# Supplementary information for

Integration of LC/MS-based molecular networking and classical phytochemical approach allows in-depth annotation of the metabolome of non-model organisms - The case study of the brown seaweed *Taonia* atomaria

Nathan Carriot<sup>a,1</sup>, Benoît Paix<sup>a,1</sup>, Stéphane Greff<sup>b</sup>, Bruno Viguier<sup>a</sup>, Jean-François Briand<sup>a</sup>,

Gérald Culioli<sup>a,\*</sup>

<sup>a</sup> Université de Toulon, MAPIEM, EA 4323, Toulon, France

<sup>b</sup> Aix Marseille Université, CNRS, IRD, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Station marine d'Endoume, Marseille, France.

 $E-mail\ addresses: \underline{culioli@univ-tln.fr}\ and\ \underline{gerald.culioli@univ-avignon.fr}\ (G.\ Culioli)$ 

New affiliation: Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale,

UMR CNRS-IRD, Avignon Université, Aix-Marseille Université, Avignon, France.

<sup>&</sup>lt;sup>1</sup>These authors contributed equally to this work.

<sup>\*</sup>Corresponding author.

### Detailed MS/MS fragmentation of a selection of nodes

## **Cluster 1A** (See Figure S6)

• **Example of TG:** node at m/z 794.7233 ([C<sub>49</sub>H<sub>96</sub>NO<sub>6</sub>]<sup>+</sup>, calc. m/z 794.7232,  $\Delta$  -0.1 ppm; [M + NH<sub>4</sub>]<sup>+</sup>)

This m/z feature was identified as TG (46:1) which ionized as a cationic adduct  $[M + NH_4]^+$ . The analysis of its MS/MS fragmentation pattern allowed its annotation as **TG** (14:0/16:0/16:1) since three groups of fragment ions were observed in the MS/MS spectrum of this compound: (i) diglyceride ions resulting of the loss of one fatty acid chain at m/z 549.4879 ( $[C_{35}H_{65}O_4]^+$ , calc. m/z 549.4877,  $\Delta$  -0.3 ppm;  $[M - C_{14:0} + H]^+$ ), m/z 523.4720 ( $[C_{33}H_{63}O_4]^+$ , calc. m/z 523.4721,  $\Delta$  0.3 ppm;  $[M - C_{16:1} + H]^+$ ), and m/z 521.4567 ( $[C_{33}H_{61}O_4]^+$ , calc. m/z 521.4564,  $\Delta$  -0.4 ppm;  $[M - C_{16:0} + H]^+$ ), (ii) monoglyceride ions obtained after the loss of two fatty acids at m/z 313.2741 ( $[C_{19}H_{37}O_3]^+$ , calc. m/z 313.2737,  $\Delta$  -1.1 ppm;  $[M - C_{14:0} - C_{16:1} + H]^+$ ), m/z 311.2581 ( $[C_{19}H_{35}O_3]^+$ , calc. m/z 311. 2581,  $\Delta$  -0.1 ppm;  $[M - C_{14:0} - C_{16:0} + H]^+$ ) and m/z 285.2429 ( $[C_{17}H_{33}O_3]^+$ , calc. m/z 285.2424,  $\Delta$  -1.5 ppm;  $[M - C_{16:0} - C_{16:1} + H]^+$ ), and (iii) acylium ions at m/z 239.2367 ( $[C_{16}H_{31}O]^+$ , calc. m/z 239.2369,  $\Delta$  1.2 ppm), m/z 237.2213 ( $[C_{16}H_{29}O]^+$ , calc. m/z 237.2213,  $\Delta$  -0.1 ppm) and m/z 211.2053 ( $[C_{14}H_{27}O]^+$ , calc. m/z 211.2056,  $\Delta$  1.5 ppm).

• Example of SQDG: node at m/z 834.5396 ([C<sub>43</sub>H<sub>80</sub>NO<sub>12</sub>S]<sup>+</sup>, calc. m/z 834.5396,  $\Delta$  0.0 ppm; [M + NH<sub>4</sub>]<sup>+</sup>)

This m/z feature was annotated as **SQDG** (16:0/18:3), which ionized as a cationic adduct  $[M + NH_4]^+$ , using: (i) fragment ions at m/z 573.4883 ( $[C_{37}H_{65}O_4]^+$ , calc. m/z 573.4877,  $\Delta$  - 1.0 ppm;  $[M - C_6H_9O_7S - H_2O + H]^+$ ) and m/z 591.4988 ( $[C_{37}H_{67}O_5]^+$ , calc. m/z 591.4983,  $\Delta$  - 0.2 ppm;  $[M - C_6H_9O_7S + H]^+$ ) caused by the detachment of the polar head and generating neutral losses of m/z 261 and 243 Da from the adduct ion, respectively, and (ii) two other fragment ions at m/z 335.2582 ( $[C_{21}H_{35}O_3]^+$ , calc. m/z 335.2581,  $\Delta$  -0.5 ppm;  $[M - C_6H_9O_7S - H_2O - C_{16:0} + H]^+$ ) and m/z 313.2739 ( $[C_{19}H_{37}O_3]^+$ , calc. m/z 313.2737,  $\Delta$  - 0.4 ppm;  $[M - C_6H_9O_7S - H_2O - C_{18:3} + H]^+$ ) which allowed to defined the two acyl chains as C16:0 and C18:3, respectively.

• **Example of MGDG:** node at m/z 746.5770 ([C<sub>41</sub>H<sub>80</sub>NO<sub>10</sub>]<sup>+</sup>, calc. m/z 746.5777,  $\Delta$  0.9 ppm; [M + NH<sub>4</sub>]<sup>+</sup>)

This m/z feature (ionized as a cationic adduct [M + NH<sub>4</sub>]<sup>+</sup>) was identified as a MGDG (32:1) on the basis of the fragment ion at m/z 549.4874 ([C<sub>35</sub>H<sub>65</sub>O<sub>4</sub>]<sup>+</sup>, calc. m/z 549.4877,  $\Delta$  0.7 ppm; [M - Gal + H]<sup>+</sup>) which corresponded to a neutral loss of 197.0900 Da. Its annotation as **MGDG** (14:0/18:1) was fulfilled thanks to fragment ions at m/z 339.2890 ([C<sub>21</sub>H<sub>39</sub>O<sub>3</sub>]<sup>+</sup>, calc. m/z 339.2894,  $\Delta$  1.2 ppm; [M - Gal -C<sub>14:0</sub> + H]<sup>+</sup>), and m/z 285.2420 ([C<sub>17</sub>H<sub>33</sub>O<sub>3</sub>]<sup>+</sup>, calc. m/z 285.2424,  $\Delta$  1.5 ppm; [M - Gal - C<sub>18:1</sub> + H]<sup>+</sup>), and the two acylium ions at m/z 265.2524 ([C<sub>18</sub>H<sub>33</sub>O]<sup>+</sup>, calc. m/z 265.2526,  $\Delta$  0.7 ppm) and m/z 211.2054 ([C<sub>14</sub>H<sub>27</sub>O]<sup>+</sup>, calc. m/z 211.2056,  $\Delta$  1.2 ppm).

### **Cluster 1B** (See Figure S8)

• **Example of DGDG:** node at m/z 976.5977 ([C<sub>53</sub>H<sub>86</sub>NO<sub>15</sub>]<sup>+</sup>, calc. m/z 976.5992,  $\Delta$  1.6 ppm; [M + NH<sub>4</sub>]<sup>+</sup>)

This m/z feature was observed as an adduct ion ([M + NH<sub>4</sub>]<sup>+</sup>) and its MS/MS spectrum showed fragment ions at m/z 617.4559 ([C<sub>41</sub>H<sub>61</sub>O<sub>4</sub>]<sup>+</sup>, calc. m/z 617.4564,  $\Delta$  0.8 ppm; [M - 2 Gal - H<sub>2</sub>O + H]<sup>+</sup>) and m/z 635.4668 ([C<sub>41</sub>H<sub>63</sub>O<sub>5</sub>]<sup>+</sup>, calc. m/z 635.4670,  $\Delta$  0.4 ppm; [M - 2 Gal + H]<sup>+</sup>). These two fragment ions corresponding to neutral losses of 359 and 341 Da from the adduct ion were characteristic of digalactosylacylglycerols (DGDGs). Further fragment ions attributed to monoglyceride ions at m/z 359.2580 ([C<sub>23</sub>H<sub>35</sub>O<sub>3</sub>]<sup>+</sup>, calc. m/z 359.2581,  $\Delta$  0.2 ppm; [M - 2 Gal - H<sub>2</sub>O - C<sub>18:4</sub> + H]<sup>+</sup>) and m/z 333.2423 ([C<sub>21</sub>H<sub>33</sub>O<sub>3</sub>]<sup>+</sup>, calc. m/z 333.2424,  $\Delta$  0.5 ppm; [M - 2 Gal - H<sub>2</sub>O - C<sub>20:5</sub> + H]<sup>+</sup>), and to acylium ions at m/z 285.2213 ([C<sub>20</sub>H<sub>29</sub>O]<sup>+</sup>, calc. m/z 285.2213,  $\Delta$  0.0 ppm) and m/z 259.2056,  $\Delta$  -0.2 ppm) allowed the annotation of this metabolite as **DGDG** (18:4/20:5).

## Cluster 1C (See Figure S9)

• **Example of MGTA:** node at m/z 446.3481 ([C<sub>24</sub>H<sub>48</sub>NO<sub>6</sub>]<sup>+</sup>, calc. m/z 446.3476,  $\Delta$  2.0 ppm)

This m/z feature, annotated as **MGTA** (14:0), showed a characteristic MS fragmentation pathway with: (i) a fragment ion at m/z 428.3379 ([C<sub>24</sub>H<sub>46</sub>NO<sub>5</sub>]<sup>+</sup>, calc. m/z 428.3370,  $\Delta$  - 2.1 ppm; ([M - H<sub>2</sub>O + H]<sup>+</sup>) resulting from the loss of water from the molecular ion, (ii) a fragment ion at m/z 285.2429 ([C<sub>17</sub>H<sub>33</sub>O<sub>3</sub>]<sup>+</sup>, calc. m/z 285.2424,  $\Delta$  -1.8 ppm; [M - C<sub>7</sub>H<sub>15</sub>NO<sub>3</sub>]<sup>+</sup>) resulting from the loss of the hydroxymethyl-N,N,N-trimethyl- $\beta$ -alanine group, and (iii) several ions, including the characteristic fragment ion at m/z 236.1496 ([C<sub>10</sub>H<sub>22</sub>NO<sub>5</sub>]<sup>+</sup>, calc. m/z 236.1492,  $\Delta$  -1.5 ppm) resulting from the loss of the acyl chain, obtained by successive fragmentations of the polar head group, such as at m/z 218.1387 ([C<sub>10</sub>H<sub>20</sub>NO<sub>4</sub>]<sup>+</sup>, calc. m/z 162.1125,  $\Delta$  - 1.4 ppm; loss of glycerol) and m/z 144.1023 ([C<sub>7</sub>H<sub>14</sub>NO<sub>2</sub>]<sup>+</sup>, calc. m/z 144.1019,  $\Delta$  -2.9 ppm; loss of glycerol and water).

## **Cluster 1D** (See Figure S10)

• **Example of SQMG:** node at m/z 600.3411 ([C<sub>27</sub>H<sub>54</sub>NO<sub>11</sub>S]<sup>+</sup>, calc. m/z 600.3412,  $\Delta$  0.1 ppm; [M + NH<sub>4</sub>]<sup>+</sup>)

This m/z feature, observed as an adduct ion ([M + NH<sub>4</sub>]<sup>+</sup>), was annotated as **SQMG** (**18:1**) on the basis of the characteristic fragment ions at m/z 339.2895 ([C<sub>21</sub>H<sub>39</sub>O<sub>3</sub>]<sup>+</sup>, calc. m/z 339.2894,  $\Delta$  -0.3 ppm; [M - C<sub>6</sub>H<sub>9</sub>O<sub>7</sub>S - H<sub>2</sub>O + H]<sup>+</sup>) and m/z 357.3002 ([C<sub>21</sub>H<sub>41</sub>O<sub>4</sub>]<sup>+</sup>, calc. m/z 357.2999,  $\Delta$  -0.7 ppm; [M - C<sub>6</sub>H<sub>9</sub>O<sub>7</sub>S + H]<sup>+</sup>), which corresponded to the loss of the sulfoquinovosyl group (neutral losses of 261 and 243 Da, respectively, from the ammoniated adduct), and the acylium ion at m/z 265.2525 ([C<sub>18</sub>H<sub>33</sub>O]<sup>+</sup>, calc. m/z 265.2526,  $\Delta$  0.2 ppm).

## **Cluster 1E** (See Figure S11)

• **Example of PC:** node at m/z 542.3237 ( $[C_{28}H_{49}NO_7P]^+$ , calc. m/z 542.3241,  $\Delta$  0.8 ppm;  $[M + H]^+$ )

This m/z feature was annotated as lyso-PC (20:5) using the typical fragment ion of the polar head at m/z 184.0729 ( $[C_5H_{15}NO_4P]^+$ , m/z 184.0733,  $\Delta$  2.5 ppm), but also those due to its subsequent fragmentation at m/z 104.1069 ( $[C_5H_{14}NO]^+$ , calc. m/z 104.1070,  $\Delta$  0.8 ppm) and m/z 86.0964 ( $[C_5H_{12}N]^+$ , calc. m/z 86.0964,  $\Delta$  0.6 ppm), while the acyl chain was deduced from the molecular formula and the fragment ions at m/z 359.2576 ( $[C_{23}H_{35}O_3]^+$ , calc. m/z 359.2581,  $\Delta$  1.2 ppm;  $[M - C_5H_{15}NO_4P + H]^+$ ), and m/z 258.1099 ( $[C_8H_{21}NO_6P]^+$ , calc. m/z 258.1101,  $\Delta$  0.9 ppm;  $[M - C_{20:5} + H]^+$ ).

**Table S1.** Summary of the fractions obtained after fractionation of the crude extracts of *Taonia atomaria* by flash-chromatography

| Fraction | Elution gradient                |      |        |               |           | Semi-               | Purified                      | LC-MS/MS |
|----------|---------------------------------|------|--------|---------------|-----------|---------------------|-------------------------------|----------|
| N°       | CH <sub>2</sub> Cl <sub>2</sub> | MeOH | $H_2O$ | Color         | Mass (mg) | preparative<br>HPLC | compounds*                    | analysis |
| 1        | 0                               | 10   | 90     | Colorless     | < 0.5     |                     |                               |          |
| 2        | 0                               | 10   | 90     | Colorless     | < 0.5     |                     |                               |          |
| 3        | 0                               | 18   | 82     | Light pink    | < 0.5     |                     |                               |          |
| 4        | 0                               | 27   | 73     | Light purple  | < 0.5     |                     |                               |          |
| 5        | 0                               | 36   | 64     | Light yellow  | < 0.5     |                     |                               |          |
| 6        | 0                               | 45   | 55     | Light yellow  | < 0.5     |                     |                               |          |
| 7        | 0                               | 54   | 46     | Light yellow  | < 0.5     |                     |                               |          |
| 8        | 0                               | 63   | 37     | Light yellow  | < 0.5     |                     |                               |          |
| 9        | 0                               | 72   | 28     | Light yellow  | < 0.5     |                     |                               |          |
| 10       | 0                               | 81   | 19     | Light yellow  | < 0.5     |                     |                               | X        |
| 11       | 0                               | 90   | 10     | Yellow/Orange | < 0.5     |                     |                               |          |
| 12       | 0                               | 99   | 1      | Yellow/Orange | 22        |                     |                               |          |
| 13       | 0                               | 100  | 0      | Orange        | 4         |                     |                               |          |
| 14       | 0                               | 100  | 0      | Orange        | 12        |                     |                               | X        |
| 15       | 0                               | 100  | 0      | Orange        | 99        |                     |                               | X        |
| 16       | 0                               | 100  | 0      | Orange        | 241       | X                   |                               | X        |
| 17       | 0                               | 100  | 0      | Dark orange   | 326       | X                   | 20, 22, 24                    | X        |
| 18       | 0                               | 100  | 0      | Dark green    | 257       | X                   | 20, 22, 25                    | X        |
| 19       | 9                               | 91   | 0      | Green         | 216       | X                   | 10, 12, 13, 20,<br>22, 23, 24 | X        |
| 20       | 19                              | 81   | 0      | Green         | 213       | X                   | 10, 23                        | X        |
| 21       | 29                              | 71   | 0      | Light green   | 152       | X                   | 23                            | X        |
| 22       | 39                              | 61   | 0      | Light green   | 97        |                     |                               | X        |
| 23       | 49                              | 51   | 0      | Green         | 64        |                     |                               | X        |
| 24       | 59                              | 41   | 0      | Dark green    | 43        |                     |                               | X        |
| 25       | 69                              | 31   | 0      | Dark green    | 53        |                     |                               | X        |
| 26       | 79                              | 21   | 0      | Green         | 78        |                     |                               | X        |
| 27       | 89                              | 11   | 0      | Green         | 132       |                     |                               | X        |
| 28       | 99                              | 1    | 0      | Green         | 116       |                     |                               | X        |
| 29       | 100                             | 0    | 0      | Green         | 32        |                     |                               |          |
| 30       | 100                             | 0    | 0      | Green         | 28        |                     |                               |          |
| 31       | 100                             | 0    | 0      | Yellow        | 20        |                     |                               |          |
| 32       | 100                             | 0    | 0      | Yellow        | 10        |                     |                               |          |
| 33       | 100                             | 0    | 0      | Light yellow  | 16        |                     |                               |          |
| 34       | 100                             | 0    | 0      | Light yellow  | 8         |                     |                               |          |
| 35       | 100                             | 0    | 0      | Light yellow  | 7         |                     |                               |          |
| 36       | 100                             | 0    | 0      | Light yellow  | 11        |                     |                               |          |
| 37       | 100                             | 0    | 0      | Light yellow  | 1         |                     |                               |          |
| 38       | 100                             | 0    | 0      | Colorless     | < 0.5     |                     |                               |          |
| 39       | 100                             | 0    | 0      | Colorless     | < 0.5     |                     |                               |          |

<sup>\*</sup>See Fig. S2 for the corresponding chemical structures. 10: cadina-4(14),5-diene; 12: cubebol; 13: 4-epi-cubebol; 20: (+)-gleenol; 22: (1S, 5E, 7S) 1-acetoxygermacra-4(15),5,10(14)-triene; 23: germacra-4(15),5,10(14)-trien-9-ol; 24: geranylgeranylglycerol; 25: dictyol A.

**Figure S1.** BPC chromatograms of a selection of fractions obtained from the crude extracts of *Taonia atomaria* 

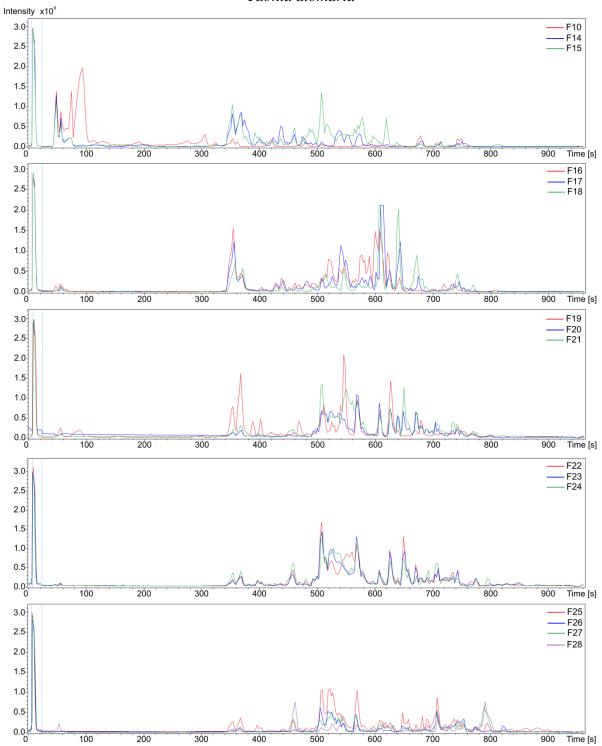
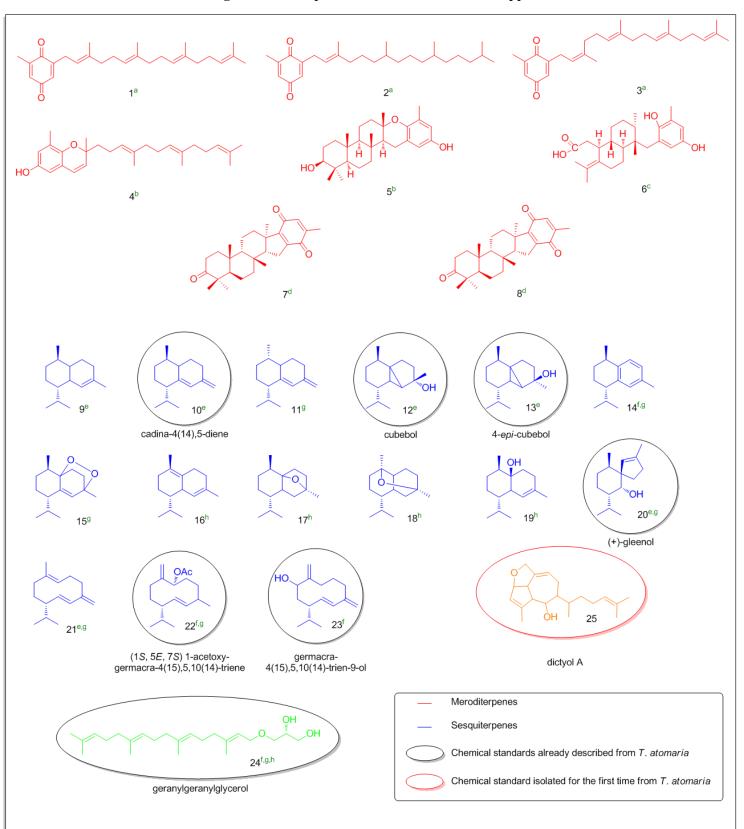
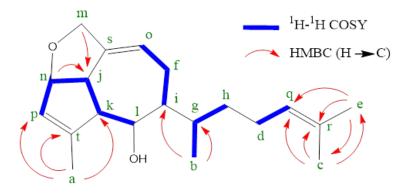
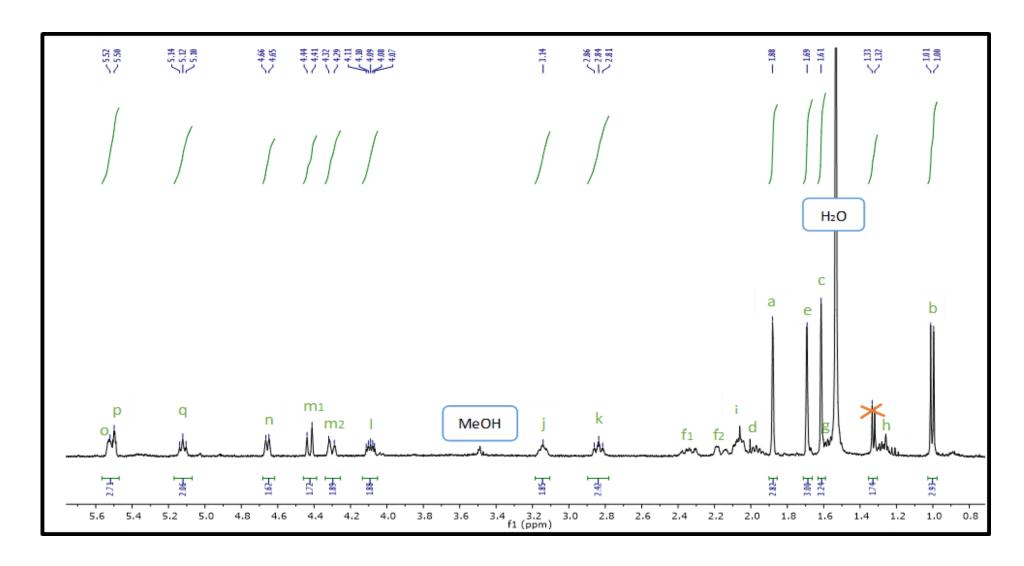





Figure S2. Compounds isolated from *Taonia* spp.




<sup>a</sup>Tziveleka *et al.* Chem. Biodivers. 2 (2005) 901; <sup>b</sup>González *et al.* Tetrahedron. 29 (1973) 1605; <sup>c</sup>González *et al.* Tetrahedron Letters. 15 (1974) 3951; <sup>d</sup>Abatis *et al.* Tetrahedron Letters. 46 (2005) 8525; <sup>c</sup>De Rosa *et al.* Phytochemistry. 37 (1994) 1327; <sup>f</sup>Othmani *et al.* Biofouling. 32 (2016) 801; <sup>g</sup>Othmani *et al.* J. Appl. Phycol. 28 (2016) 1975; <sup>b</sup>Tringali *et al.* Phytochemistry. 40 (1995) 827.

Figure S3. Chemical structure of dictyol A and main correlations observed on the HMBC and <sup>1</sup>H-<sup>1</sup>H COSY 2D NMR spectra



**Figure S4-A.** <sup>1</sup>H NMR spectrum of dictyol A (CDCl<sub>3</sub>, 400 MHz)



**Figure S4-B.** <sup>13</sup>C NMR spectrum of dictyol A (CDCl<sub>3</sub>, 100 MHz)

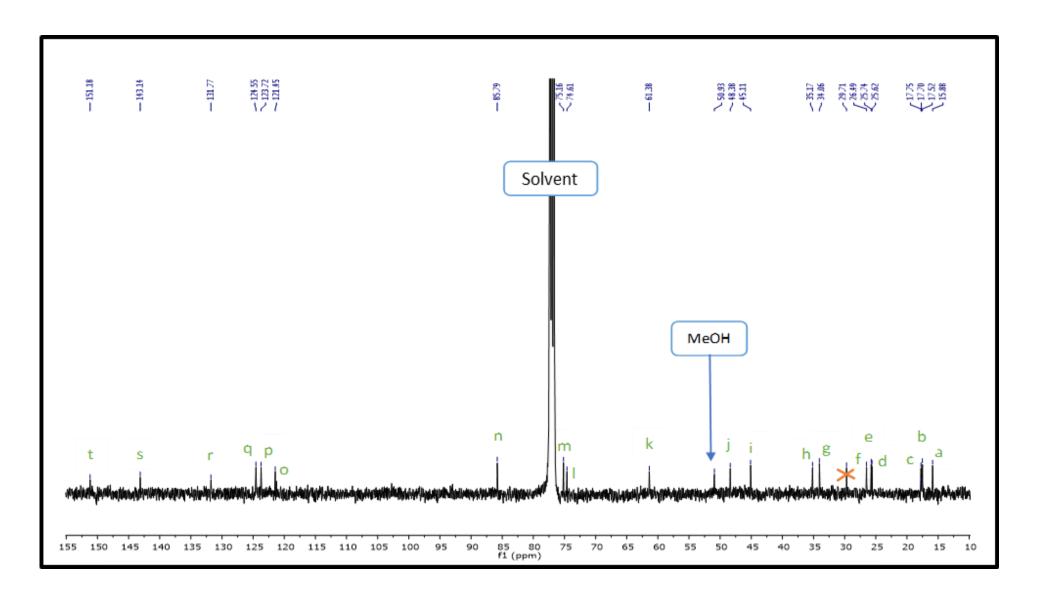
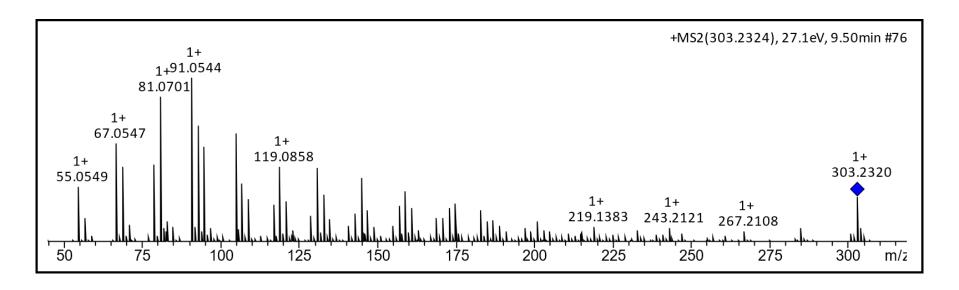
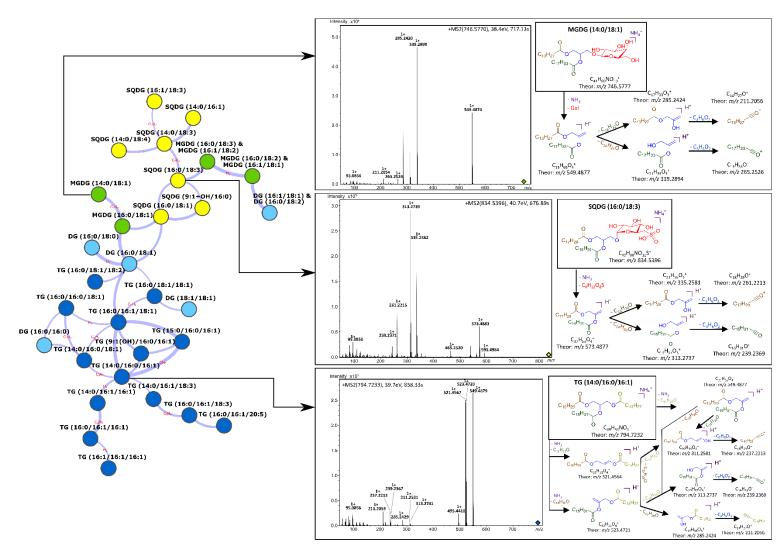
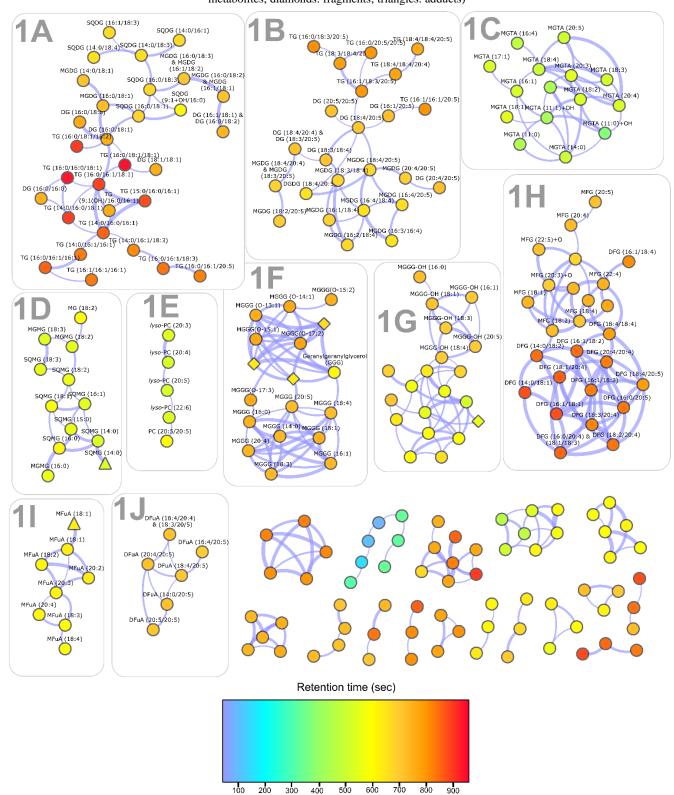





Figure S5. (+)-ESI-HRMS spectrum of dictyol A




**Figure S6.** Annotation of cluster **1A** and proposed MS/MS fragmentation pattern for the compounds MGDG (14:0/18:1), SQDG(16:0/18:3) and TG (14:0/16:0/16:1) (Abbreviations: DG: Diacylglycerol; MGDG: Monogalactosyldiacylglycerol; SQDG: Sulfoquinovosyldiacylglycerol; TG: Triacylglycerol)



**Figure S7.** Restrictive molecular network (**MN-1**) representing nodes with a color gradient according to their corresponding retention time (**Abbreviations:** DFG: Diacylfarnesylglycerol; DFuA: Diacylfulvellic acid; DG: Diacylglycerol; DGDG: Digalactosyldiacylglycerol; MFG: Monoacylfulvellic acid; MG: Monoacylglycerol; MGDG: Monogalactosyldiacylglycerol; MGGG: Monoradylgeranylgeranylglycerol; MGGG-OH: Monoradylhydroxygeranylgeranylglycerol;

MGMG: Monogalactosylmonoacylglycerol; MGTA: Monoacylglyceryl-*N*,*N*,*N*-trimethyl-β-alanine; PC: Phosphatidylcholine; SQDG: Sulfoquinovosyldiacylglycerol; SQMG: Sulfoquinovosylmonoacylglycerol; TG: Triacylglycerol) (Circles: metabolites; diamonds: fragments; triangles: adducts)



**Figure S8.** Annotation of cluster **1B** and proposed MS/MS fragmentation pattern for the compound DGDG (18:4/20:5) (Abbreviations: DG: Diacylglycerol; DGDG: Digalactosyldiacylglycerol; MGDG: Monogalactosyldiacylglycerol, TG: Triacylglycerol)

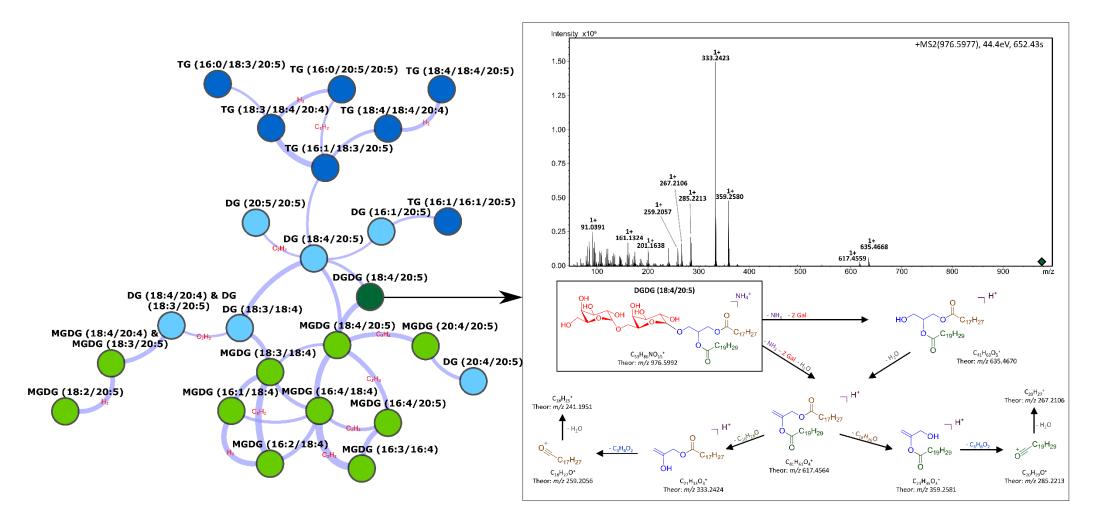



Figure S9. Annotation of the cluster 1C and proposed MS/MS fragmentation pattern for the compound MGTA (14:0) (Abbreviation: MGTA: Monoacylglyceryl-*N*,*N*,*N*-trimethyl-β-alanine)

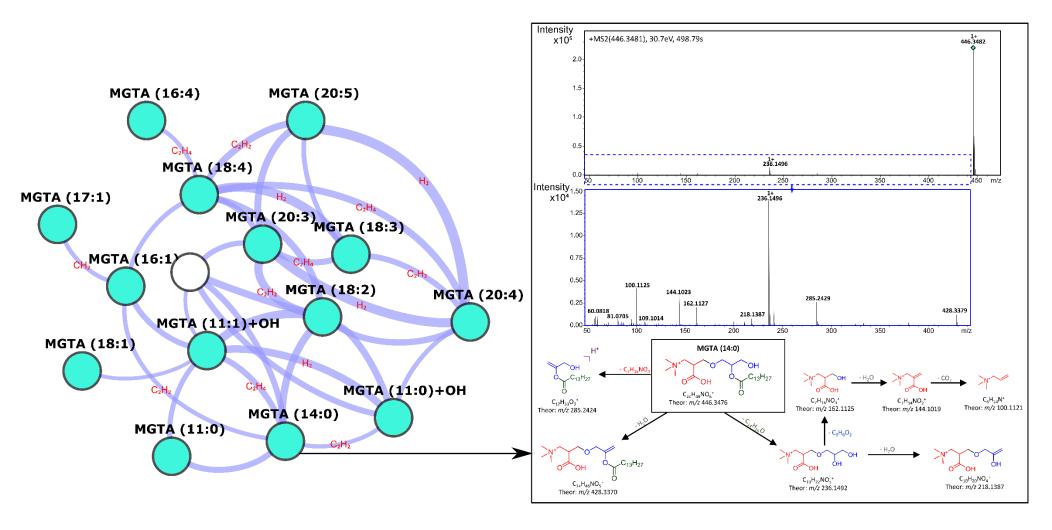
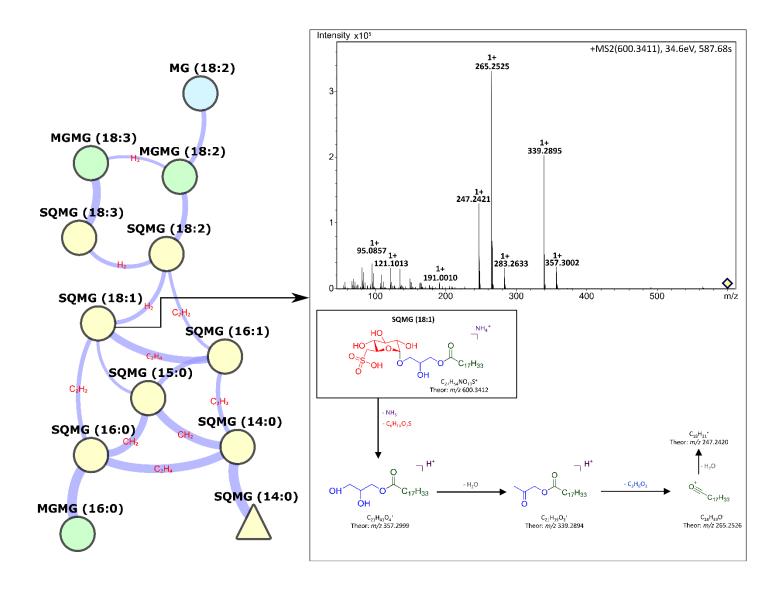




Figure S10. Annotation of cluster 1D and proposed MS/MS fragmentation pattern for the compound SQMG (18:1) (Abbreviations: MG: Monoacylglycerol; MGMG: Monoacylglycerol; SQMG: Sulfoquinovosylmonoacylglycerol) (circles: metabolites; triangle: adduct)



**Figure S11.** Annotation of cluster **1E** and proposed MS/MS fragmentation pattern for the compound *lyso*-PC (20:5) (**Abbreviation:** PC: Phosphatidylcholine)

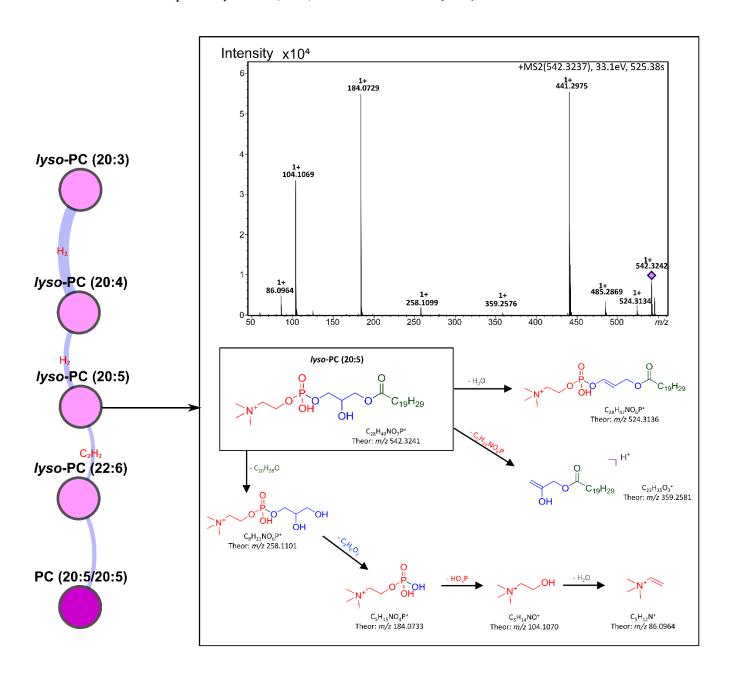



Figure S12. Annotation of cluster 1G and proposed MS/MS fragmentation pattern for the compound MGGG-OH (18:4) (Abbreviation: MGGG-OH: Monoradylhydroxygeranylgeranylglycerol) (Circles: metabolites; diamond: fragment)

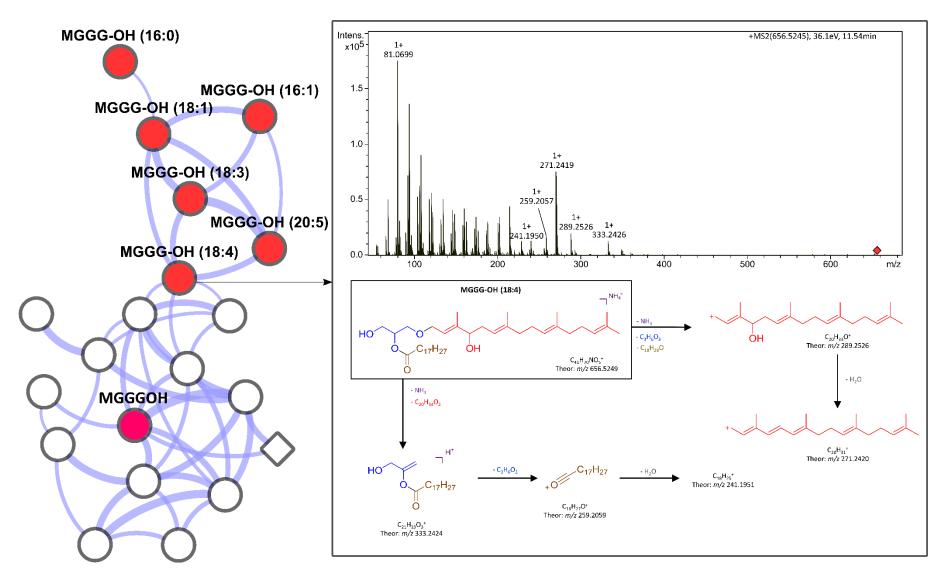



Figure S13. Annotation of cluster 1H and proposed MS/MS fragmentation pattern for the compound MFG (18:1) (Abbreviations: DFG: Diacylfarnesylglycerol; MFG: Monoacylfarnesylglycerol)

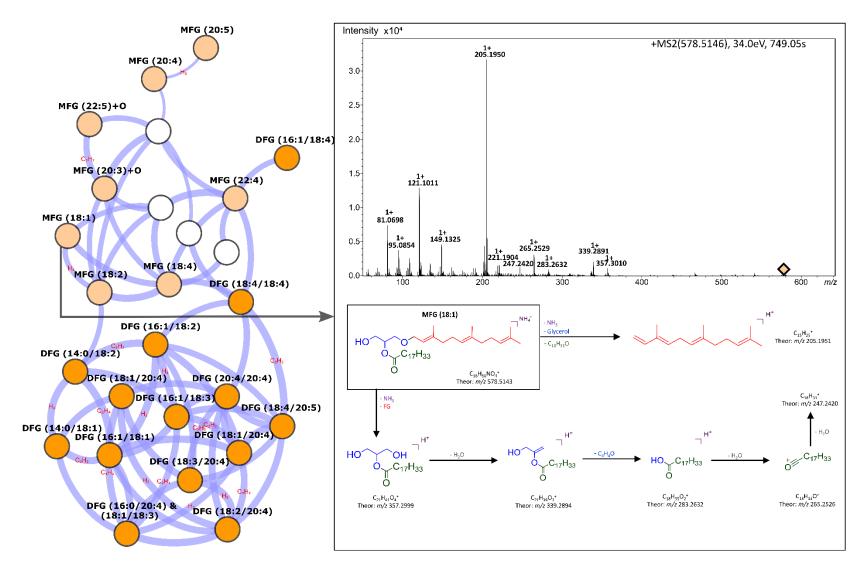



Figure S14. Annotation of cluster 1J and proposed MS/MS fragmentation pattern for the compound DFuA (20:4/20:5) (Abbreviation: DFuA: Diacylfulvellic acid)

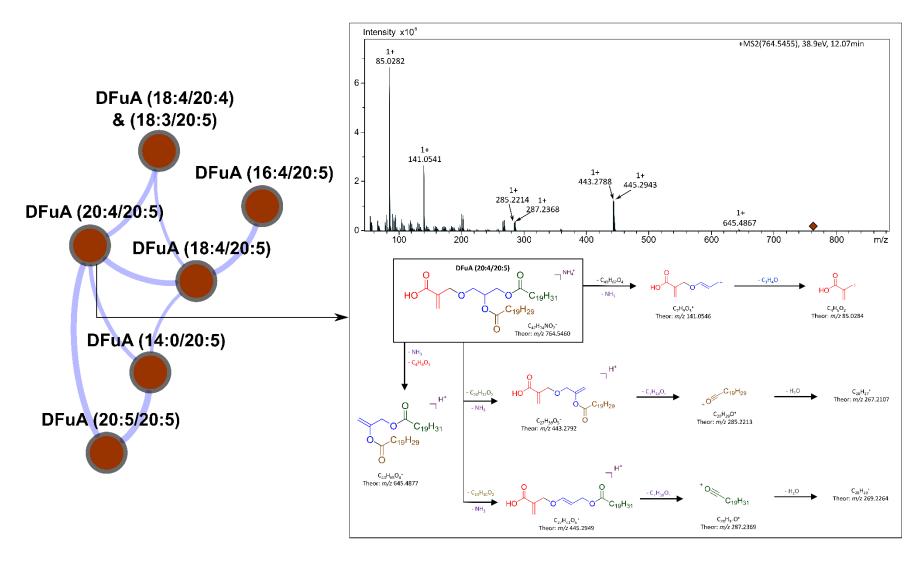
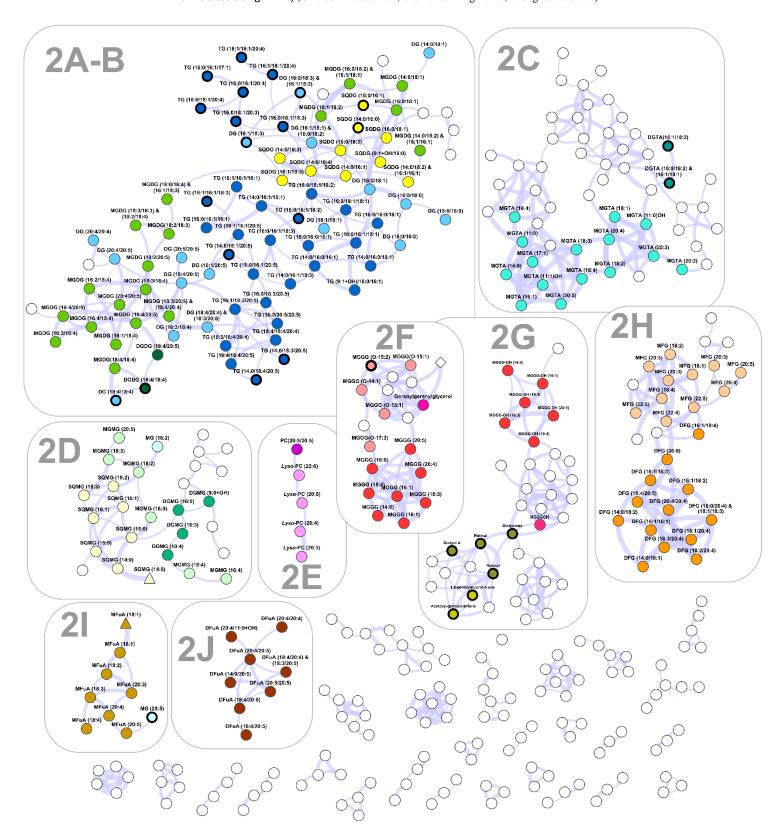




Figure S15. Less restrictive molecular network (MN-2) built with MS/MS data of fractions obtained from the crude extracts of the brown alga *Taonia atomaria* (Black circles: *m/z* features annotated using MN-2) (Circles: metabolites; diamonds: fragments; triangles: adducts)

