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Abstract 

Earthworms are widespread soil organisms that contribute to a wide range of ecosystem 
services. As such, it is important to improve our knowledge, still scanty, of the factors that drive 
the assembly of earthworm communities. The aim of the present study was to conjointly 
evaluate the effects on the assembly of earthworm communities of i) soil properties (texture, 
organic matter content, and pH), ii) grassland management (grassland age, livestock unit, and 
type of fertilization), iii) landscape diversity (richness, diversity of surrounding habitats, and 
grassland plant diversity), and iv) presence of hedgerows. The study was conducted in 
temperate grasslands of Brittany, France. Earthworms were sampled in 24 grasslands and, in 
three of these grasslands, they were sampled near a hedgerow or near a ditch (control without 
a hedgerow). Soil properties explained the larger portion of the variation in the earthworm 
community parameters compared to grassland management or landscape diversity. The increase 
in soil organic matter content and pH were the most favorable factors for earthworm abundance 
and biomass, in particular for endogeic species. Regarding grassland management, the increase 
in the livestock unit was the most damaging factor for earthworm communities, in particular 
for the anecic earthworm biomass and endogeic species richness. Surprisingly, landscape 
diversity negatively affected the total earthworm abundance and epigeic earthworm biomass, 
but it was related to an increase in the epi-anecic species. At a finer scale, we also demonstrated 
that the presence of hedgerows surrounding grasslands enhanced earthworm species richness, 
especially within the epigeic and anecic ecological categories. This study highlights that the 
earthworm ecological categories respond specifically to environmental filters; further studies 
need to be conducted to elucidate the factors that drive the assembly of earthworm communities 
at this ecological category level. We recommend that policymakers should act on landscape 
management to favor earthworm diversity in order to improve the ecosystem services they 
drive. 
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INTRODUCTION 49 

 50 

 Earthworms are widespread soil organisms constituting the most important terrestrial biomass in 51 
temperate climate zones (Hole, 1981; Bar-On et al., 2018). They are usually classified into three main 52 
ecological categories depending on their physiology, morphology and behaviour: epigeic, anecic and 53 
endogeic species (Bouché, 1972, 1977). Briefly, epigeic earthworms live in and consume surface organic 54 
matter, anecic earthworms burrow vertical galleries to feed on a mixture of surface and soil organic matter, 55 
and endogeic earthworms burrow horizontal galleries to feed on soil organic matter (Bouché and 56 
Kretzschmar, 1974; Bouché, 1977; Jégou et al., 1998). Additionally, within the anecic earthworms, epi-57 
anecic species feed preferentially on fresh surface organic matter (i.e. leaf litter) and are thereby 58 
distinguished from strict-anecic species that feed preferentially on humified organic matter already 59 
incorporated into the soil (Jégou et al., 1998; Larsen et al., 2016; Hoeffner et al., 2019). Depending on their 60 
ecological categories and associated feeding and burrowing behaviour, earthworms contribute to important 61 
ecosystem services provided by the soil such as nutrient cycling, water and climate regulation and primary 62 
production (Blouin et al., 2013; Bertrand et al., 2015). For example, van Groenigen et al. (2014) reported in 63 
a meta-analysis that an increase in crop production was observed in presence of earthworms, this increase 64 
ranging from 18% in presence of epigeic species up to 32% in presence of anecic species.   65 
 Earthworm communities are governed by different environmental filters, including biogeographical 66 
history, soil properties, land use and management as well as species interactions within the community (e.g. 67 
competition or facilitation; Lavelle, 1983; Curry, 2004; Decaëns et al., 2008). Previous studies focusing on 68 
the impact of soil properties on earthworm communities highlighted the key role played by soil pH, soil 69 
organic matter content and soil texture (Joschko et al., 2006; Lee, 1985; Decaëns et al., 2008). Other studies 70 
focused on the impact of land use on these earthworm communities (Boag et al., 1997; Decaëns et al., 2003, 71 
2008; Cluzeau et al., 2012). For example, Ponge et al. (2013) reported that grasslands exhibited higher 72 
anecic earthworm abundance than croplands. In addition, Zaller and Arnone (1999) observed a positive 73 
correlation between the density and the biomass of earthworm communities and the plant species richness 74 
of grasslands, and in particular for endogeic species. Concerning land management, previous studies 75 
reported that ploughing (Chan, 2001; Briones and Schmidt, 2017), pesticide application (Pelosi et al., 2014) 76 
and low permanent cover (Vršic, 2011) negatively impact earthworm communities with a response intensity 77 
depending on the ecological category considered.  78 
 Other studies have been undertaken at a greater scale to evaluate the impact of landscape diversity 79 
on earthworm communities within croplands (Vanbergen et al., 2007; Lüscher et al., 2014; Frazão et al., 80 
2017). For example, Flohre et al. (2011) observed that the earthworm species richness in croplands 81 
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decreased with the percentage of surrounding agricultural fields. Regulska and Kolaczkowska (2015) also 82 
reported that a cropland surrounded by a diverse landscape supported a higher earthworm diversity, density 83 
and biomass than the same type of cropland surrounded by a simpler landscape. However, the majority of 84 
the previous studies did not report effect of landscape diversity on earthworm communities of croplands 85 
and vineyards (Kovács-Hostyánszki et al., 2013; Frazão et al., 2017; Buchholz et al., 2017). Moreover, field 86 
margins of croplands were reported to exhibit higher abundance and diversity of earthworms than in the 87 
croplands itself but, surprisingly, these field margins were not reported to favor earthworm populations of 88 
these croplands (Smith et al., 2008; Roarty and Schmidt, 2013; Crittenden et al., 2015). Whether and how 89 
earthworms disperse within agricultural landscapes hence remains an unresolved issue. 90 

A strong research effort has been done in the past decades to study the earthworm communities of 91 
croplands. Grasslands are the largest terrestrial ecosystem in the globe and produce many key ecosystem 92 
services, such as carbon storage, soil erosion mitigation or support for pollinators (Costanza et al., 1997; 93 
Conant and Paustian, 2002; Werling et al., 2014). The main objective of the present study was to conjointly 94 
evaluate the effects of soil properties, grassland management and landscape diversity on the assembly of 95 
grassland earthworm communities. Specifically, we hypothesized that the intensity of grassland 96 
management would negatively affect earthworm community parameters while the landscape diversity 97 
surrounding the grasslands would increase earthworm community parameters. The second objective was to 98 
evaluate the effect of hedgerows on these earthworm communities. By increasing the number of available 99 
niches, we hypothesized that the presence of a hedgerow in the grassland edge would increase earthworm 100 
community parameters (Tews et al., 2004). We conducted the study in an agricultural landscape of Brittany, 101 
France. Earthworms were sampled in 24 grasslands and, within three of them, they were oversampled near 102 
a hedgerow and near a ditch (control without hedgerow). Several parameters of the earthworm communities 103 
were evaluated including (i) the total abundance, total biomass, species richness and species diversity and 104 
(ii) the abundance, biomass and richness within each earthworm ecological category. 105 
 106 
MATERIALS AND METHODS 107 

Study site 108 

 The study site covers 10 km2 and is a part of the Long Term Ecological Research (LTER) ‘‘Zone 109 
Atelier Armorique’’, located in Brittany, France (48°50’ N, -1°58’ W). The climate of the area is oceanic 110 
with a mean annual temperature of 11.7 °C, a mean annual rainfall of 815.0 mm and a mean annual relative 111 
humidity of 80.9 % (mean values over the period 2010-2016, data from Météo France). The main soil types 112 
encountered are Cambisols (IUSS Working Group, 2015) with high bedrock heterogeneity (granite, soft 113 
schist and aeolian loam). Moreover, the study area presents a substantial micro-topography, mainly due to 114 
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a high variability of landscape structures (e.g. hedges and ditches as field margins) with a hedge density 115 
ranging from 50 to 100 m.ha-1 (Baudry et al., 2000; Thomas et al., 2016). Land use comprises mainly annual 116 
crops (corn, wheat, barley) and temporary or permanent grasslands, forest and unmanaged areas.  117 

We used ground-truth aerial photos, which were taken every year since 1990, to construct a detailed 118 
land-use history for all grasslands, allowing us to precisely determine the age of each grassland. Based on 119 
this land-use history and after verification with grassland owners, we selected 24 grasslands ranging from 1 120 
to 25 years since the last crop. Among them, three grasslands with an age gradient of 1-, 2- and 7-year-old 121 
were selected and oversampled from a hedgerow and a ditch at their surroundings to take into account a 122 
specific effect of hedgerow on soil properties (Marshall and Moonen, 2002; Walter et al., 2003). 123 
 124 
Earthworm sampling and laboratory analyses 125 
 Earthworms were sampled in 2016 within the 24 grasslands at a 30 m distance from any grassland 126 
edge, and then in the 3 selected grasslands near a ditch and near a hedgerow. For the 3 selected grasslands, 127 
we standardized the sampling with 3 sampling points in order to consider 3 replicates with hedgerow (at 1, 128 
5 and 10 m from the hedgerow) and 3 replicates without hedgerow (at 1, 5 and 10 m from the ditch).  129 
 Earthworms sampling followed the normalized protocol ISO 23 611-1, that was modified and 130 
validated during the RMQS BioDiv program (Cluzeau et al., 2012) combining chemical and physical 131 
extractions. Briefly, each earthworm sampling was characterised by a mean of three sub-sampling spaced 132 
of 10 m in line. Earthworm sub-sampling consisted of three waterings of 10 L with a gradient concentration 133 
of formaldehyde (0.25, 0.25 and 0.4%) on one square meter. After each watering, earthworms were collected 134 
for 15 min. Afterwards, a block of soil (25 × 25 × 20 cm, length × width × depth) was excavated within 135 
each sub-sampling area and earthworms were hand-sorted. The number of hand-sorted earthworms (HS) 136 
was multiplied by 16 to obtain an estimation per square meter. This number was then added to the number 137 
of earthworms counted with the formaldehyde extraction (F) to obtain the total number of earthworms per 138 
square meter (FHS): FHS = F + (16 × HS). Earthworms were fixed and preserved in formaldehyde solution 139 
(4%). 140 
 In the laboratory, each earthworm individual was counted, weighed, assigned to a stage of 141 
development (juvenile, sub-adult and adult), identified at the sub-species level and assigned to its ecological 142 
category: epigeic, anecic or endogeic (Bouché, 1972, 1977). Additionally, we distinguished within anecic 143 
earthworms, the epi-anecic (genus Lumbricus) from the strict-anecic earthworms (genus Aporrectodea) 144 
(Ferrière, 1980; Jégou et al., 1998). For juvenile individuals, identification was first limited to the genus and 145 
thereafter they were attributed a species name according to the proportions of sub-adults and adults present 146 
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of the same genus on each square meter. Earthworm diversity was analysed through three levels: total 147 
species richness, Shannon diversity index and species evenness index.  148 
 149 
Environmental filters  150 

 We selected three environmental filters to explain earthworm community parameters: soil 151 
properties, grassland management and landscape diversity.  152 

Soil properties were characterized by the soil texture, organic matter content and pH (water). Ten 153 
soil samples were randomly collected at 3 m around the earthworm sub-samplings using a cylindrical soil 154 
corer (5 cm diameter × 20 cm depth) in each grassland. These 10 soil samples were pooled and homogenized 155 
in order to consider one composite soil sample per grassland and sent to the analytical laboratory of 156 
LABOCEA (Combourg, France). Briefly, clay content ranged from 9.5% to 19.7%, sand content from 157 
13.3% to 68.9%, organic matter content from 1.8% to 5.2% and soil pH from 5.5 to 6.7 (Supplementary 158 
Table S1).  159 

Grassland management was assessed from interviews with farmers (Supplementary Table S1) and 160 
from ground-truth aerial photos. The grassland age ranged from 1 to 25 years since the last row-cropping 161 
using quite similar species sown (Lolium perenne and Trifolium repens or pratensis). In addition, livestock 162 
unit per hectare varied from 0 to 4.3. Fertilisation rate was declarative so we used only the distinction 163 
between organic and mineral input.  164 
 Landscape structure within 100 m radius around the sampled fields was classified into 9 habitats 165 
based on aerial photos (forest, grassland, crop, hedge, water, building, garden, asphalt area, road). The radius 166 
of 100 m was chosen to reflect the overall low mobility of earthworms (Bardgett et al., 2005; Eijsackers, 167 
2010, 2011). Landscape diversity was characterized by two indexes: total richness of habitats within the 168 
radius and Shannon Diversity Index of habitats (hereafter called SHDI). Mapping and analysis were done 169 
using the softwares QGis 2.8.1 and FRAGSTATS 4.296. In addition, we characterized the plant community 170 
of the 24 grasslands in spring 2015 using 10 quadrats (1 × 1 m) evenly distributed in each grassland, 171 
characterizing for each plant species its covering percentage. Among the 24 grasslands selected, landscape 172 
richness varied from 1 to 7 habitats (maximum number of habitats has never been observed), SHDI from 173 
0.1 to 1.6 and plant Shannon index (hereafter called Plant diversity) within grasslands from 1.2 to 3.2 174 
(Supplementary Table S1).  175 
 176 

Statistical analysis 177 
We used multiple linear regression models to test the effects of soil properties (decomposed in clay, 178 

sand, organic matter contents and pH), grassland management (decomposed in grassland age, livestock unit 179 
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and fertilisation), and landscape diversity (decomposed in landscape richness, SHDI and plant diversity) on 180 
all earthworm community parameters (i.e. total abundance and biomass, total diversity indexes, ecological 181 
categories abundance and biomass). We constructed a full model comprising all environmental filters, and 182 
then we selected the significant environmental filters using a backward stepwise selection procedure that 183 
selects the best model using the AIC criterion (Crawley, 2012; stepAIC function of the “MASS” package). 184 
We also evaluated the variance inflation factor (VIF) of each variable selected by the previous procedure to 185 
test for multicollinearity among environmental filters. We removed all environmental filters that showed a 186 
VIF > 5, even if significant from the model. Data met the conditions of normality and homoscedasticity.  187 

Second, within each of the three selected grasslands (i.e. 1-, 2- and 7-year-old), we compared 188 
earthworm communities with and without hedgerow (ditch) using the three sampling points per plot as 189 
replicates. We used separated t-tests within the three selected grasslands to assess the differences in 190 
earthworm abundance, earthworm biomass, and species richness according to the presence or absence of a 191 
hedgerow. 192 
 Statistical analyses were performed with the R software 3.2.3 (R. Core Team, 2017). Significance 193 
was evaluated in all cases at P < 0.05.  194 
 195 
RESULTS 196 

Impact of soil properties, grassland management and landscape diversity on earthworm 197 

communities 198 
 Over the 24 grasslands sampled, the average earthworm abundance and biomass were 517.0 ± 57 199 
individual.m-² and 219.4 ± 20 g.m-², respectively. The mean earthworm species richness was 10.8 ± 0.3. 200 
Eighteen species belonging to the three ecological categories were identified (Supplementary Table S2). 201 
Allolobophora chlorotica and Aporrectodea caliginosa were the most abundant species whereas Eisenia 202 
tetraedra, Dendrobaena rubida and Octalasium lacteum were present in one grassland only (Supplementary 203 
Table S2). 204 
 Higher soil organic matter content increased the total earthworm abundance (F = 5.3, P = 0.033, 205 
Table 1), the endogeic species abundance (F = 5.7, P = 0.028, Supplementary Table S3) and the endogeic 206 
species richness (F = 5.4, P = 0.031, Supplementary Table S4), while the endogeic species abundance was 207 
negatively correlated to the sand content (F = 6.9, P = 0.017, Supplementary Table S3). In addition the total 208 
earthworm abundance and biomass increased when soil pH was more alkaline (F = 5.0 and 6.8, P < 0.05, 209 
Fig. 1, Table 1) but no category-specific impact was observed with respect to pH variation. 210 
 The increase in livestock unit decreased total earthworm biomass (F = 5.7, P = 0.028, Table 1), and 211 
in particular the biomass of anecic species (F = 9.6, P = 0.005, Fig. 2a, Supplementary Table S5). However, 212 
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this negative effect was only confirmed for the biomass of epi-anecic species (F = 4.4, P = 0.049, Fig. 2b, 213 
Supplementary Table S5). The increase in livestock unit also decreased the earthworm species richness, the 214 
Shannon diversity index and the species evenness (F = 2.8 to 9.6, P < 0.05, Fig. 2c, Table 1), and in particular 215 
the endogeic species richness (F = 9.5, P = 0.006, Supplementary Table S4). Mineral fertilisation enhanced 216 
the epigeic species abundance and biomass compared to organic fertilisation (F = 6.6 and 8.6, P < 0.02, 217 
Supplementary Tables S3 and S5).  218 

Landscape richness decreased the biomass of epigeic species (F = 4.9, P = 0.041, Supplementary 219 
Table S4) but enhanced the epi-anecic species richness (F = 6.6, P = 0.019, Supplementary Table S4). The 220 
increase of SHDI decreased the total earthworm abundance (F = 4.6, P = 0.047, Table 1). In addition, the 221 
increase in plant diversity was positively correlated to Shannon diversity index and species evenness (F = 222 
5.0 and 4.8, P < 0.04, Table 1).  223 
 Interestingly, the abundance of strict-anecic species, their biomass and richness were not affected 224 
by any of the environmental filters measured (Supplementary Tables S3, S4 and S5). 225 
 226 
Impact of hedgerow presence on earthworm communities 227 

 Over the 3 grasslands oversampled, earthworm abundance was higher in the 2-year-old grassland 228 
(834 ± 76 individuals.m-2) compared to the 1-year-old (306 ± 32 individuals.m-2) and 7-year-old grasslands 229 
(385 ± 32 individuals.m-2). Earthworm species richness was higher in the 2- and 7-year-old grasslands (11.0 230 
± 0.4 and 10.2 ± 0.3, respectively) compared to the 1-year-old grassland (7.9 ± 0.4). Earthworm species 231 
composition was also strongly different between these three grasslands. For example, the presence of 232 
Eisenia tetraedra occurred only in the 2-year-old grassland and the presence of Aporrectodea caliginosa 233 
meridionalis occurred only in the 7-year-old grassland. 234 
 Earthworm species richness was 21.0% and 23.2 % higher with the presence of a hedgerow, 235 
compared to the presence of a ditch, in the grasslands of 1- and 2-year-old (t = 5.8 and 13.9, P < 0.03, Fig. 236 
3a and b). It was however not affected in the 7-year-old grassland (t = 0.0, P = 0.85, Fig. 3c). The abundance 237 
of earthworms was not affected by the presence of hedgerows in the three selected grasslands (t= 0.0 to 238 
0.03, P > 0.865).  239 
 Overall, except Allolobophora icterica and Aporrectodea nocturna that were more abundant with 240 
the presence of a hedgerow, the strict-anecic and endogeic species were evenly distributed between the plots 241 
with and without a hedgerow. The distribution of epi-anecic earthworm species was heterogeneous, but 242 
Lumbricus rubellus rubellus and Lumbricus terrestris were more often observed in presence of a hedgerow. 243 
The distribution of epigeic earthworm was species dependent: Dendrobaena mammalis occurrence was 244 
higher in presence of a hedgerow and Eisenia tetraedra was observed in presence of a hedgerow in the 2-245 
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year-old grassland only. Lumbricus castaneus and Lumbricus rubellus castanoïdes occurrences were overall 246 
similar between the plots, independent from the presence of a hedgerow. 247 
 248 
DISCUSSION 249 

 In the present study, we clearly demonstrated that soil properties, grassland management and 250 
landscape diversity conjointly affected the selected parameters of the earthworm communities. Our findings 251 
hence contrast with those of Frazão et al. (2017) who reported that earthworm communities of the croplands 252 
were impacted by agricultural practices only but neither by soil properties nor landscape diversity.  253 

Contrary to previous studies that observed an effect of  soil properties at the regional scale (Decaëns 254 
et al., 2003; Vanbergen et al., 2007; Decaëns et al., 2008), here, by taking the earthworm ecological category 255 
into account, we evidenced that soil properties impact on a finer scale (i.e. 10 km²), the abundance, biomass 256 
and richness of earthworm ecological categories. This result might be due to the strong spatial heterogeneity 257 
of the soil properties in the studied region (Jamagne, 2011). In agreement with previous studies, we observed 258 
that higher soil sand content decreased the total abundance of earthworms (Hendrix et al., 1992; Lapied et 259 
al., 2009), which could be due to the low capacity of sandy soils to hold water, leading to an unfavorable 260 
habitat for earthworms (Lee, 1985). In addition, the increase in soil pH was positively correlated to both 261 
earthworm species richness (Joschko et al., 2006) and total abundance (Ma et al., 1990; McCallum et al., 262 
2016). Nonetheless, several reviews observed that earthworm preference to soil pH was species-dependent 263 
due to their synecology (Bouché, 1972; Edwards and Lofty, 1977; Lee, 1985) but the underlying 264 
mechanisms for pH preference are not fully understood yet. In line with their feeding behaviour that consists 265 
in consuming mainly humified organic matter, endogeic earthworm communities were more abundant and 266 
diversified in grasslands presenting high contents of soil organic matter  (Bouché, 1977; Piearce, 1978; 267 
Ferrière, 1980).  268 
 Regarding grassland management, increasing livestock unit was the most damaging factor for 269 
earthworm communities as it decreased the total biomass, species richness, the Shannon diversity index and 270 
the species evenness. This strong negative effect could be associated to the trampling at high stocking levels 271 
that damages soil structure and thus adversely affect earthworm communities and burrows (Cluzeau et al., 272 
1992; Pietola et al., 2005; Chan and Barchia, 2007). Interestingly, earthworms’ response to livestock unit 273 
was almost entirely confined to the largest epi-anecic and endogeic species and only the earthworm biomass 274 
was affected, contrary to their abundance, suggesting a decrease in the mean body size rather than in 275 
individuals’ number. Surprisingly, mineral fertilisation enhanced the abundance and biomass of epigeic 276 
species, but this finding is nonetheless in line with some previous studies that reported an increase in 277 
earthworm abundance in relation to N mineral fertilisation (Muldowney et al., 2003; King and Hutchinson, 278 
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2007; Curry et al., 2008). Mineral fertilisation would probably allow a better primary production leading to 279 
higher leaf litter inputs that constitute a source of refuge and food for earthworms. Further studies are 280 
needed, in grassland, to elaborate the different impacts of manure versus mineral fertilisation on 281 
earthworms. Overall, we observed that within grasslands, grazing pressure led to smaller and less-diversified 282 
earthworm communities.  283 
 We observed a negative effect of increasing landscape diversity (richness and Shannon Index) on 284 
the total abundance of earthworms and, to our knowledge, for the first time, the biomass of epigeic 285 
earthworms in grasslands. A negative correlation between the total abundance of earthworms and landscape 286 
diversity was also observed by Flohre et al., (2011) in croplands, and the authors hypothesized that landscape 287 
diversity increases the number of earthworm predators. Indeed, several studies highlighted that landscape 288 
diversity enhance the abundances of invertebrates, mammals and birds (Marshall and Moonen, 2002; 289 
Maudsley et al., 2002; Vickery et al., 2009) that are potential predators for earthworms (Granval and Aliaga, 290 
1988; O’Brien et al., 2016). We can also hypothesize that the capacity of epigeic species to disperse is 291 
hindered by physical barriers (i.e. hedge or ditch) and different soil properties (shelter and litter availability) 292 
in neighboring habitats that nonetheless constitute landscape diversity. In contrast, the species richness of 293 
epi-anecic earthworm was enhanced by the landscape diversity. As epi-anecic earthworm species have a 294 
great mobility varying from 1.5 to 14 m. year−1 (Hoogerkamp et al., 1983; Eijsackers, 2011; Nuutinen et al., 295 
2014) and the ability to burrow into the soil to protect themselves, higher landscape diversity around 296 
grasslands could enhance their areas of emigration. Endogeic earthworm species were not impacted by 297 
landscape diversity and were highly abundant in each grassland as previously reported (Lavelle, 1983; 298 
Decaëns et al., 2008). Overall, it is possible that low agricultural practices in grasslands, compared to 299 
croplands or vineyard, could increase the effect of the surrounding landscape diversity on earthworm 300 
communities (Roarty and Schmidt, 2013; Buchholz et al., 2017; Frazão et al., 2017).  301 

In addition to the effect of landscape diversity, we highlighted the importance of hedgerows 302 
surrounding grasslands. Hedgerows especially acted in young grasslands (i.e. 1- and 2-year-old grassland), 303 
which is probably due to the increase earthworm species aggregation with the age of the grasslands (Richard 304 
et al., 2012). It is well known that hedgerows locally modify soil properties (i.e. soil moisture, temperature 305 
or organic matter content; Marshall and Moonen, 2002), and especially the amount and type of litter 306 
deposited at the soil surface (Walter et al., 2003). This litter input is a key factor for the development of 307 
earthworm communities (Lee, 1985; Edwards, 2004), and in particular for epigeic and epi-anecic species 308 
that have a diet mainly composed of fresh leaf litter (Bouché and Kretzschmar, 1974; Piearce, 1978; Ferrière, 309 
1980). In field, earthworm communities living in grasslands surrounded by a hedgerow were richer in 310 
earthworm species compared to earthworm communities in grasslands surrounded by a ditch, especially for 311 
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epigeic and epi-anecic earthworm species. Thus, hedgerows presence could promote earthworm diversity 312 
in grasslands. Increasing epi-anecic earthworm diversity in grasslands landscape could have consequences 313 
on ecosystem services provided by these species. Hoeffner et al. (2018) observed that burrows’ fungal 314 
communities were regulated by epi-anecic species identity, which could increase the diversity of the 315 
drilospheric microbiota and improve soil functioning. Besides, as it is difficult to monitor the earthworm 316 
diversity response to global change drivers, earthworm databases often concern surveys carried out at 317 
regional or national scales (Rutgers et al., 2009; Cluzeau et al., 2012; Cameron et al., 2016). A first 318 
predictive model on the abundance and diversity of earthworms was created by Rutgers et al. (2016) taking 319 
into account soil occupation and properties. Future predictive models could therefore take into account the 320 
landscape as an additional factor regulating these earthworm communities.    321 
 322 
CONCLUSION 323 

 Our study clearly illustrated that earthworm communities in grasslands were affected by the three 324 
environmental filters considered: soil properties, grassland management and landscape diversity. Soil 325 
properties was the main environmental filter controlling earthworm communities. However, we also 326 
highlighted important effects of grassland management, for instance a strong decrease in abundance of 327 
earthworms with increasing livestock unit. We observed various effects of landscape diversity, such as a 328 
surprising overall decrease of earthworm abundance or a higher epi-anecic richness in diverse landscapes. 329 
Therefore, our findings demonstrated conjoint effects of various environmental filters as drivers of 330 
earthworm communities. Taken together, our results suggest a strong context dependency in the assembly 331 
rules of earthworm communities, despite the fact that these communities are well known to be ubiquitous 332 
and resilient.  333 
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TABLES 548 

 549 
Table 1 ANOVA results of multiple linear models testing for the effects of soil properties, grassland management and landscape diversity 550 
on total earthworm abundance, total biomass, species richness and Shannon diversity index and evenness index (when VIF > 5). F-551 
values and associated P-values are indicated. Significant P-values are indicated in bold (P < 0.05). df = degrees of freedom, %SS = 552 
percentage of sum of square. 553 
  Total abundance   Total biomass   Total richness   Shannon   Equitability 
  df %SS F P  df %SS F P  df %SS F P  df %SS F P  df %SS F P 
Soil properties                          

Clay content 1 5.9 2.2 0.157                     

Sand content 1 5.2 1.9 0.182  1 0.4 0.1 0.711  1 0.1 0.0 0.841           

Organic matter content 1 14.4 5.3 0.033  1 6.0 2.1 0.164                

pH 1 13.4 5.0 0.039  1 19.4 6.8 0.018                

Grassland management                          

Grassland age                 1 7.5 9.9 0.107  1 7.3 2.4 0.141 
Livestock unit       1 16.3 5.7 0.028  1 31.3 9.6 0.005  1 26.2 2.8 0.005  1 15.1 4.8 0.040 
Fertilisation                          

Landscape diversity                          

Landscape Richness                          

SHDI 1 12.3 4.6 0.047  1 6.4 2.2 0.153                

Plant diversity                 1 13.2 5.0 0.037  1 15.1 4.8 0.040 
Residuals 18 48.7    18 51.5    21 68.6    20 53.1    20 62.5   

  554 
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FIGURE LEGENDS 555 

 556 
Fig. 1. Relationship between total earthworm biomass and soil pH. R² and associated P-value of 557 
the linear regression are indicated. 558 
 559 
Fig. 2. Relationships between livestock unit and (a) anecic earthworm abundance, (b) epi-anecic 560 
earthworm abundance and (c) Shannon index. R² and associated P-values of linear regressions are 561 
indicated. 562 
 563 
Fig. 3. Earthworm species richness in plots with a hedgerow or with a ditch (i.e. control plot without 564 
hedgerow) for grassland of (a) 1-year-old, (b) 2-year-old and (c) 7-year-old. Values are means ± 565 
SD; n = 3. Different letters denote significant differences between the two plots with a > b (post 566 
hoc Tukey test results).  567 
  568 
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Fig. 1. 569 
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Fig. 2. 573 
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Fig. 3. 577 
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