-Jones intermolecular

potential and the Cercignani-Lampis boundary conditions, to calculate the temperature-

driven mass flow rate and the thermomolecular pressure difference, and compared their

outputs with the experimental data provided in Ref. [ 25]. But again, it was not possible

to find values of αt and αn for the same gas, with which to describe these phenomena.

However, in both papers, the accommodation coefficients have been selected by the trial

and error method.

The main objective of this work is to improve the fundamental understanding of the gas-

surface interaction. To this end, a variational approach has been used to obtain asymptotic

near-continuum solutions of the linearized Boltzmann equation for hard-sphere molecules,

in order to provide analytical expressions for the first- and second-order thermal slip

coefficients. The Cercignani-Lampis boundary conditions have been considered in order

to take into account the influence of the tangential momentum αt and the normal energy

αn accommodation coefficients on the slip parameters. The theoretical results have been

compared with the experimental data reported in Ref. [ 25] for five different noble gases

and, for each of them, the accommodation coefficients αt and αn have been extracted.

Then, these values have been used to evaluate the temperature-driven mass flow rate, by

means of our variational technique. A comparison with the experimental measurements
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reveals a fairly good agreement within the range of validity of the proposed second-order

slip model.

II. THE POISEUILLE AND THERMAL-CREEP PROBLEMS:

MATHEMATICAL FORMULATION

Let us consider two parallel infinite plates separated by a distance d and a monatomic

gas flowing between them due to longitudinal gradients of pressure and temperature. In

the (x, z) plane, the z axis coincides with the direction of the fluid motion, while the two

walls are fixed at x = ±d/2. If the pressure and temperature gradients are taken to be

small, it can be assumed that the velocity distribution of the flow is nearly the same as

that occurring in an equilibrium state. This means that the Boltzmann equation can be

linearized about a Maxwellian f0 by putting26,27

f(x, z, c) = f0

[

1 + kz +

(

c2 − 5

2

)

τz + h(x, c)

]

(1)

where f(x, z, c) is the distribution function for the molecular velocity c expressed in

units of (2RT )1/2 (with R being the specific gas constant and T being the equilibrium

temperature) and h(x, c) is the small perturbation on the basic equilibrium state. The

above mentioned Maxwellian is given by

f0(c) =
ρ0
π3/2

exp(−c2) (2)

where ρ0 is the equilibrium gas density and

k =
1

p

∂p

∂z
, τ =

1

T

∂T

∂z
(3)

with p and T being the local gas pressure and temperature, respectively. Using Eq. (1),

the steady linearized Boltzmann equation reads as

cx
∂h

∂x
+ kcz + τcz

(

c2 − 5

2

)

= Lh (4)

where Lh is the linearized collision operator. In general, it is difficult to manage the

Boltzmann operator L as such. Therefore, simplified kinetic models of the exact colli-

sion integral are widely used in practice, for both analytical computations and numerical

simulations. Because of its simplicity, the Bhatnagar, Gross, and Krook (BGK) model is
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one of the most popular of these kinetic models, although it is known to have a serious

flaw: it leads to a wrong Prandtl number (i.e. the dimensionless ratio of viscosity and

thermal conductivity)28. This difficulty can be dealt with, when one works in the lin-

earized framework, since viscosity and temperature effects are then decoupled and either

viscosity or thermal conductivity can be fixed to a correct value. However, if one wants

to analyze, at the same time, the Poiseuille and thermal-creep problems, where the mass

and heat fluxes are due to the combined effects of the pressure and temperature gradients,

the BGK can not provide simultaneously accurate results27. Thus, one can resort to a

more refined kinetic model such as the one proposed by Shakhov (S-model)29,30. But still,

the S-model does not include any information about the interaction potential between

the gas molecules, while some phenomena related to the thermal-creep problem are very

sensitive to the intermolecular force laws27,2. Therefore, in the current investigation, we

analyze the Poiseuille and thermal-creep flows on the basis of the exact linearized collision

operator for hard-sphere molecules, in order to obtain a better approximation of real-gas

behaviors1. The boundary conditions for Eq. (4) have the following general form

h+ = Kh− (5)

where h± are the restrictions of the function h, defined on the boundary, to positive

(negative) values of cx (that is, h+ and h− concern, respectively, the reemitted and the

impinging molecules on the boundaries). The explicit form of the operator K in Eq.

(5) depends on the scattering kernel used. Most of the works in rarefied gas dynamics

are based on the implementation of the classical Maxwell gas-surface interaction law,

characterized by a single accommodation coefficient α, while in practice, every physical

quantity (i.e. momentum and energy) should have its own accommodation coefficient. In

the literature, there are many data related to rarefied gas flows between two parallel plates

that can be accurately reproduced on the basis of the Boltzmann equation and the Maxwell

model of boundary conditions. This is especially true for isothermal gas flows. However,

recent measurements of the thermal creep flow through microchannels have revealed that it

is very difficult to extract from the experimental data only one accommodation coefficient,

which allows one to describe all flow properties25. Therefore, in order to include a more

realistic physical description of the gas-surface interaction, in the current investigation,

we will focus on the Cercignani-Lampis (CL) scattering kernel5. This model is based on

two different adjustable parameters: αt, which is the accommodation coefficient of the
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tangential momentum and αn, which is the accommodation of the kinetic energy owing

to the velocity normal to the bounding walls. In this case, the boundary conditions (5)

can be written as

h+(−(d/2)sgncx, c) =

∫

c′
x
<0

RCL(−c → −c′) h−(−(d/2)sgncx, c
′) dc′ (6)

where

RCL(c
′ → c) = 2cx

παtαn(2− αt)
exp

{

− [ct − (1− αt)c
′
t]
2

αt(2− αt)

}

× exp

{

− [cx
2 + (1− αn)c

′
x
2
]

αn

}

Io

(

2
√
1− αn
αn

cxc
′
x

)

(7)

with ct = (cy, cz) being the two-dimensional vector of the tangential molecular velocity

and Io the modified Bessel function of first kind and zeroth order. The CL model recovers,

as limiting cases, the specular reflection (for αt = αn = 0) and the diffuse re-emission

(for αt = αn = 1). Moreover, it includes the back scattering (c = −c′) when αt = 2 and

αn = 0.

The pressure and temperature gradients cause a gas flow and heat transfer in the z-

direction. Therefore, once the deviation h from the equilibrium distribution is known, the

bulk velocity of the gas vz(x) and the heat flux qz(x) can be calculated as

vz(x) = π−
3
2

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

e−c2czh(x, c) dc (8)

qz(x) = π−
3
2

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

e−c2cz

(

c2 − 5

2

)

h(x, c) dc. (9)

Hence, the mass Ṁ and heat flow rate Q̇ (per unit time through unit thickness) are given

by

Ṁ = ρ

∫ d/2

−d/2

vz(x)dx (10)

Q̇ =

∫ d/2

−d/2

qz(x)dx (11)

where ρ is the gas density.

III. THE VARIATIONAL METHOD OF SOLUTION

To apply the variational formulation, we shall rewrite Eq. (4) in the following symbolic

form:
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(D − L)h = S (12)

where Dh = cx
∂h
∂x

and S = −czk−cz
(

c2− 5
2

)

τ . Using the variational principle described

in Refs. [ 31], [ 32], we introduce the following functional J of the test function h̃:

J(h̃) = ((h̃, P (Dh̃− Lh̃)))− 2((PS, h̃)) + (h̃+ −Kh̃−, P h̃−)B, (13)

where P is the parity operator in velocity space, defined by P [h(c)] = h(−c), while ((, )),

(, )B denote two scalar products:

((h, g)) = π−3/2

∫ +d/2

−d/2

∫ +∞

−∞

exp(−c2)h(x, c)g(x, c) dcdx (14)

(h±, g±)B = π−3/2

∫

∂Ω

∫

cx>0

cx exp(−c2)h±(c)g±(c) dcdσ . (15)

In the one-dimensional case, the integration over the boundary ∂Ω reduces to the sum of

the terms at x = ±d/2.
The functional J(h̃) attains its minimum value when h̃ = h(x, c) solves Eq. (12) with

appropriate boundary conditions. If we let h̃ = h, Eq. (13) gives:

J(h) = −((PS, h)) = −k
∫ d/2

−d/2

vz(x)dx− τ

∫ d/2

−d/2

qz(x)dx = −kṀ
ρ

− τQ̇. (16)

Thus, the stationary value of J has a direct connection with the quatities of physical

interest for the problem at hand. Within the framework of a linearized analysis, the mass

and heat flow rates, per unit width, can be expressed by the sum of the Poiseuille and

thermal-creep contributions:

Ṁ = d2 p [−Gp k +GT τ ] (17)

Q̇ =
d2

2
p [Qp k −QT τ ] (18)

where Gp, GT , Qp and QT are dimensionless coefficients (defined to be always positive)

that represent the Poiseuille coefficient, the thermal-creep coefficient, the mechanocaloric

coefficient and the reduced heat flux, respectively. In the papers [ 33], [ 34], [ 35], it was

proven that the cross coefficients GT and Qp obey the Onsager relation:

GT = Qp. (19)
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Since the purpose of the present investigation is to provide an analytic expression for the

slip coefficients, it is sufficient to consider asymptotic results (near-continuum) for mass

flow rates. Therefore, the following simplified test function has been used to evaluate Eq.

(13):

h̃(x, c) = 2Acz(x
2 − 2xcxθ + 2cx

2θ2) + 2cz

(

C − kθ

2

)

−Bτθcz

(

c2 − 5

2

)

(20)

where A, B and C are adjustable constants to be varied in order to obtain the best value

of J(h̃) and θ is a length parameter that will be specified in the following. To obtain the

test function (20), the solution of the BGK-Boltzmann equation, in integral form, has

been considered, where the bulk velocity profile has been approximated by

ṽz(x) = Ax2 + C (21)

with the adjustable constants A and C being represented as:

A = Ap + AT , C = Cp + CT (22)

due to the linear superposition of the Poiseuille and thermal-creep effects. Further and

more precise details, related to the derivation of the test function, have been reported in a

paper in preparation. It is worth noting that the trial function (20) exhibits an analogous

dependence on x and c as the asymptotic form of the test function obtained in [ 33] via

the use of the well-known Chapman-Enskog procedure.

Let us now rescale all variables appearing in Eq. (20) as follows:

δ =
d

θ
, A =

A

θ2
. (23)

If one substitute h̃, given by (20), in Eq. (13) and splits the constants as in (22), with

the following normalization

Âp =
Ap

(kθ)
, Ĉp =

Cp

(kθ)
, ÂT =

AT

(τθ)
, ĈT =

CT

(τθ)
(24)

the functional J(h̃) is reduced to the sum of three functionals: J (1)(h̃), J (2)(h̃), J (3)(h̃),

simply grouping together the terms proportional to (kθ)2, (τθ)2 and (kθ)(τθ), respec-

tively. Each functional is a polynomial of the second order with respect to the constants

Ap, AT , B, Cp, CT , that are to be determined:
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J (1)(h̃)/(kθ)2 = (
√
π)

−1×
{

c11
2
A2

p+
c22
2
C2

p+c12ApCp−c1Ap−c2Cp+
1

2
(c2−c22/4)

}

, (25)

J (2)(h̃)/(τθ)2 =(
√
π)

−1 ×
{

c11
2 A2

T + d22
2 B2 + c22

2 C2
T ++d12ATB + c12ATCT − d1AT

− d2B + d23BCT

}

, (26)

J (3)(h̃)/[(kθ)(τθ)] =(
√
π)

−1 ×
{

c11ApAT + c22CpCT + c12(ApCT + ATCp)− d1Ap − c1AT

− c2CT + d12ApB + d23BCp − d23
2 B

}

. (27)

The explicit expressions for the coefficients appearing in Eqs. (25)-(27) are reported

in Appendix A. The derivatives of J (1)(h̃)/(kθ)2, J (2)(h̃)/(τθ)2, J (3)(h̃)/[(kθ)(τθ)], with

respect to Ap, AT , B, Cp, CT vanish in correspondence of the optimal values of these

constants. The resulting expressions for the minimum of these functionals are

min
J (1)(h̃)

(kθ)2
=(8

√
π)

−1
[c11c22 − c212]

−1
[8c12c1c2 − 4c21c22 + c212 (c22 − 4c2)

− c11(c22 − 2c2)
2] (28)

min
J (2)(h̃)

(τθ)2
= (2

√
π)

−1
[c11c22d22 − d212c22 − c11d

2
23 + 2c12d12d23 − c212d22]

−1

× [−d21d22c22 − c11d
2
2c22 + 2d1d12d2c22 + d21d

2
23 − 2d1c12d2d23 + c212d

2
2] (29)

min
J (3)(h̃)

(kθ)(τθ)
= (2

√
π)

−1
[c11c22d22 − d212c22 − c11d

2
23 + 2c12d12d23 − c212d22]

−1

× [−d1c12d223 + 2c1d1d
2
23 − d2c11c22d23 + 2c2d2c11d23 + d2c

2
12d23

− 2c1d2c12d23 + d1c22d12d23 − 2c2d1d12d23 − 2c1d1c22d22 + 2c2d1c12d22

+ 2c1d2d12c22 − 2c2d2c12d12]. (30)

Let us now go back to Eq. (16). Since the functional J can be split into three parts

and the relations (17) and (18) hold, it is easy to see that the computation of the optimal
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value of J (1)(h̃)/(kθ)2, J (2)(h̃)/(τθ)2, J (3)(h̃)/[(kθ)(τθ)] (Eqs.(28)-(30)), will lead to an

accurate estimate of the Poiseuille coefficient Gp, the thermal-creep coefficient GT , and

the reduced heat flux QT :

Gp =
2

δ2
J (1)(h)

(kθ)2
, (31)

GT = − 1

δ2
J (3)(h)

(kθ)(τθ)
, (32)

QT =
2

δ2
J (2)(h)

(τθ)2
. (33)

IV. THERMAL SLIP COEFFICIENTS

The variational method is a powerful technique for finding approximate closed-form

solutions to the Boltzmann equation. In particular, this approach has proved useful in

computing parameters to be employed in classical hydrodynamical equations, when low

working pressures impose corrections due to gas rarefaction effects. A typical example

is the derivation of slip coefficients needed to modify the boundary conditions associ-

ated with the Navier-Stokes equations. For pressure-driven flows, assuming a first-order

boundary condition at a flat wall, in the isothermal case, the slip velocity reads as

vs = σpλ

(

∂v

∂x

)

w

, (34)

where σp is the viscous-slip coefficient, λ is the mean free path of the molecules and the

gas-velocity gradient is evaluated at the wall. Likewise, for thermal-driven flows, one can

write the following first-order slip boundary condition on a flat wall:

vs = σT
µ

ρT

(

∂T

∂z

)

w

, (35)

where σT is the thermal slip coefficient, µ is the gas viscosity, and the temperature gra-

dient is evaluated at the wall. Both the viscous and thermal slip coefficients can be

calculated indirectly, by extracting them from asymptotic near-continuum solutions for

the Poiseuille and thermal-creep flows, respectively. Concerning the viscous slip coeffi-

cients, by this time, it is generally accepted that the classical hydrodynamical equations
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can supply realistic results well beyond the slip region, provided that higher-order bound-

ary conditions are employed. In particular, the variational principle introduced in Section

III has been used to predict first- and second-order viscous slip coefficients on the basis

of the linearized Boltzmann equation for hard-sphere molecules with the Maxwell36 as

well as the Cercignani-Lampis boundary conditions37. Then, the variational outputs have

been compared with recent experimental results, revealing a very good agreement38,39.

On the contrary, the reliability of a higher-order solution for the temperature-driven mass

flow rate and the existence of a ’second-order’ thermal slip coefficient (where we indicate

with ’second-order’ a term of next-order with respect to the leading one) have not yet

been well assessed. Therefore, in the following, we will focus on the derivation of the

asymptotic near-continuum solution for the thermal-creep mass flow, by means of the

variational technique presented in Section III, in order to predict thermal slip coefficients.

The present investigation is mostly guided by the desire to interpret some recent exper-

imental studies25 and to define the upper limit in the Knudsen number, within which a

second-order description of the flow accurately holds.

A. Theoretical derivation

When the linearized Boltzmann equation for hard-sphere molecules is considered and

the Cercignani-Lampis scattering kernel is used to describe the gas-wall interaction, Eqs.

(30) and (32) give in the limit δ >> 1,

GT =
σ1
δ

+
σ2
δ2

+ · · · (36)

where

σ1 =

[

64Ĵ4

(

2Ĵ1

π3/2
+1

)]−1[

16

(

5Ĵ1− 10Ĵ3+2Ĵ4

)

+10 π3/2

(

αt +αn −αtαn +4

)]

, (37)

σ2 = [2
√
πA]−1

[BC
A − E

]

, A =
32 Ĵ4 αt

3
√
π

[

2Ĵ1

π3/2
+ 1

]

, (38)

B = −128
π Ĵ4αt(1− αt)

[

F0αn + F1(1− αn)

]

− 8αtĴ4

[

4
π + αt

]

+ 16
3
√
παt

[

αn + 7αt + 2α3
t − 6α2

t − αt αn

][

2Ĵ1
π3/2 + 1

]

, (39)
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C = −16

3
αt

[

5 Ĵ1 − 10 Ĵ3 + 2 Ĵ4

]

− 10

3
π3/2αt

[

αt + αn − αt αn + 4

]

, (40)

E = −32
√
παt

[

5 Ĵ3 − Ĵ4

]

+ 160παt(1− αt)

[

F0αn + F1(1− αn)

]

+ 10π2αt

×
[

2αt + αn − αt αn

]

− 32
3 παt

[

αt − 2αn − 3α2
t + α3

t + 2αt αn − 15
4

]

, (41)

with Ĵ1 = −1.4180, Ĵ2 = 1.8909, Ĵ3 = 0.9449, Ĵ4 = 4.7252 and F0 = 0.196079, F1 =

0.247679. The rarefaction parameter δ has been defined in (23), where θ is conveniently

chosen in order to use the same definition as in the experiments described in the next

Section. A comparison between the expression (36) and the thermal-driven mass flow

rate, obtained by using the Navier-Stokes equations with slip boundary conditions (35)2,

allows one to identify σ1 with the first-order thermal slip coefficient σT , while σ2 can be

referred to as the ’second-order’ thermal slip coefficient.

B. Experimental measurements

The authors of Ref. [ 25] measured the temperature driven mass flow rate through a

microchannel with a rectangular cross-section, over a wide range of the gas-rarefaction

parameter. A microchannel made of PEEK with a height of d = 0.22 ± 0.01mm, width

of w = 6mm, and length of L = 73mm was employed. The temperature of the hot

reservoir TH and that of the cold reservoir TC were maintained to realize two temperature

differences ∆T : 1) TH = 347.1 ± 0.5K, TC = 289.2 ± 0.2K, where ∆T = 57.9K and 2)

TH = 337.0±0.6K, TC = 299.6±0.4K, where ∆T = 37.4K. Such temperature differences

were chosen to have the same mean temperature Tm = (TC + TH)/2 = 318K.

In Ref. [ 25], only measurements of the thermal-creep flow have been carried out. In

this case, the mass flow rate is given by the second term on the right-hand side of Eq.

(17), modified as follows, in order to take into account a rectangular channel of width w:

Ṁ = d2 pwGT
1

T

dT

dz
. (42)

Since the channel width-to-height ratio is equal to 27.3, the lateral-wall effects can be

neglected40,41 and one can use for the dimensionless thermal-creep coefficient GT the

expression obtained for a gas flowing between two parallel plates separated by a distance

12



d. In the expression (42), GT is a function of the local rarefaction parameter δ. Since in

the experiments the variation of δ along the channel is not so large, it can be assumed

that GT (δ) is well approximated by GT (δm), where the mean rarefaction parameter δm is

calculated using the mean temperature Tm:

δm =
p d

µ(Tm)
√
2RTm

. (43)

In Ref. [ 25] (Table 1) the experimentally determined values of GT have been reported as

function of δm, for different noble gases.

Beyond the mass flow rates, the experimental data presented in Ref. [ 25] have been

used to extract the thermal slip coefficients. By solving the Stokes equation, with the

first-order thermal slip boundary condition (35), the mass flow rate reads:

Ṁ = σT dw
µ

T

dT

dz
. (44)

Let us assume the following dependence of the gas viscosity µ on temperature T 42:

µ = µref

(

T

Tref

)ω

(45)

where µref is the viscosity coefficient at the temperature Tref and ω is the viscosity index.

Inserting (45) in (44), one obtains:

Ṁ = σT dw
µref

T ω
ref

F (46)

where

F = T ω−1dT

dz
. (47)

Since the temperature profile along the channel was not measured in the experiments, the

term F in (46) has been substituted by its mean value, F , calculated by integrating (47)

along the channel:

F =
T ω
H − T ω

C

ω L
. (48)

Therefore, taking into account (46) and (48), the first-order thermal slip coefficient can

be extracted from the experimental measurements of the mass flow rate as follows:

13



Ṁ

Ṁref

= σexp
1 (49)

where

Ṁref =
dw µref

T ω
ref

(T ω
H − T ω

C )

ω L
. (50)

In Eq. (49) we have indicated with σexp
1 the first-order thermal slip coefficient σT to

highlight that it is the experimentally-determined value. The experimental data reveal

that the value of σexp
1 , for different gases, can be considered to be independent of the

rarefaction parameter δm and of the temperature difference ∆T .

In order to extract a second-order slip coefficient from the measurements, and mostly

to improve the accuracy of the first order coefficient extraction, one can resort to Eq. (42)

with GT given by its asymptotic expression (36):

GT ≃ σexp
1

δ
+
σexp
2

δ2
. (51)

In Eq. (51), we have renamed the two coefficients σ1, σ2, appearing in (36), with σexp
1 and

σexp
2 to highlight that the latter are experimentally-determined coefficients. Integrating

along the channel the resulting expression (by using the property of mass conservation)

with µ given by (45) and δ substituted by its mean value δm (43), one obtains:

Ṁ = Ṁref

[

σexp
1 +

σexp
2

δm
σ +O

(

1

δ2m

)]

(52)

where Ṁref is reported in (50) and

σ =
[T 2ω+0.5

H − T 2ω+0.5
C ]

[(2ω + 0.5)T ω+0.5
m ]

ω

[T ω
H − T ω

C ]
. (53)

Since it was found that the constant σ is quite close to unity, the measured data on the

mass flow rate can be fitted in the form:

Ṁ

Ṁref

= σexp
1 +

σexp
2

δm
(54)

where σexp
1 and σexp

2 are the experimentally-determined first- and second-order thermal

slip coefficients, respectively. The asymptotic formula (52) allows one to predict the mass

flow rate also in the early transition regime. Therefore, the fitting procedure has been

carried out in the range of δm = [3, 40]. The validity of this interval has been assessed

14



in the next Section, on the basis of our theoretical computations. The values of σexp
1 and

σexp
2 are listed in Ref. [ 25] (Table 3), for both ∆T = 57.9K and ∆T = 37.4K, and for

five different noble gases: Helium (He), Neon (Ne), Argon (Ar), Krypton (Kr) and Xenon

(Xe).

V. RESULTS AND DISCUSSION

To test the reliability of our variational approach, we list in Table I the values of the

first-order slip coefficient σ1, computed by using Eq. (37), along with the results for the

thermal slip coefficient reported in Ref. [ 2] (Table 10) as deduced from a strictly numer-

ical solution of the linearized Boltzmann equation for rigid-sphere collisions43 and of the

S-model44,22. As shown in the table, the agreement between the three methods of solution

is fairly good. The variational outputs overstate those derived from the linearized Boltz-

mann equation (the relative error lies within 10%) and understate the findings obtained

through the S-model (the relative error lies within 5%), for each value of the accommo-

dation coefficients, αt and αn. The better agreement between the variational results and

those obtained on the basis of the S-model is likely related to the different numerical

approximations involved in solving the true linearized Boltzmann equation and a sim-

plified kinetic model. In both references [ 43], [ 44], the scattering kernel is written in

the expanded form, originally given by Pekeris-Alterman45. But, while for rigid-sphere

collisions the component functions kn, appearing in the series representation of the scat-

tering kernel, are required for all n, the S-model is obtained in closed-form by putting

kn = 0 forn > 1. Therefore, a truncated version of the scattering kernel has been con-

sidered for the numerical solution of the linearized Boltzmann equation reported in [ 43].

Furthermore, the author of Ref. [ 43] pointed out that additional numerical work was re-

quired to implement the Cercignani-Lampis boundary conditions, leading to a significantly

more intensive computation, due to the numerical evaluation of repeated integrals. On

the contrary, in the present paper, the variational method has been used to solve the true

linearized Boltzmann equation for hard-sphere molecules without approximation in its

form. Even the integrals specific to the CL-boundary conditions have been computed an-

alytically. The only approximation involved in our analysis is related to the test-function.

However, it is worth mentioning that there exist several basic theorems which allow to

perform a good choice. In our context, then, this choice is even simpler since the func-
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tions which need to be approximated by trial functions are solutions of physically realistic

problems and especially in their asymptotic forms can be immediately obtained via the

use of the Chapman-Enskog procedure or via the solution of the Boltzmann equation in

integral form based on a simplified kinetic model. It is worth noting that in the review

paper [ 2], the author recommends to use, for practical calculations in the case of diffuse

re-emission, the following value of the thermal-slip coefficient σ1 = 1.1, which is identical

to the value obtained through our variational computations, when αt = αn = 1. Finally,

it is important to underline that the use of rigid spheres does not represent a limitation

with respect to the generality of the results, since in the range of the gas rarefaction

considered here, δ ≥ 3, the influence of the intermolecular interaction potential is very

small23.

Since the present investigation is mostly guided by the desire to interpret some recent

experimental studies25, where the thermal slip coefficients were computed starting from

mass flow rate measurements, in Table II we list the experimental estimates for σ1 and σ2

(see Section IVB). We have also included in Table II the first- and second-order thermal

slip coefficients computed on the basis of our variational technique applied to the linearized

Boltzmann equation for a hard-sphere gas, for specific values of the accommodation co-

efficients, αt and αn, chosen to provide results as close as possible to the experimental

measurements. As revealed by the table, the agreement between our variational outputs

and the experimental data is quite good, for each of the five noble gases considered. This

outcome assumes particular relevance, since the experimental measurements presented in

[ 25] and summarized in Section IVB had not yet received a satisfactory explanation on

the basis of the theoretical findings obtained by the linearized Boltzmann equation, in the

frame of Maxwell’s model for boundary conditions.

Looking at the data reported in Table II, one can infer that, by increasing the molecular

weight of the different gases, the values of both accommodation coefficients, αt and αn, also

increase. The same trend has been already pointed out in Ref. [ 2] (Table 6) for the values

of αt extracted from the experimentally-determined first-order viscous slip coefficients.

Since the exact domain of the existence of the slip flow regime is still a debated issue, our

variational analysis can be considered a useful tool in order to define the upper limit in

the rarefaction parameter, within which a second-order description of the flow accurately

holds. To this end, the variational calculations showing the dimensionless thermal-creep

mass flow rate GT , computed through the truncated formula (36), versus the rarefaction
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TABLE I. The first-order thermal slip coefficient σ1 for the CL boundary conditions. Comparison

between our outputs (variational method applied to the Boltzmann equation for a hard-sphere

gas (Var.(HS)), the numerical results based on the S-model44,22 and those obtained by a direct

solution of the linearized Boltzmann equation with hard spheres molecules (Num.(HS))43.

αt αn = 0.25 αn = 0.5 αn = 0.75 αn = 1.

0.5 S−model44, 22 1.034 1.081 1.127 1.172

Var.(HS) 0.971 1.018 1.065 1.111

Num.(HS)43 0.915 0.954 0.991 1.028

0.75 S−model44, 22 1.107 1.129 1.152 1.174

Var.(HS) 1.041 1.065 1.088 1.111

Num.(HS)43 0.964 0.982 1.001 1.019

1. S−model44, 22 1.175 1.175 1.175 1.175

Var.(HS) 1.111 1.111 1.111 1.111

Num.(HS)43 1.018 1.018 1.018 1.018

1.25 S−model44, 22 1.240 1.219 1.197 1.175

Var.(HS) 1.182 1.158 1.135 1.111

Num.(HS)43 1.071 1.053 1.035 1.017

1.5 S−model44, 22 1.305 1.264 1.221 1.177

Var.(HS) 1.252 1.205 1.158 1.111

Num.(HS)43 1.114 1.080 1.044 1.008

parameter δ, are presented in Table III.

Our theoretical findings are compared with the numerical results obtained in Ref. [ 23]

(Table 1) on the basis of the linearized Boltzmann equation for hard-spheres and of the

S-model46. As revealed by Table III, the validity of the second-order slip model, given by

Eq. (36), extends up to δ ≃ 3, if one wants that the error lies within 10% for all values of

17



TABLE II. Experimental estimates for the first- (σ1) and second-order (σ2) slip coefficients25.

Our variational outputs (Var.(HS)), based on the linearized Boltzmann equation for a hard-

sphere gas and CL boundary conditions, are also included for specific values of the accommo-

dation coefficients (αt, αn), chosen to provide results as close as possible to the experimental

measurements.

Experiments25 Var.(HS)

σexp
1

σexp
2

σ1 σ2 αt αn ∆max

He 1.006 ± 0.020 −1.147± 0.113 1.0481 −1.1334 0.8 0.15 4.2%

Ne 0.998 ± 0.029 −1.226± 0.172 1.0556 −1.1718 0.8 0.25 5.7%

Ar 1.017 ± 0.057 −1.274± 0.406 1.0659 −1.2255 0.83 0.28 4.8%

Kr 1.061 ± 0.053 −1.327± 0.400 1.0817 −1.3083 0.88 0.33 1.9%

Xe 1.102 ± 0.085 −1.746± 0.626 1.1509 −1.6881 1.16 0.35 4.4%

the accommodation coefficients, αt and αn. Once the range of validity of the truncated

formula (36) has been assessed, we have reported in Table IV a comparison between the

experimental data on the mass flow rate GT for Helium, Neon and Argon (see Table 1

in [ 25]) and our variational results obtained by fixing the values of the accommodation

coefficients for each gas, as shown in Table II. As revealed by Table IV, the agreement

between the theoretical outputs and the experimental measurements is fairly good, for

each gas, with 5− 10% of error comparable to the experimental accuracy.
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TABLE III. Thermal-creep mass flow rate GT for the CL- boundary conditions. Comparison

between our variational outputs (Var.(HS)), the numerical results based on the S-model46 and

those obtained by a direct solution of the linearized Boltzmann equation with hard spheres

molecules (LBE(HS))23.

δ αt αn = 0.25 αn = 0.5 αn = 0.75 αn = 1.

3.5 0.25 S−model46 0.2084 0.2082 0.2083 0.2084

Var.(HS) 0.2186 0.2145 0.2082 0.1997

0.5 S−model46 0.2055 0.2056 0.2057 0.2058

Var.(HS) 0.2153 0.2106 0.2049 0.1982

LBE(HS)23 0.201 0.203 0.204 0.206

0.75 S−model46 0.2046 0.2047 0.2048 0.2048

Var.(HS) 0.2078 0.2047 0.2013 0.1977

1.0 S−model46 0.2046 0.2047 0.2047 0.2047

Var.(HS) 0.1976 0.1976 0.1976 0.1976

LBE(HS)23 0.202 0.202 0.202 0.202

10. 0.25 S−model46 0.08592 0.08997 0.09400 0.09794

Var.(HS) 0.08533 0.08941 0.09321 0.09673

0.5 S−model46 0.09018 0.09290 0.09556 0.09819

Var.(HS) 0.08950 0.09198 0.09433 0.09655

LBE(HS)23 0.0834 0.0861 0.0887 0.0912

0.75 S−model46 0.09419 0.09554 0.09684 0.09814

Var.(HS) 0.09315 0.09430 0.09541 0.09649

1.0 S−model46 0.09808 0.09813 0.09813 0.09813

Var.(HS) 0.09648 0.09648 0.09648 0.09648

LBE(HS)23 0.0900 0.0900 0.0900 0.0900

20. 0.25 S−model46 0.04519 0.04794 0.05066 0.05333

Var.(HS) 0.04385 0.04663 0.04934 0.05198

0.5 S−model46 0.04830 0.05019 0.05200 0.05380

Var.(HS) 0.04665 0.04844 0.05020 0.05193

LBE(HS)23 0.0437 0.0454 0.0470 0.0485

0.75 S−model46 0.05111 0.05206 0.05294 0.05383

Var.(HS) 0.04932 0.05020 0.05106 0.05192

1.0 S−model46 0.05378 0.05383 0.05383 0.05383

Var.(HS) 0.05192 0.05192 0.05192 0.05192

LBE(HS)23 0.0480 0.0480 0.0480 0.0480

100. 0.25 S−model46 0.00938 0.01008 0.01077 0.01144

Var.(HS) 0.00896 0.00963 0.01030 0.01097

0.5 S−model46 0.01015 0.01064 0.01108 0.01152

Var.(HS) 0.009635 0.01008 0.01053 0.01097

LBE(HS)23 0.0091 0.0094 0.0098 0.0102

0.75 S−model46 0.01085 0.01110 0.01132 0.01154

Var.(HS) 0.01030 0.01053 0.01075 0.01097

1.0 S−model46 0.01151 0.01154 0.01154 0.01154

Var.(HS) 0.01097 0.01097 0.01097 0.01097

LBE(HS)23 0.0101 0.0101 0.0101 0.0101
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TABLE IV. Comparison between the measured mass flow rate GT of Helium, Neon and Argon

(Expt.)25 and our variational outputs (Var.(HS)), based on the linearized Boltzmann equation

for a hard-sphere gas and CL boundary conditions. In order to obtain the variational results,

the accommodation coefficients αt, αn have been fixed, for each gas, as reported in Table II.

He Ne Ar

δ Expt. Var.(HS) δ Expt. Var.(HS) δ Expt. Var.(HS)

3.22 0.204 0.2162 3.14 0.208 0.2173 3.38 0.199 0.2081

3.47 0.196 0.2079 3.48 0.190 0.2065 4.01 0.175 0.1896

3.71 0.188 0.2002 3.83 0.182 0.1957 4.73 0.169 0.1706

4.33 0.178 0.1816 4.18 0.175 0.1854 5.37 0.153 0.1560

4.94 0.156 0.1657 4.52 0.162 0.1762 6.04 0.127 0.1429

5.57 0.140 0.1516 4.87 0.154 0.1673 6.72 0.125 0.1315

6.19 0.132 0.1397 5.24 0.148 0.1587 7.41 0.119 0.1215

6.80 0.130 0.1296 6.09 0.134 0.1417 8.08 0.102 0.1131

7.41 0.115 0.1208 6.94 0.119 0.1277 8.75 0.106 0.1058

8.04 0.107 0.1128 7.83 0.108 0.1157 9.41 0.0989 0.09944

8.67 0.0996 0.10581 8.70 0.099 0.1058 10.1 0.0874 0.09352

9.28 0.0987 0.09978 9.55 0.089 0.09768 11.7 0.0751 0.08215

9.90 0.0918 0.09430 10.4 0.087 0.09066 13.4 0.0698 0.07272

10.5 0.0871 0.08954 11.3 0.077 0.08424 15.1 0.0654 0.06522

11.1 0.0803 0.08522 12.2 0.072 0.07865 16.8 0.0638 0.05911

11.7 0.0800 0.08130 13.1 0.072 0.07375 18.5 0.0533 0.05404

13.9 0.069 0.06987 20.2 0.0496 0.04976

14.8 0.059 0.06597 21.8 0.0453 0.04632

15.7 0.062 0.06248 23.6 0.0393 0.04296

16.5 0.056 0.05967 25.2 0.0377 0.04037

26.9 0.0388 0.03793

28.6 0.0323 0.03577

30.3 0.0349 0.03384

31.9 0.0279 0.03221
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VI. CONCLUDING REMARKS

In the present study, we have investigated the Poiseuille and thermal-creep problems

of a rarefied gas between two parallel plates, by means of a variational technique which

applies to the integrodifferential form of the Boltzmann equation, based on the true lin-

earized collision operator and the Cercignani-Lampis scattering kernel of the gas-surface

interaction. A second-order slip model for the temperature-driven (thermal-creep) mass

flow rate has been proposed on the basis of the variational analysis. In addition, new

analytical expressions for the thermal slip parameters have been provided, in terms of

the tangential momentum αt and the normal energy αn accommodation coefficients. The

theoretical results for the first- and second-order thermal slip coefficients have been com-

pared with the experimental data reported in Ref. [ 25] for five noble gases (Helium,

Neon, Argon, Krypton and Xenon) and, for each of them, the accommodation coeffi-

cients αt and αn have been extracted. Then, these values of αt and αn have been used

to evaluate the temperature-driven mass flow rates in the frame of our variational anal-

ysis and the outputs have been compared with the measurements for Helium, Neon and

Argon25. The good agreement obtained between the theoretical and the experimental

data, within the range of validity of the proposed second-order slip model, suggests that

the Cercignani-Lampis boundary conditions, unlike the Maxwell model, can conveniently

be used to describe non-isothermal gas flows. Instead, the authors of Ref. [ 23] came

to the opposite conclusion relying on a comparison of their numerical results with the

same experimental data25. However, the approach used in Ref. [ 23] to find a pair of

accommodation coefficients is different from the method applied in the present paper. In

Ref. [ 23], the accommodation coefficients αt and αn have been selected to provide the

best agreement between the mass flow rate measurements of thermal creep flow and the

numerical calculations, as the rarefaction parameter δ changes. Indeed, the authors of

Ref. [ 23] were unable to obtain values of the accommodation coefficients αt, αn that could

provide a good agreement with the experimental data of the mass flow rate over a wide

range of gas rarefaction. Of course, when a model with more than one free parameter is

considered, there may be different combinations of the coefficients that produce equally

good results, at least locally. The advantage of the method proposed in the present paper

is that the two accommodation coefficients αt, αn are preliminarily determined by im-

posing that the first- and second-order thermal-slip coefficients theoretically derived can
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closely reproduce the experimental data. These two constraints allowed us to uniquely

determine αt and αn, and indeed the match, that we have obtained with the measured

values of the temperature-driven mass flow rates for Helium, Neon and Argon, is quite

good even beyond the range of validity of the proposed second-order slip model.
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Appendix A: Explicit form of the variational coefficients

In the following we report the explicit expression of the coefficients appearing in Eqs.

(25)-(27):

c11 = −δ
4

4 αt − 4
3
√
πδ3 +

√
πδ3αt + 4δ2 − 4δ2αt − 4

√
πδαnαt + 12

√
πδαt + 4

√
πδαn

+ 16αnαt − 32αt − 16αn − 8
3πδ

3Ĵ1 − 32
π δĴ2 + 16δ2F0αn(1− αt)

+ 16δ2F1(1− αt)(1− αn), (A1)

c12 = −δ2αt + 2
√
πδαt − 8αt, c22 = −4αt, (A2)

c1 =

√
π

6
δ3 − δ2

2
αt + 2

√
πδ +

√
πδαt − 4αt, c2 = 2

√
πδ − 2αt, (A3)

d12 =
δ2

4
αt +

√
π

2
δαnαt −

√
πδαt −

√
π

2
δαn − 4αnαt + 6αt + 4αn +

8

π
δĴ3, (A4)

d22 = −2α3
t + 6α2

t + αnαt −
29

4
αt − αn −

2

π
δĴ4, (A5)

d1 = 2
√
πδ, d2 = −5

2

√
πδ, d23 = αt, (A6)
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where F0 = 0.196079 and F1 = 0.247679. In Eqs. (A1), (A4), (A5), the symbol Ĵi stands

for integral expressions defined by using the brackets [φ, ψ],

[φ, ψ] =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

e−c2φ(c)Lψ dc, (A7)

with Lψ being the linearized Boltzmann collision operator. For hard spheres of diameter

σ, the length parameter θ is given by θ =
√
2/(π3/2σ2n) and the mean free path λ reads

as λ = 1/(
√
2πσ2n) (where n is the number density). Therefore,

Lψ =
1

4
√
2π5/2λ

∫ 2π

0

dǫ

∫ π

0

sin ΘdΘ ·
∫ +∞

−∞

e−c12V (ψ′

1 + ψ′ − ψ1 − ψ) dc1, (A8)

where ψ is a function of c, while ψ1 refers to c1. V is the relative velocity: |c− c1|. ψ′ ≡
ψ(c′) and ψ′

1 ≡ ψ(c′
1
), where c′ and c′

1
are the velocities after collision of two molecules

with velocities c and c1. The collision geometry, in conjunction with the conservation

laws, relates the velocities after collision to the velocities before collision. Thus,

c′x = cx + (c1x − cx) cos
2(Θ/2) + 1/2 · [V 2 − (c1x − cx)

2]1/2sinΘcos ǫ,

c′1x = c1x − (c1x − cx) cos
2(Θ/2)− 1/2 · [V 2 − (c1x − cx)

2]1/2sinΘcos ǫ,

where Θ is the angle through which the relative velocity has turned and ǫ is the azimuthal

angle which the plane containing the relative velocities before and after collision makes

with a fixed reference plane. Similar relations exist for the y and z components42.

The integrals J1, J2, J3, J4 appearing in Eqs. (A1), (A4), (A5) are eight-fold integrals,

J1 = [cxcz, cxcz], J2 = −[cx
2cz, cx

2cz]

J3 = −[cx
2cz, c

2cz], J4 = −[c2cz, c
2cz], (A9)

where Ĵi =
2λ√
π
Ji. These integrals have been numerically evaluated using a Monte Carlo

integration on an eight-dimensional space. For the validation of the numerical Monte

Carlo integrations, we have recalculated the collision integrals reported in Refs. [ 47], [

48], where the results have been obtained by means of the analytical methods developed

by Wang Chang and Uhlenbeck49.
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9S. K. Dadzie and J. G. Méolans, “Anisotropic scattering kernel: generalized and modified

Maxwell boundary conditions,” J. Math. Phys. 45, 1804 (2004).

10F. O. Goodman and H. Y. Wachman, Dynamics of Gas-Surface scattering (Academic

Press, New York, 1976).

11B. T. Porodnov, P. E. Suetin, S. F. Borisov and V. D. Akinshin, “Experimental inves-

tigation of rarefied gas flow in different channels,” J. Fluid Mech. 64, 417 (1974).

12E. B. Arkilic, M. A. Schmidt and K. S. Breuer, “Gaseous slip flow in long microchan-

nels,” J. Microelectromech. Syst. 6, 167 (1997).

13S. Colin, P. Lalonde and R. Caen, “Validation of a second-order slip flow model in a

rectangular microchannel,” Heat Transf. Eng. 25, 23 (2004).

14T. Ewart, P. Perrier, I. A. Graur and J. G. Méolans, “Mass flow rate measurements in
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