Broadband decoupling of intensity and polarization with vectorial Fourier metasurfaces

Qinghua Song, Arthur Baroni, Pin Chieh Wu, Sébastien Chenot, Virginie Brandli, Stéphane Vézian, Benjamin Damilano, Philippe Mierry, Samira Khadir, Patrick Ferrand, et al.

To cite this version:

Qinghua Song, Arthur Baroni, Pin Chieh Wu, Sébastien Chenot, Virginie Brandli, et al.. Broadband decoupling of intensity and polarization with vectorial Fourier metasurfaces. Nature Communications, 2021, 12, pp.3631. hal-03111022v1

HAL Id: hal-03111022
https://amu.hal.science/hal-03111022v1
Submitted on 15 Jan 2021 (v1), last revised 16 Jun 2021 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Broadband Decoupling of Intensity and Polarization with Vectorial Fourier Metasurfaces

Qinghua Song ${ }^{1}$, Arthur Baroni ${ }^{2}$, Pin Chieh Wu^{3}, Sébastien Chenot ${ }^{1}$, Virginie Brandli ${ }^{1}$, Stéphane Vézian ${ }^{1}$, Benjamin Damilano ${ }^{1}$, Philippe de Mierry ${ }^{1}$, Samira Khadir ${ }^{1}$, Patrick Ferrand ${ }^{2}$ and Patrice Genevet ${ }^{1 *}$
${ }^{1}$ Université Cote d'Azur, CNRS, CRHEA, Rue Bernard Gregory, Sophia Antipolis 06560
Valbonne, France
${ }^{2}$ Aix Marseille univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
${ }^{3}$ Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
* Corresponding Author: Patrice.Genevet@crhea.cnrs.fr

Abstract

Intensity and polarization are two fundamental components of light. Independently control of them is of tremendous interest in many applications. In this paper, we propose a general vectorial encryption method, which enables arbitrary far-field light distribution with the local polarization, including orientations and ellipticities, decoupling intensity from polarization across a broad bandwidth using geometric phase metasurfaces. By revamping the well-known iterative Fourier transform algorithm, we propose "à la carte" design of far-field intensity and polarization distribution with vectorial Fourier metasurfaces. A series of non-conventional vectorial field distribution, mimicking cylindrical vector beams in the sense that they share the same intensity profile but with different polarization distribution and a speckled phase distribution, is demonstrated. Vectorial Fourier optical metasurfaces may enable important applications in the area of complex light beam generation, secure optical data storage, steganography and optical communications.

Introduction

Optical waveform control plays a critical role in the optical systems for various applications. Among the different methods to address the electromagnetic field distribution in the farfield, optical metasurfaces ${ }^{1-12}$, artificial materials that consist of subwavelength structure arrays, are capable of tailoring the waveform of the electromagnetic waves with unpreceded level of precision. In particular, due to the versatility of this approach, it is possible to engineer both amplitude and polarization information at will. Vectorial metaholograms with arbitrary polarization have been developed using diatomic reflective metasurface ${ }^{13,14}$ and geometric phase based metasurface ${ }^{15}$. However, the generated polarization is limited by the multiplexing metasurface's sub-pixels, which yet are not able to realize arbitrary spatially distributed polarization. Some efforts have been made by combining geometric phase and propagation phase ${ }^{16,17}$, but it severely suffers from narrow bandwidth. A broadband wavefront control that can decouple amplitude from polarization information has yet to be demonstrated.

One of the most important applications of meta-holograms is information security, which is important in many areas of the society, such as protecting individuals, industries and military information from leaks and stealing. Among the different communication channels and information sharing techniques, photonics is the most efficient and effective way of carrying information across long distances. Optical waveforms possess many degrees of freedom, such as amplitude, phase, frequency and polarization, and each can be used for data encoding. Moreover, optical encoding methods require specific professional equipment for data encoding, providing a more secure way towards high security information encoding. Various optical encoding methods have been developed based on
the intensity, such as spatial correlators ${ }^{18}$, optical XOR image encryption ${ }^{19}$, phase shifting interferometry ${ }^{20}$, polarization dependent images ${ }^{21,22}$, Lippmann plate ${ }^{23}$ and holograms ${ }^{24,25}$. Many other efforts of optical encoding have been made by using multiplexing metahologram that can encode the optical information into multi-channels of holographic images ${ }^{26-32}$. The most common approach is based on polarization-dependent metahologram, which creates different holographic images using different polarizations of the incident beam ${ }^{33-37}$. Chiral meta-holograms are also introduced for direction-dependent holographic encoding ${ }^{38-40}$. Other encoding methods relying on incident wavelength ${ }^{41}$, nonlinear effect ${ }^{42}$, spatial frequency ${ }^{43}$, orbital angular momentum ${ }^{44,45}$ and tunable metasurface ${ }^{46,47}$ are also demonstrated. Note that all of these proposed multiplexing metaholograms encode information on the intensity of the holographic images.

In this paper, we propose a vectorial Fourier metasurface for which amplitude and polarization information can be addressed independently one from the other. We utilize this specificity to encode intensity and two polarization information channels, namely ellipticity and azimuth, to produce far-field decoupled images. The image refers to the spatially distribution of either total intensity, ellipticity or azimuth information. The design of the metasurface is realized using a modified iterative Fourier transform (IFT) algorithm that does not only consider far-field amplitude but also the far-field polarization spatial distribution. Our calculation results consist of discretized transmission matrices representing the spatial amplitude and polarization into pixelated profiles. The design of the nanostructured interfaces capable of matching these distributions requires therefore precise control of all properties of transmitted light. To this end, we composed arbitrary
amplitude, phase and polarization pixels by superposing two amplitude-modulated and phase-delayed beams with opposite circular polarizations (CP).

With respect to previously proposed methods, our approach defines the metasurface capability by considering the polarization distribution in the far field only, i.e., as a result of the propagation leading to LCP and RCP far-fields. Since the metasurface plane is encoded via the Fourier transformation of targeted fields, the realization of optical information encoding in this work is completely outperforming than that of previous demonstrations with multiplexing ${ }^{15}$. As a proof of principle, we designed a series of farfield intensity profiles presenting a given donut-like intensity distribution structured with different polarization orientations. Interestingly, these vectorial fields look-alike the wellknown cylindrical vector beams (CVB, previously discussed in the literature). They differ nevertheless strongly to CVB in the sense that, even if the polarization is maintained, their long range far-field phase distribution is lost during the optimization process. Roughly speaking, the randomization of the far-field phase using IFT techniques produces granular intensity distributions, or intensity-modulated speckle signals, that match the overall targeted CVB donut intensity and polarization. These field profiles are extremely interesting, as they are mixing long range transverse coherence with very short range spatial phase correlation. In addition, we demonstrate a class of optical interfaces that encodes the orientation angle and ellipticity angle of the polarization in a uniformly distributed intensity profile. In order to resolve the encoded information, we use both conventional Stokes parameter measurements and vectorial ptychography to characterize both metasurface and their far-field complex amplitudes.

Results

Design Method. The design principle of the vectorial Fourier metasurface is shown in Figure 1. Each pixel of the metasurface consists of four lines of phase gradient supercells as shown in Figure 1a, in which the top two lines and bottom two lines of meta-structures are arranged counter clockwise and clockwise, respectively, with the same orientation increment angle of δ_{d}. Each building block of the pixels, the pillar meta-structure, acts as half-waveplate that converts the handiness of the incident CP beams and imposes a geometry phase (also called Pancharatnam-Berry (PB) phase) of $\pm 2 \delta$, where δ is the orientation angle of each pillar (the signs - and +, denoted clockwise and counter clockwise rotation, respectively, i.e., $|+\rangle \rightarrow e^{i 2 \delta}|-\rangle$ and $|-\rangle \rightarrow e^{-i 2 \delta}|+\rangle$, where $|+\rangle$ represents left circular polarization (LCP) and $|-\rangle$ represents right circular polarization (RCP). Considering that the incident linear polarized (LP) light can be decomposed into LCP and RCP, the clockwise lines in a pixel deflect the LCP light to RCP light with a deflection angle of $\theta_{t}=\arcsin \left(\frac{2 \delta_{d}}{k_{0} P}\right)$ as shown in Figure 1b, where k_{0} is the wavenumber in the free space and P is the period of the unit-cell. While the counter clockwise lines in the same pixel deflect the RCP to LCP at the same angle of θ_{t}. The starting orientation angle (SOA) of the four lines from top to bottom are $\delta_{+}, \delta_{+}+\Delta \delta_{+}, \delta_{-}$, and $\delta_{-}+\Delta \delta_{-}$, where $\Delta \delta_{ \pm}$and $\delta_{ \pm}$are respectively used to control the relative amplitude and phase between LCP and RCP. We ignore the co-polarization in the following text simply because it is diffracted at the zero order, and it does not interfere with the cross polarized fields. The complex amplitude a^{m} in the metasurface plane is given by,

$$
\begin{equation*}
a^{m}\left(x^{m}, y^{m}\right)=A_{+}^{m}\left(x^{m}, y^{m}\right) e^{i \varphi_{+}^{m}\left(x^{m}, y^{m}\right)}+A_{-}^{m}\left(x^{m}, y^{m}\right) e^{i \varphi_{-}^{m}\left(x^{m}, y^{m}\right)} \tag{1}
\end{equation*}
$$

where the superscript m represents the metasurface plane, x^{m} and y^{m} represent the pixels position in the metasurface plane, $A_{ \pm}^{m}\left(x^{m}, y^{m}\right)$ and $\varphi_{ \pm}^{m}\left(x^{m}, y^{m}\right)$ are the amplitude and phase of pixel $\left(x^{m}, y^{m}\right)$ at the metasurface plane generated by the two CP of the light beam. For simplicity, in the following we ignore the notation of $\left(x^{m}, y^{m}\right)$. The amplitude $A_{ \pm}^{m}$ is controlled by the rotation angle difference of $\Delta \delta_{ \pm}$due to the interference between two lines of LCP (or RCP) as,

$$
\begin{equation*}
A_{\sigma}^{m}=\left|e^{-i 2 \sigma \delta_{\sigma}}+e^{-i 2 \sigma\left(\delta_{\sigma}+\Delta \delta_{\sigma}\right)}\right| / 2=\sqrt{\left(1+\cos 2 \Delta \delta_{\sigma}\right) / 2} \tag{2}
\end{equation*}
$$

where $\sigma=+$ (or +1) represents LCP, $\sigma=-($ or -1$)$ represents RCP. The phase $\varphi_{ \pm}^{m}$ is generated by the rotation angle of $\delta_{ \pm}$thanks to the geometric phase as,

$$
\begin{equation*}
\varphi_{\sigma}^{m}=-2 \sigma \delta_{\sigma} \tag{3}
\end{equation*}
$$

Therefore, by varying the value of $\delta_{ \pm}$and $\Delta \delta_{ \pm}$, arbitrary amplitude and phase information in the metasurface plane can be assigned to each pixel independently form the others, so as to control far-field amplitude and polarization information at will.

To decouple amplitude from far-field polarization information, we propose modifying the conventional Gerchberg-Saxton (GS) algorithm to a version working for vectorial fields. The GS utilizes iterative Fourier transform as shown in Figure 2 (see more details in Supplementary Note 1$)^{26,27,17}$, and in its vectorial version, instead of converging to a phase profile in the metasurface plane, we consider the phase profiles of two CP beams noted φ_{σ}^{m} realized by rotating the angle of δ_{σ} according to Eq. 3. In this implementation, the far-field polarization can be controlled over the entire profile, despite the fact that GS converges to designs with randomly distributed far-field phase profile. The condition for far-field polarization addressing requires that the phase retardation between orthogonal polarization
channels is properly adjusted, i.e., the phase value for both polarization channels is randomly distributed on the transverse plane with a controllable phase retardation.

For a convenience purpose, we keep the amplitude in the metasurface plane $A_{ \pm}^{m}$ uniform for all pixels, i.e., $\Delta \delta_{+}$and $\Delta \delta_{-}$are two constant values for all pixels determined by the total intensity of two CP beams $I_{ \pm}^{m}$. The latter are calculated considering the intensity integral of all pixels in the image plane as: $I_{ \pm}^{m}=I_{ \pm}^{f}=\sum_{x, y=1}^{N_{x}, N_{y}}\left(a_{ \pm}^{f}\left(x^{f}, y^{f}\right)\right)^{2}$, where the superscript f represents the far field image plane, $\left(x^{f}, y^{f}\right)$ represent the pixel position in the far field image plane, $N_{x} \times N_{y}$ is the total pixel number, $a_{ \pm}^{f}\left(x^{f}, y^{f}\right)$ are the amplitude of LCP and RCP light of each pixel $\left(x^{f}, y^{f}\right)$. It can be shown that the rotation angles $\Delta \delta_{ \pm}$ are given by (see more details in Supplementary Note 2),

$$
\begin{cases}\Delta \delta_{\sigma}=0, & \text { if } I_{\sigma}^{f} \geq I_{-\sigma}^{f} \tag{4}\\ \Delta \delta_{\sigma}=\operatorname{acos}\left(\frac{2 \sum_{x, y=1}^{N_{x, N}}\left(a_{\sigma}^{f}\left(x^{f}, y^{f}\right)\right)^{2}}{\sum_{x, y=1}^{N_{x}, N_{y}}\left(a_{-\sigma}^{f}\left(x^{f}, y^{f}\right)\right)^{2}}-1\right) / 2, & \text { if } I_{\sigma}^{f}<I_{-\sigma}^{f}\end{cases}
$$

Eq. 3 and 4 are then used to recover the orientation angles of each pixel of the metasurface. The meta-structures are simulated using full-wave finite-difference time-domain (FDTD) and the simulation results are shown in Figure 3. The top view and perspective view of one meta-structure are shown in Figure 3a and 3b, respectively. $1 \mu \mathrm{~m}$-tall GaN nano-pillars, grown on low index lattice matched Sapphire substrate, are realized with rectangular cross sections to induce structural birefringence. Both GaN and sapphire are transparent in the entire visible range, which are perfect candidates for the design of visible optical metasurfaces. The period of the nanostructure unit-cell is $P=300 \mathrm{~nm}$ to avoid spurious diffraction effects in the substrate. The width is fixed to $L_{v}=120 \mathrm{~nm}$. The circular polarization conversion efficiency is shown in Figure 3c with the long axis of the nanopillar
L_{u} swept from 160 nm to 260 nm and the wavelength λ swept from 450 nm to 700 nm . The dash line indicates the CP conversion at $L_{u}=210 \mathrm{~nm}$, where the CP conversion efficiency is higher than 50% across almost the entire visible range. Figure 3 d and 3 e show the electric field distribution along short and long axis of the pillar, respectively, at the point of $L_{v}=$ 120 nm and $\lambda=575 \mathrm{~nm}$ (the purple star in Figure 3c). It is shown that there are 5.5 and 5 oscillations of electric field in E_{x} and E_{y} in the GaN nanopillar, i.e. a signature of half a wavelength retardation difference, which verifies that the meta-structure acts as a nanoscale half-waveplate for these structural parameters and operation wavelength. Additionally, when the nanopillar is rotated with an angle of δ, a geometric phase of 2δ is obtained on cross-circular polarization as shown in Fig 3f. The simulated geometric phase by using FDTD shown in blue stars agrees well with the theoretical one ($\varphi_{R L}=2 \delta$) shown by the red curve. In addition, the CP conversion efficiency between LCP and RCP is, as expected, near unity as shown by the black curve.

In order to validate our approach to decouple intensity from polarization, we conceived a series of spatially variant far-field polarization profiles distributed on a donut far-field intensity profile (with the same radius), but having different azimuthal angle of the linear polarization defined by $\psi(x, y)=l \varphi(x, y)+m \pi / 2$, where l is an integer number that represents the turns of the polarization rotation encircling the donut intensity profile, x and y are the coordinate of beam, $\varphi(x, y)=\tan ^{-1}\left(\frac{y}{x}\right), m=0$ represents the radial mode and m $=1$ represents the azimuthal mode. We demonstrated four designs with different combinations of m and l (see more details in Supplementary Figure S3). The scanning electron microscope (SEM) images of the fabricated vectorial beam metasurfaces are shown in the first row of Figure 4. The second row represents the designed intensity and
polarization profiles. The measured total intensity profiles are shown in the third row, which agree well to the designed intensities. By placing a linear polarizer with different rotation angles in front of the vectorial beams, different patterns are observed from the fourth to the seventh rows. Interestingly even if these beams resembling to the well-known cylindrical vector (CV) beams, we prove that they do not feature long-range spatial phase correlation. To do so, we realized full Jones Matrix characterization of the metasurface using vectorial ptychographic measurements based on the acquisition of series of diffraction intensity patterns recorded by illuminating the metasurface at several overlapping positions, to extract the far field complex amplitude distributions on crossed polarization channels as shown in Figure 5, indicating short spatial phase correlation while maintaining a long range polarization distribution. Indeed, with respect to CV beams that are vectorial solutions of Maxwell's equations obeying axial symmetry in both amplitude and phase, our solution to produce spatially distributed amplitude and polarization field does not impose long range spatial phase correlation. These fields could be beneficial for practical applications in laser machining, remote sensing, and so forth ${ }^{48,49}$ or to decouple phase and polarization in singular optics. Using PB phase tuning mechanisms, the polarization encoding is simply given by the rotation angle of the nanostructures, resulting in a broad operating bandwidth. It reveals that broad operating bandwidth is generally not achievable with a combination of propagation and PB phases ${ }^{16}$. The efficiency of the hologram is around 15%, since the pixel size of the meta-hologram is larger than the operating wavelength, so that higher order images generated, which decrease the efficiency of the interested order. The characterization of the broadband properties is shown in Figure 6. A CV beam with $l=-2$ and $m=0$ is measured from $\lambda=475 \mathrm{~nm}$ to $\lambda=675 \mathrm{~nm}$. A donut
intensity profile is shown in the first row without polarizer. Subsequently, we insert a linear polarizer in front of the image. The same pattern is observed for all of the wavelength with fixed transmission axis of polarizer as shown from the second to fifth rows, indicating that the metasurface could maintain polarization distribution properties over a broad wavelength range.

After verification of the design approach with simple vectorial beam, we propose to encode optical information relying on the azimuth and ellipticity angles of the polarization information rather than encoding intensity profiles of conventional polarization states, realizing a sort of holographic polarization-only encoding technique. Two meta-holograms with the same intensity profile but different azimuth and ellipticity angles of the polarization are designed as shown in the Supplementary Figure S4. The fabricated results of the two metasurfaces are shown in Supplementary Figure S5. As the information is only encoded on the polarization properties, i.e. spatial distribution of the orientation and ellipticity, an additional retrieval method based on local Stokes polarimetry is required ${ }^{50,51}$. Stokes parameters, which include the optical quantities of interest, are generally obtained using two sets of measurements, cascading a waveplate with the phase difference between fast axis and slow axis of ϕ, and a linear polarizer with rotation angle of θ with respect to the x-axis in front of the image. The measured intensity profiles after the cascaded waveplate and linear polarizer are related to ϕ and θ, which are denoted as $I(\theta, \phi)$. Therefore, the measured azimuth and ellipticity angles of the polarization are described as (see more details in Supplementary Note 3),

$$
\begin{array}{ll}
\psi=\frac{1}{2} \tan ^{-1}\left(\frac{2 I\left(45^{\circ}, 0^{\circ}\right)-I\left(0^{\circ}, 0^{\circ}\right)-I\left(90^{\circ}, 0^{\circ}\right)}{I\left(0^{\circ}, 0^{\circ}\right)-I\left(90^{\circ}, 0^{\circ}\right)}\right) & \left(-\frac{\pi}{2}<\psi \leq \frac{\pi}{2}\right) \\
\chi=\frac{1}{2} \sin ^{-1}\left(\frac{I\left(0^{\circ}, 0^{\circ}\right)+I\left(90^{\circ}, 0^{\circ}\right)-2 I\left(45^{\circ}, 90^{\circ}\right)}{I\left(0^{\circ}, 0^{\circ}\right)+I\left(90^{\circ}, 0^{\circ}\right)}\right) & \left(-\frac{\pi}{4}<\chi \leq \frac{\pi}{4}\right) \tag{6}
\end{array}
$$

Additional to these measurements, the total intensity profiles, i.e. with spatially varying polarization distribution, are measured directly, without any wave plate and/or polarizer. The measured results of the first metasurface are shown in Figure 7a-7c. As expected from the design, a uniform intensity profile is observed in Figure 7a. However, both a "Blade" and a "Rocket" images are shown when looking at the polarization spatial distribution in the azimuth and ellipticity angles, respectively. Another design with the same uniform intensity profile but a "Tree" and a "Squirrel" polarization information is obtained in Figure 7d-7f. Besides, we also used vectorial ptychography to map both the amplitude and polarization information of the vectorial far field patterns (see more details in Methods and Supplementary Figure S2b). It can retrieve the Jones matrix map of the metasurface as shown in Supplementary Figure S6. By applying this Jones matrix to a linear polarization incidence, one can reproduce all of the far-field information, such as intensity as shown in Figure S7a and S7d, and polarization as shown in Figure S7b-S7c and S7e-S7f. As expected, a uniformly distributed intensity profile is observed in both design of Figure S7a and S7d. However, in the azimuth angle and ellipticity angle of polarization map, images of "Blade" and "Rocket" are respectively obtained in Figure S7b and S7c, and images of "Tree" and "Squirrel" are observed in Figure S7e and S7f.

Discussion

In conclusion, we have demonstrated a general method to design vectorial Fourier metasurfaces which decouple intensity from polarization information, such that spatially distributed full polarization profiles with arbitrary intensity distribution can be realized. The vectorial Fourier metasurfaces are conceived using a modified iterative Fourier
transform algorithm that optimizes the transmission information properties to encode simultaneously both intensity and polarization far-field distribution. We produce an interesting series of far-field beam profile with donut-like intensity and spatially distributed polarization, resembling cylindrical vector beams, but with randomly distributed far-field phase distribution. To fully characterize the optical response of our Fourier-metasurfaces, we retrieve the complete Jones matrix of the metasurface using ptychography and proved that the short range phase correlation in contrast to the long range polarization distribution, indicating that both polarization channels have spatially correlated phase profiles. Furthermore, the proposed vectorial Fourier metasurfaces are able to encode complex polarization information onto uniform distributed intensity profiles. We demonstrated that a "Blade" (or "Tree") and a "Rocket" (or "Squirrel") images can be multiplexed and separately decrypted from the orientation angle and ellipticity angle of the polarization on a uniformly distributed intensity profile of a holographic image. Vectorial Fourier encoding could highly enhance the information security, having various promising applications in data encryption, optical ID tags for authentication and verification, high-density optical data storage, but also for specific applications including optical trapping and laser machining.

Methods

Device fabrication

A GaN thin-film with $1 \mu \mathrm{~m}$ thickness is grown on a double-side polished c-plane sapphire substrate using molecular beam epitaxy (MBE) RIBER system. Conventional electron beam lithography (EBL) processes are used for the etching of GaN nanopillars. The PMMA resist (495A4) with $\sim 180 \mathrm{~nm}$ is spin coated on the GaN and baked on a hot plate with temperature of $125^{\circ} \mathrm{C}$. It is exposed with designed patterns at 20 keV (Raith ElphyPlus, Zeiss Supra 40) and developed in 3:1 IPA:MIBK solution. Oxygen plasma etching (RIE, Oxford system) is used to clean the residual resist that is not completely removed during development. The sample is deposited with a 50 nm thickness of Nickel using E-beam evaporation and is immersed into acetone solution for lift-off process to obtain the Nickel hard mask. By using reactive ion etching (RIE, Oxford system) with a plasma composed of $\mathrm{Cl}_{2} \mathrm{CH}_{4} \mathrm{Ar}$ gases, the pattern is transferred to the GaN . The residual nickel hard mask is removed by chemical etching with $1: 1 \mathrm{H}_{2} \mathrm{O}_{2}: \mathrm{H}_{2} \mathrm{SO}_{4}$ solution, revealing the GaN nanopillars.

Conventional optical setup

The optical setup for characterizing the projected far-field is shown in Supplementary Figure S2a. A laser beam propagates through a linear polarizer (WP25M-VIS) with axis of transmission in horizontal direction to generate linear polarized input beam. After an achromatic lens with a focal length of 50 mm , the laser beam is weakly focused on the metasurfaces. The first-order holographic image is projected onto a projector placed 10 cm away from the metasurface. A selected quarter waveplate with fast axis at the horizontal
and a linear polarizer with axis of transmission at angle θ are used to analyze the images and measure the Stokes parameters.

Optical vectorial ptychography

A custom setup is used for the ptychography characterization ${ }^{52-54}$ as shown in Supplementary Figure S2b. The metasurface is placed on a motorized stage (U-780, Physik Instrumente) and scanned under a finite sized probe with effective diameter of $50 \mu \mathrm{~m}$, selected optically by placing a $2-\mathrm{mm}$ diameter iris diaphragm in the image plane of a $40 \times$ objective lens (ACHN-P, NA 0.65, Olympus). The camera (Stingray F-145B, Allied Vision, 320×240 effective pixels of $25.8 \times 25.8 \mu \mathrm{~m}^{2}$ after binning) was placed 190 mm after the diaphragm. Object reconstructions were performed by means of the conjugate gradient algorithm running on a multi-graphics-processor-unit (DGX Station, NVIDIA), allowing the estimation of Jones matrices of the meta-holograms. The vectorial exit field is given by the matrix product of the previous calculated Jones matrices and a Jones vector of LP illumination. The vectorial far field is further obtained by computing the far-field propagation by fast Fourier transform of the exit field, allowing to quantify the complex amplitude of the far field, including intensity, phase and polarization properties.

Acknowledgement

We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreements no. 639109). P.F. acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement no. 724881). P.C.W. acknowledges the support from Ministry of Science and Technology, Taiwan (Grant numbers: 108-2112-M-006-021-MY3; 107-2923-M-006-004-MY3) and the support from Ministry of Education (Yushan Young Scholar Program), Taiwan. P.C.W. also acknowledges the support in part by Higher Education Sprout Project, Ministry of Education to the Headquarters of University Advancement at National Cheng Kung University (NCKU).

Additional information

Supplementary information is available in the online version of the paper.
Correspondence and requests for materials should be addressed to P. G.

Competing financial interests

The authors declare no competing financial interests.

List of Captions

Figure 1 | Design principle of vectorial Fourier metasurface for arbitrary far-field light distribution of intensity and polarization. (a) Top view of one pixel of the metasurface. Arbitrary polarization requires superposition of two orthogonal polarizations (chosen here as RCP and LCP) with controllable relative amplitudes and phases. To do so each CP state is produced by two lines of the same handiness with different SOA of $\Delta \delta_{ \pm}$ to control the relative amplitude and $\delta_{ \pm}$to control the relative phase. (b) Perspective view of the metasurface and far-field light distribution. The LP input light can be decomposed into two CP beams which are deflected to the same angle of θ_{t}. The holographic phase information is encoded in the LCP and RCP independently, so that arbitrary polarization is realized by the superposition of the two CP beams. (c) Schematic of the intensity and polarization decoupling using vectorial Fourier metasurface. The orientation angle and ellipticity of the polarization exhibiting a "Blade" and a "Rocket" images are encoded in a uniformly distributed intensity profile.

Figure $2 \mid$ Modified iterative Fourier transform algorithm. With respect to intensityonly iterative Fourier transform algorithm, the current version considers several input information to realize diffraction patterns with arbitrary intensity, azimuth and ellipticity angles of the polarization. The algorithm converges to a vectorial profile optimizing the amplitude of both LCP $\left(a_{+}^{f}\right)$ and $\operatorname{RCP}\left(a_{-}^{f}\right)$, and the phase difference between the two CP beams $\left(\alpha^{f}\right)$. The notation σ represents the handiness of the CP beam, where + or +1 represents LCP and - or -1 represents RCP . A random phase of $\varphi_{r d}$ is used for the
starting phase. The number of iterations is $N=100$. The final holographic phase of the metasurface is φ_{σ}^{m}. The superscript m indicates the metasurface plane, f is the image plane in the far field. (See more details in Supplementary Note 1)

Figure 3 | Simulated results of metasurface with birefringent GaN nanopillars on sapphire substrate with dimension of $\boldsymbol{P}=\mathbf{3 0 0} \mathbf{n m}$ and $\boldsymbol{h}=\mathbf{1} \boldsymbol{\mu m}$. (a) Top view and (b) perspective view of one meta-structure. The numerical calculation is performed on unit cell of GaN nanopillar on sapphire substrate considering periodic boundary conditions on x and y. The width of the GaN nanopillar is fixed as $L_{v}=120 \mathrm{~nm}$. (c) The simulated CP conversion by sweeping the length of the GaN nanopillar L_{u} from 150 nm to 260 nm in the wavelength range from 450 nm to 700 nm with zero rotation angle. The dash line represents the length of $L_{u}=210 \mathrm{~nm}$. The purple star represents the wavelength at $\lambda=575 \mathrm{~nm}$, which is the chosen point in d-f. (d) The simulated electric field distribution E_{x} at the plane of x $=0$ and (e) E_{y} at the plane of $y=0$. (f) By rotating the GaN nanopillars with an angle of δ from 0 to 180°, a near unity CP conversion is shown in the black curve and a geometric phase from 0 to 360° is obtained. The simulated results are represented by the blue star, in very good agreement with the expected PB phase calculation (red curve).

Figure $4 \mid$ Fabricated results and optical measurement of the Stokes Polarization parameters of the donut polarization distributed field profile. Field distribution with (a) $l=1, m=0$, (b) $l=1, m=1$, (c) $l=-2, m=0$, (d) $l=-4, m=0$. Top row: fabricated results with the top view (top panels) and tilt view (bottom panels). The red scale bar represents $1 \mu \mathrm{~m}$. Second row: Intensity profiles of the designed vectorial fields. The black
arrow represents the local polarization. Third row: measured intensity profiles of the field distributions without linear polarizer. Fourth to seventh rows: measured intensity profiles of the field distributions with a linear polarizer. The white arrow represents the transmission axis of the linear polarizer.

Figure 5 | Complex amplitude and polarization information of far field as retrieved by the ptychographic measurement. Measured complex amplitude of (a) x-pol., (b) y pol., (c) LCP and (d) RCP components. The phase profiles for the four polarization components show typical speckle phase distributions. The inset figure in (d) is the color bar with phase encoded as hue and amplitude as brightness. Measured (e) azimuth angle and (f) ellipticity angle of polarization information.

Figure $6 \mid$ Broadband characterization of the vectorial metasurfaces designed for a field profiles with $\boldsymbol{l}=\mathbf{- 2 ,} \boldsymbol{m}=\mathbf{0}$. The measured intensity profiles at different wavelengths of (a) $\lambda=475 \mathrm{~nm}$, (b) $\lambda=525 \mathrm{~nm}$, (c) $\lambda=575 \mathrm{~nm}$, (d) $\lambda=625 \mathrm{~nm}$, (e) $\lambda=675 \mathrm{~nm}$. Top row: measured intensity profiles without linear polarizer. Second to fifth rows: measured intensity profiles with a linear polarizer. The white arrow represents the transmission axis of the linear polarizer.

Figure $7 \mid$ Measurement results of vectorial encoded images. (a)-(c) show the data obtained for the first metasurface design. (d)-(f) correspond to the data for the second metasurface design. (a)-(f) Measurement results using conventional optical setup to image the Stokes parameters. (a) and (d) Measured intensity, (b) and (e) azimuth angle, (c) and
(f) ellipticity angle of the polarization. Both interfaces encode a similar uniformly distributed intensity profile as shown in (a) and (d). Color coded images displaying the ellipticity and the orientation, images reveal a "Blade", a "Rocket", a "Tree" and a "Squirrel" encoded polarization images as shown in (b), (c), (e) and (f).

References

(1) Yu, N.; Genevet, P.; Kats, M. A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333-337.
(2) Lalanne, P.; Astilean, S.; Chavel, P.; Cambril, E.; Launois, H. Blazed Binary Subwavelength Gratings with Efficiencies Larger than Those of Conventional Échelette Gratings. Opt. Lett. 1998, 23, 1081.
(3) Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent Advances in Planar Optics: From Plasmonic to Dielectric Metasurfaces. Optica 2017, 4, 139.
(4) Lalanne, P.; Chavel, P. Metalenses at Visible Wavelengths: Past, Present, Perspectives: Metalenses at Visible Wavelengths: Past, Present, Perspectives. Laser \& Photonics Reviews 2017, 11 (3), 1600295.
(5) Chen, H.-T.; Taylor, A. J.; Yu, N. A Review of Metasurfaces: Physics and Applications. Reports on Progress in Physics 2016, 79 (7), 076401. https://doi.org/10.1088/0034-4885/79/7/076401.
(6) Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface Holograms Reaching 80\% Efficiency. Nature Nanotechnology 2015, 10 (4), 308-312. https://doi.org/10.1038/nnano.2015.2.
(7) Wang, S.; Wu, P. C.; Su, V.-C.; Lai, Y.-C.; Chen, M.-K.; Kuo, H. Y.; Chen, B. H.; Chen, Y. H.; Huang, T.-T.; Wang, J.-H.; Lin, R.-M.; Kuan, C.-H.; Li, T.; Wang, Z.; Zhu, S.; Tsai, D. P. A Broadband Achromatic Metalens in the Visible. Nature Nanotechnology 2018, 13 (3), 227-232. https://doi.org/10.1038/s41565-017-00524.
(8) Huang, L.; Chen, X.; Mühlenbernd, H.; Zhang, H.; Chen, S.; Bai, B.; Tan, Q.; Jin, G.; Cheah, K.-W.; Qiu, C.-W.; Li, J.; Zentgraf, T.; Zhang, S. Three-Dimensional Optical Holography Using a Plasmonic Metasurface. Nature Communications 2013, 4 (1). https://doi.org/10.1038/ncomms3808.
(9) Bomzon, Z.; Biener, G.; Kleiner, V.; Hasman, E. Space-Variant PancharatnamBerry Phase Optical Elements with Computer-Generated Subwavelength Gratings. Opt. Lett. 2002, 27 (13), 1141. https://doi.org/10.1364/OL.27.001141.
(10) Yan, L.; Zhu, W.; Karim, M. F.; Cai, H.; Gu, A. Y.; Shen, Z.; Chong, P. H. J.; Kwong, D.-L.; Qiu, C.-W.; Liu, A. Q. $0.2 \lambda_{0}$ Thick Adaptive Retroreflector Made of Spin-Locked Metasurface. Advanced Materials 2018, 30 (39), 1802721. https://doi.org/10.1002/adma.201802721.
(11) Song, Q. H.; Wu, P. C.; Zhu, W. M.; Zhang, W.; Shen, Z. X.; Chong, P. H. J.; Liang, Q. X.; Tsai, D. P.; Bourouina, T.; Leprince-Wang, Y.; Liu, A. Q. Split Archimedean Spiral Metasurface for Controllable GHz Asymmetric Transmission. Applied Physics Letters 2019, 114 (15), 151105. https://doi.org/10.1063/1.5084329.
(12) Lassaline, N.; Brechbühler, R.; Vonk, S. J. W.; Ridderbeek, K.; Spieser, M.; Bisig, S.; le Feber, B.; Rabouw, F. T.; Norris, D. J. Optical Fourier Surfaces. Nature 2020, 582 (7813), 506-510. https://doi.org/10.1038/s41586-020-2390-x.
(13) Deng, Z.-L.; Deng, J.; Zhuang, X.; Wang, S.; Li, K.; Wang, Y.; Chi, Y.; Ye, X.; Xu, J.; Wang, G. P.; Zhao, R.; Wang, X.; Cao, Y.; Cheng, X.; Li, G.; Li, X.

Diatomic Metasurface for Vectorial Holography. Nano Letters 2018, 18 (5), 28852892. https://doi.org/10.1021/acs.nanolett.8b00047.
(14) Deng, Z.-L.; Deng, J.; Zhuang, X.; Wang, S.; Shi, T.; Wang, G. P.; Wang, Y.; Xu, J.; Cao, Y.; Wang, X.; Cheng, X.; Li, G.; Li, X. Facile Metagrating Holograms with Broadband and Extreme Angle Tolerance. Light: Science \& Applications 2018, 7 (1). https://doi.org/10.1038/s41377-018-0075-0.
(15) Song, Q.; Baroni, A.; Sawant, R.; Ni, P.; Brandli, V.; Chenot, S.; Vézian, S.; Damilano, B.; de Mierry, P.; Khadir, S.; Ferrand, P.; Genevet, P. Ptychography Retrieval of Fully Polarized Holograms from Geometric-Phase Metasurfaces. Nature Communications 2020, 11 (1). https://doi.org/10.1038/s41467-020-164379.
(16) Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission. Nature Nanotechnology 2015, 10 (11), 937943. https://doi.org/10.1038/nnano.2015.186.
(17) Arbabi, E.; Kamali, S. M.; Arbabi, A.; Faraon, A. Vectorial Holograms with a Dielectric Metasurface: Ultimate Polarization Pattern Generation. ACS Photonics 2019, 6 (11), 2712-2718. https://doi.org/10.1021/acsphotonics. 9 b 00678.
(18) Li, Y.; Kreske, K.; Rosen, J. Security and Encryption Optical Systems Based on a Correlator with Significant Output Images. Appl. Opt., AO 2000, 39 (29), 52955301. https://doi.org/10.1364/AO.39.005295.
(19) Han, J.; Park, C.-S.; Ryu, D.-H.; Kim, E.-S. Optical Image Encryption Based on XOR Operations. $O E$ 1999, 38 (1), 47-54. https://doi.org/10.1117/1.602060.
(20) Tajahuerce, E.; Matoba, O.; Verrall, S. C.; Javidi, B. Optoelectronic Information Encryption with Phase-Shifting Interferometry. Appl. Opt., AO 2000, 39 (14), 2313-2320. https://doi.org/10.1364/AO.39.002313.
(21) Javidi, B.; Nomura, T. Polarization Encoding for Optical Security Systems; Javidi, B., Psaltis, D., Eds.; Denver, CO, 1999; pp 196-203. https://doi.org/10.1117/12.363965.
(22) Unnikrishnan, G.; Pohit, M.; Singh, K. A Polarization Encoded Optical Encryption System Using Ferroelectric Spatial Light Modulator. Optics Communications 2000, 185 (1-3), 25-31. https://doi.org/10.1016/S0030-4018(00)00977-9.
(23) Lippmann, G. Sur la théorie de la photographie des couleurs simples et composées par la méthode interférentielle. J. Phys. Theor. Appl. 1894, 3 (1), 97-107. https://doi.org/10.1051/jphystap:01894003009700.
(24) Bryngdahl, O.; Wyrowski, F. I Digital Holography - Computer-Generated Holograms. In Progress in Optics; Wolf, E., Ed.; Elsevier, 1990; Vol. 28, pp 1-86. https://doi.org/10.1016/S0079-6638(08)70288-9.
(25) Javidi, B.; Nomura, T. Securing Information by Use of Digital Holography. Opt. Lett., OL 2000, 25 (1), 28-30. https://doi.org/10.1364/OL.25.000028.
(26) Huang, L.; Zhang, S.; Zentgraf, T. Metasurface Holography: From Fundamentals to Applications. Nanophotonics 2018, 7 (6), 1169-1190. https://doi.org/10.1515/nanoph-2017-0118.
(27) Genevet, P.; Capasso, F. Holographic Optical Metasurfaces: A Review of Current Progress. Reports on Progress in Physics 2015, 78 (2), 024401. https://doi.org/10.1088/0034-4885/78/2/024401.
(28) Deng, Z.-L.; Li, G. Metasurface Optical Holography. Materials Today Physics 2017, 3, 16-32. https://doi.org/10.1016/j.mtphys.2017.11.001.
(29) Wan, W.; Gao, J.; Yang, X. Metasurface Holograms for Holographic Imaging. Advanced Optical Materials 2017, 5 (21), 1700541.
https://doi.org/10.1002/adom. 201700541.
(30) Huang, L.; Chen, X.; Mühlenbernd, H.; Zhang, H.; Chen, S.; Bai, B.; Tan, Q.; Jin, G.; Cheah, K.-W.; Qiu, C.-W.; Li, J.; Zentgraf, T.; Zhang, S. Three-Dimensional Optical Holography Using a Plasmonic Metasurface. Nature Communications 2013, 4 (1). https://doi.org/10.1038/ncomms3808.
(31) Deng, Z.-L.; Zhang, S.; Wang, G. P. A Facile Grating Approach towards Broadband, Wide-Angle and High-Efficiency Holographic Metasurfaces. Nanoscale 2016, 8 (3), 1588-1594. https://doi.org/10.1039/C5NR07181J.
(32) Song, Q.; Khadir, S.; Vézian, S.; Damilano, B.; de Mierry, P.; Chenot, S.; Brandli, V.; Laberdesque, R.; Wattellier, B.; Genevet, P. Printing Polarization and Phase at the Optical Diffraction Limit: Near- and Far-FIeld Optical Encryption. 8.
(33) Luo, X.; Hu, Y.; Li, X.; Jiang, Y.; Wang, Y.; Dai, P.; Liu, Q.; Shu, Z.; Duan, H. Integrated Metasurfaces with Microprints and Helicity-Multiplexed Holograms for Real-Time Optical Encryption. Advanced Optical Materials 2020, 8 (8), 1902020. https://doi.org/10.1002/adom. 201902020.
(34) Zhao, R.; Huang, L.; Tang, C.; Li, J.; Li, X.; Wang, Y.; Zentgraf, T. Nanoscale Polarization Manipulation and Encryption Based on Dielectric Metasurfaces. Advanced Optical Materials 2018, 6 (19), 1800490. https://doi.org/10.1002/adom. 201800490.
(35) Zhao, R.; Sain, B.; Wei, Q.; Tang, C.; Li, X.; Weiss, T.; Huang, L.; Wang, Y.; Zentgraf, T. Multichannel Vectorial Holographic Display and Encryption. Light: Science \& Applications 2018, 7 (1). https://doi.org/10.1038/s41377-018-0091-0.
(36) Deng, J.; Deng, L.; Guan, Z.; Tao, J.; Li, G.; Li, Z.; Li, Z.; Yu, S.; Zheng, G. Multiplexed Anticounterfeiting Meta-Image Displays with Single-Sized Nanostructures. Nano Letters 2020, 20 (3), 1830-1838. https://doi.org/10.1021/acs.nanolett.9b05053.
(37) Khorasaninejad, M.; Ambrosio, A.; Kanhaiya, P.; Capasso, F. Broadband and Chiral Binary Dielectric Meta-Holograms. Science Advances 2016, 2 (5), e1501258. https://doi.org/10.1126/sciadv. 1501258.
(38) Chen, K.; Ding, G.; Hu, G.; Jin, Z.; Zhao, J.; Feng, Y.; Jiang, T.; Alù, A.; Qiu, C. Directional Janus Metasurface. Advanced Materials 2020, 32 (2), 1906352. https://doi.org/10.1002/adma.201906352.
(39) Chen, Y.; Yang, X.; Gao, J. 3D Janus Plasmonic Helical Nanoapertures for Polarization-Encrypted Data Storage. Light: Science \& Applications 2019, 8 (1). https://doi.org/10.1038/s41377-019-0156-8.
(40) Frese, D.; Wei, Q.; Wang, Y.; Huang, L.; Zentgraf, T. Nonreciprocal Asymmetric Polarization Encryption by Layered Plasmonic Metasurfaces. Nano Letters 2019, 19 (6), 3976-3980. https://doi.org/10.1021/acs.nanolett.9b01298.
(41) Yoon, G.; Lee, D.; Nam, K. T.; Rho, J. "Crypto-Display" in Dual-Mode Metasurfaces by Simultaneous Control of Phase and Spectral Responses. ACS Nano 2018, 12 (7), 6421-6428. https://doi.org/10.1021/acsnano.8b01344.
(42) Tang, Y.; Intaravanne, Y.; Deng, J.; Li, K. F.; Chen, X.; Li, G. Nonlinear Vectorial Metasurface for Optical Encryption. Phys. Rev. Applied 2019, 12 (2), 024028. https://doi.org/10.1103/PhysRevApplied.12.024028.
(43) Deng, J.; Yang, Y.; Tao, J.; Deng, L.; Liu, D.; Guan, Z.; Li, G.; Li, Z.; Yu, S.; Zheng, G.; Li, Z.; Zhang, S. Spatial Frequency Multiplexed Meta-Holography and Meta-Nanoprinting. ACS Nano 2019. https://doi.org/10.1021/acsnano.9b03738.
(44) Ren, H.; Briere, G.; Fang, X.; Ni, P.; Sawant, R.; Héron, S.; Chenot, S.; Vézian, S.; Damilano, B.; Brändli, V.; Maier, S. A.; Genevet, P. Metasurface Orbital Angular Momentum Holography. Nature Communications 2019, 10 (1).
https://doi.org/10.1038/s41467-019-11030-1.
(45) Fang, X.; Ren, H.; Gu, M. Orbital Angular Momentum Holography for HighSecurity Encryption. Nature Photonics 2020, 14 (2), 102-108. https://doi.org/10.1038/s41566-019-0560-x.
(46) Li, J.; Kamin, S.; Zheng, G.; Neubrech, F.; Zhang, S.; Liu, N. Addressable Metasurfaces for Dynamic Holography and Optical Information Encryption. Science Advances 2018, 4 (6), eaar6768. https://doi.org/10.1126/sciadv.aar6768.
(47) Zhou, H.; Wang, Y.; Li, X.; Wang, Q.; Wei, Q.; Geng, G.; Huang, L. Switchable Active Phase Modulation and Holography Encryption Based on Hybrid Metasurfaces. Nanophotonics 2020, 9 (4), 905-912. https://doi.org/10.1515/nanoph-2019-0519.
(48) Vyas, S.; Kozawa, Y.; Sato, S. Polarization Singularities in Superposition of Vector Beams. Optics Express 2013, 21 (7), 8972. https://doi.org/10.1364/OE.21.008972.
(49) Zhan, Q. Cylindrical Vector Beams: From Mathematical Concepts to Applications. Advances in Optics and Photonics 2009, 1 (1), 1. https://doi.org/10.1364/AOP.1.000001.
(50) Schaefer, B.; Collett, E.; Smyth, R.; Barrett, D.; Fraher, B. Measuring the Stokes Polarization Parameters. American Journal of Physics 2007, 75 (2), 163-168. https://doi.org/10.1119/1.2386162.
(51) Rubin, N. A.; D’Aversa, G.; Chevalier, P.; Shi, Z.; Chen, W. T.; Capasso, F. Matrix Fourier Optics Enables a Compact Full-Stokes Polarization Camera. Science 2019, 365 (6448). https://doi.org/10.1126/science.aax1839.
(52) Baroni, A.; Allain, M.; Li, P.; Chamard, V.; Ferrand, P. Joint Estimation of Object and Probes in Vectorial Ptychography. Optics Express 2019, 27 (6), 8143. https://doi.org/10.1364/OE.27.008143.
(53) Ferrand, P.; Allain, M.; Chamard, V. Ptychography in Anisotropic Media. Optics Letters 2015, 40 (22), 5144. https://doi.org/10.1364/OL.40.005144.
(54) Ferrand, P.; Baroni, A.; Allain, M.; Chamard, V. Quantitative Imaging of Anisotropic Material Properties with Vectorial Ptychography. Optics Letters 2018, 43 (4), 763. https://doi.org/10.1364/OL.43.000763.

Figure 1

Figure 2

Figure 3

(a)

(b)

(d)

Figure 4

Figure 5

Figure 6

Figure 7

Broadband Decoupling of Intensity and Polarization with Vectorial Fourier Metasurfaces

Qinghua Song ${ }^{1}$, Arthur Baroni ${ }^{2}$, Pin Chieh Wu^{3}, Sébastien Chenot ${ }^{1}$, Virginie Brandli ${ }^{1}$, Stéphane Vézian ${ }^{1}$, Benjamin Damilano ${ }^{1}$, Philippe de Mierry ${ }^{1}$, Samira Khadir ${ }^{1}$, Patrick Ferrand ${ }^{2}$ and Patrice Genevet ${ }^{1{ }^{1+}}$
${ }^{1}$ Université Cote d'Azur, CNRS, CRHEA, Rue Bernard Gregory, Sophia Antipolis 06560
Valbonne, France
${ }^{2}$ Aix Marseille univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
${ }^{3}$ Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
${ }^{\dagger}$ Corresponding Author: Patrice.Genevet@crhea.cnrs.fr

Supplementary Note 1: Modified iterative Fourier transform algorithm

In order to decouple the amplitude and polarization information, a modified iterative Fourier transform algorithm is used to calculate the holographic phase profile for both LCP and RCP as shown in Figure 2. Assuming an arbitrary far field information with intensity I^{f}, azimuth angle ψ^{f} and ellipticity angle χ^{f} (the superscript f represent the far field image plane, m represent the metasurface plane), it can be converted to the amplitude information for LCP $\left(a_{+}^{f}\right)$ and RCP $\left(a_{-}^{f}\right)$, and phase difference between LCP and $\operatorname{RCP}\left(\alpha^{f}\right)$ as shown below,

$$
\begin{gather*}
a_{\sigma}^{f}=\sqrt{(I-\sigma I \sin (2 \chi)) / 2} \tag{1}\\
\alpha^{f}=2 \psi^{f} \tag{2}
\end{gather*}
$$

where $\sigma=+($ or +1) represents $\mathrm{LCP}, \sigma=-($ or -1$)$ represent RCP . We apply a random phase $\varphi_{r d}$ into the amplitude information of Eq. S1 to obtain the initial complex amplitude $a_{\sigma}^{f} e^{i \varphi_{r d}}$ and perform the inverse Fourier transform to get the initial metasurface information,

$$
\begin{equation*}
B_{\sigma}^{m}(1)=\mathcal{F}^{-1}\left(a_{\sigma}^{f} e^{i \varphi_{r d}}\right) \tag{3}
\end{equation*}
$$

where \mathcal{F} and \mathcal{F}^{-1} are the operators for Fourier transform and inverse Fourier transform, respectively. Considering the amplitude in the metasurface plane for LCP and RCP is constant, an iterative Fourier transform process is used to get the phase information as following. The iteration number j is an integer number starting from 1. If j is an odd number, the algorithm is described as,

$$
\begin{align*}
C_{-}^{f}(j) & =\mathcal{F}\left(e^{i<\left[B_{-}^{m}(j)\right]}\right) \tag{4}\\
B_{-}^{m}(j+1) & =\mathcal{F}^{-1}\left(a_{-}^{f} e^{i<\left[C_{-}^{f}(j)\right]}\right) \tag{5}
\end{align*}
$$

$$
\begin{gather*}
C_{+}^{f}(j)=\mathcal{F}\left(e^{i \angle\left[B_{+}^{m(j)]}\right.}\right) \tag{6}\\
B_{+}^{m}(j+1)=\mathcal{F}^{-1}\left(a_{-}^{f} e^{i\left(\left\langle\left[c_{-}^{f}(j)\right]-\alpha^{f}\right)\right.}\right) \tag{7}
\end{gather*}
$$

where $\angle[X]$ represent the phase of complex number X. If j is an even number, the algorithm becomes,

$$
\left.\begin{array}{c}
C_{+}^{f}(j)=\mathcal{F}\left(e^{i \angle\left[B_{+}^{m}(j)\right]}\right) \\
B_{+}^{m}(j+1)=\mathcal{F}^{-1}\left(a_{+}^{f} e^{i \angle\left[c_{+}^{f}(j)\right]}\right) \\
C_{-}^{f}(j)=\mathcal{F}\left(e^{i \angle[B-}(j)\right]
\end{array}\right)
$$

When the iteration number j reaches a given value N, the iteration process ends. The final phase information of the metasurface is given as,

$$
\begin{equation*}
\varphi_{\sigma}^{m}=\angle\left[B_{\sigma}^{m}(j)\right] \tag{12}
\end{equation*}
$$

Eq. S4-S12 can be simplified as Figure 2 in the main text.

Supplementary Note 2: Determination of rotation angle of meta-structures

Since the meta-structure with a rotation angle of δ converts the CP light of $| \pm\rangle$ to $|\mp\rangle$ with geometric phase of $\pm 2 \delta$ that is used to encode the holographic phase information, the rotation angle of the meta-structure is given as,

$$
\begin{equation*}
\delta_{\sigma}=-\sigma \varphi_{\sigma}^{m} / 2 \tag{13}
\end{equation*}
$$

Since the intensity of LCP and RCP in the hologram plane are not always equal to each other, additional freedom should be considered to control the intensity difference between LCP and RCP. In this paper, we use two lines of LCP and RCP to control the amplitude according to the interference effect of the two lines. The rotation angles are δ_{+}and $\delta_{+}+$ $\Delta \delta_{+}$for two LCP lines, and δ_{-}and $\delta_{-}+\Delta \delta_{-}$for two RCP lines as shown in Figure 1A in the main text. The amplitude of the output LCP and RCP can be given as,

$$
\begin{gather*}
A_{+}^{m}=\left|e^{-i 2 \delta_{+}}+e^{-i 2\left(\delta_{+}+\Delta \delta_{+}\right)}\right| / 2=\sqrt{\left(1+\cos 2 \Delta \delta_{+}\right) / 2} \tag{14}\\
A_{-}^{m}=\left|e^{i 2 \delta_{-}}+e^{i 2\left(\delta_{-}+\Delta \delta_{-}\right)}\right| / 2=\sqrt{\left(1+\cos 2 \Delta \delta_{-}\right) / 2} \tag{15}
\end{gather*}
$$

which can be simplified as Eq. 2 in the main text. The total intensity for LCP and RCP in the metasurface plane can be described as,

$$
\begin{gather*}
I_{\sigma}^{m}=\left(A_{\sigma}^{m}\right)^{2} \tag{16}\\
I^{m}=I_{+}^{m}+I_{-}^{m} \tag{17}
\end{gather*}
$$

Since the intensity of LCP and RCP in the image plane can be calculated from Eq. S1 as,

$$
\begin{equation*}
I_{\sigma}^{f}=\sum_{x, y=1}^{N_{x}, N_{y}}\left(a_{\sigma}^{f}\left(x^{f}, y^{f}\right)\right)^{2} \tag{18}
\end{equation*}
$$

where x^{f} and y^{f} represent the coordinate of the pixels in the image plane, N_{x} and N_{y} are the total pixel number in x^{f} and y^{f} direction. According to the Eq. S14-S18, and using the fact that $I_{\sigma}^{m}=I_{\sigma}^{f}$, we can get the relationship of $\Delta \delta_{+}$and $\Delta \delta_{-}$as,

$$
\begin{equation*}
\frac{1+\cos 2 \Delta \delta_{+}}{1+\cos 2 \Delta \delta_{-}}=\frac{\sum_{x, y=1}^{N_{x}, N_{y}}\left(a_{+}^{f}\left(x^{f}, y^{f}\right)\right)^{2}}{\sum_{x, y=1}^{N_{x}, N_{y}}\left(a_{-}^{f}\left(x^{f}, y^{f}\right)\right)^{2}} \tag{19}
\end{equation*}
$$

There are three possibilities as discussed below:
(1) if the intensity $I_{+}^{f}=I_{-}^{f}$, we choose

$$
\begin{equation*}
\Delta \delta_{+}=\Delta \delta_{-}=0 \tag{20}
\end{equation*}
$$

(2) if $I_{+}^{f}>I_{-}^{f}$, we keep $\Delta \delta_{+}=0$ and $\Delta \delta_{-}$is calculated from Eq. S19 as,

$$
\left\{\begin{array}{c}
\Delta \delta_{+}=0 \tag{21}\\
\Delta \delta_{-}=\operatorname{acos}\left(\frac{2 \sum_{x, y=1}^{N_{x, N}, a_{y}}\left(a_{-}^{f}\left(x^{f}, y^{f}\right)\right)^{2}}{\sum_{x, y=1}^{N_{x}, N_{y}}\left(a_{+}^{f}\left(x^{f}, y f\right)\right)^{2}}-1\right) / 2
\end{array}\right.
$$

(3) if $I_{+}^{f}<I_{-}^{f}$, we keep $\Delta \delta_{-}=0$ and $\Delta \delta_{+}$is calculated from Eq. S19 as,

$$
\left\{\begin{array}{c}
\Delta \delta_{+}=\operatorname{acos}\left(\frac{2 \sum_{x, y=1}^{N_{x, N}}\left(a_{+}^{f}\left(x^{f}, y^{f}\right)\right)^{2}}{\sum_{x, y=1}^{N_{x}, N_{y}}\left(a_{-}^{f}\left(x^{f}, y^{f}\right)\right)^{2}}-1\right) / 2 \tag{22}\\
\Delta \delta_{-}=0
\end{array}\right.
$$

Eq. S20-S22 can be simplified as,

$$
\begin{cases}\Delta \delta_{\sigma}=0, & \text { if } I_{\sigma}^{f} \geq I_{-\sigma}^{f} \tag{23}\\ \Delta \delta_{\sigma}=\operatorname{acos}\left(\frac{2 \sum_{x, y=1}^{N_{x, N}}\left(a_{\sigma}^{f}\left(x^{f}, y^{f}\right)\right)^{2}}{\sum_{x, y=1}^{N_{x, N}, a_{y}}\left(a_{-\sigma}^{f}\left(x^{f}, y^{f}\right)\right)^{2}}-1\right) / 2, & \text { if } I_{\sigma}^{f}<I_{-\sigma}^{f}\end{cases}
$$

which is presented in Eq. 4 in the main text.
Therefore, the final orientation angle is obtained from Eq. S13 and S23.

Supplementary Note 3: Measurement of the polarization parameters

The optical setup of the polarization measurement is shown in Figure S2. A quarter waveplate with its fast axis along the x-axis and a linear polarizer with the transmission axis rotated through an angle of θ with respect to the x-axis is placed before the holographic image. The intensity of the optical beam after the waveplate and linear polarizer is related to the Stokes parameters as $[50,51]$,

$$
\begin{equation*}
I(\theta, \phi)=\frac{1}{2}\left(S_{0}+S_{1} \cos 2 \theta+S_{2} \sin 2 \theta \cos \phi-S_{3} \sin 2 \theta \sin \phi\right) \tag{24}
\end{equation*}
$$

where θ is the rotation angle of the linear polarizer and ϕ is the phase of the waveplate. Firstly, we remove the waveplate and measure sequentially the intensity of the output light with the linear polarizer set at $\theta=0^{\circ}, 45^{\circ}$, and 90°, respectively. Then the final (fourth) measurement is carried out with the quarter-waveplate $\left(\phi=90^{\circ}\right)$ together with a linear polarizer set at $\theta=45^{\circ}$. From Eq. S24, we can get,

$$
\begin{gather*}
I\left(0^{\circ}, 0^{\circ}\right)=\frac{1}{2}\left(S_{0}+S_{1}\right) \tag{25}\\
I\left(45^{\circ}, 0^{\circ}\right)=\frac{1}{2}\left(S_{0}+S_{2}\right) \tag{26}\\
I\left(90^{\circ}, 0^{\circ}\right)=\frac{1}{2}\left(S_{0}-S_{1}\right) \tag{27}\\
I\left(45^{\circ}, 90^{\circ}\right)=\frac{1}{2}\left(S_{0}-S_{3}\right) \tag{28}
\end{gather*}
$$

Therefore, the Stokes parameter is given by,

$$
\begin{gather*}
S_{0}=I\left(0^{\circ}, 0^{\circ}\right)+I\left(90^{\circ}, 0^{\circ}\right) \tag{29}\\
S_{1}=I\left(0^{\circ}, 0^{\circ}\right)-I\left(90^{\circ}, 0^{\circ}\right) \tag{30}\\
S_{2}=2 I\left(45^{\circ}, 0^{\circ}\right)-I\left(0^{\circ}, 0^{\circ}\right)-I\left(90^{\circ}, 0^{\circ}\right) \tag{31}\\
S_{3}=I\left(0^{\circ}, 0^{\circ}\right)+I\left(90^{\circ}, 0^{\circ}\right)-2 I\left(45^{\circ}, 90^{\circ}\right) \tag{32}
\end{gather*}
$$

The azimuth angle and ellipticity angle can be extracted from the Stokes parameter as,

$$
\begin{array}{ll}
\psi=\frac{1}{2} \tan ^{-1}\left(\frac{S_{2}}{S_{1}}\right) & (0<\psi<\pi) \\
\chi=\frac{1}{2} \sin ^{-1}\left(\frac{S_{3}}{S_{0}}\right) & \left(-\frac{\pi}{4}<\chi<\frac{\pi}{4}\right) \tag{34}
\end{array}
$$

Therefore, from Eq. S29-S34, we can calculate azimuth angle and ellipticity angles as,

$$
\begin{array}{ll}
\psi=\frac{1}{2} \tan ^{-1}\left(\frac{2 I\left(45^{\circ}, 0^{\circ}\right)-I\left(0^{\circ}, 0^{\circ}\right)-I\left(90^{\circ}, 0^{\circ}\right)}{I\left(0^{\circ}, 0^{\circ}\right)-I\left(90^{\circ}, 0^{\circ}\right)}\right) & (0<\psi<\pi) \\
\chi=\frac{1}{2} \sin ^{-1}\left(\frac{I\left(0^{\circ}, 0^{\circ}\right)+I\left(90^{\circ}, 0^{\circ}\right)-2 I\left(45^{\circ}, 90^{\circ}\right)}{I\left(0^{\circ}, 0^{\circ}\right)+I\left(90^{\circ}, 0^{\circ}\right)}\right) & \left(-\frac{\pi}{4}<\chi<\frac{\pi}{4}\right) \tag{36}
\end{array}
$$

which is given in the main text.

Figure S1. Fabrication processes of metasurface. (A) A double-side polished c-plan sapphire is used as the substrate. (B) GaN thin-film with $1 \mu \mathrm{~m}$ thickness is grown on sapphire substrate. (C) Spin coated with PMMA resist. (D) Exposure using electron beam lithography. (E) Development in 3:1 IPA:MIBK solution. (F) Nickel deposition with 50 nm using E-beam evaporation. (G) Liftoff process in acetone. (H) GaN etching by reactive ion etching. (I) Chemical etching in 1:1 H2O2: H2SO4 solution to remove the nickel.

(b)

Figure S2. Measurement setup of conventional optical setup and ptychographic optical setup. (a) Schematic of the conventional optical setup. A laser with wavelength of 635 nm is passing through a linear polarizer and lens to weakly focused on the metasurface. A projector with a distance of 10 cm to the metasurface is placed to display the holographic images. Selected quarter waveplate and linear polarizer are placed before the projector to analyze the holographic images and measure the Stokes parameters. (b) Schematic of the ptychographic measurement optical setup. LP: linear polarizer. HWP: half waveplate. OL: objective lens. TL: tube lens.

Figure S3. Design of field profile mimicking the cylindrical vector beams. The field profile design with (a) $l=1, m=0$, (b) $l=1, m=1$, (c) $l=-2, m=0,(\mathbf{d}) l=-4, m=0$. Top row: intensity profile. Bottom row: azimuth angle profile. The ellipticity angle of all of the designs are zero. Note that with respect to CV beams, the far-field phase distribution is not imposed.

Figure S4. Design of the metasurface for optical encryption. (a) - (c) Metasurface design 1 with uniformly distributed intensity profile in (a), a "Blade" image in (b) and a "Rocket" image in (c). (d) - (f) Metasurface design 2 with uniformly distributed intensity profile in (d), a "Tree" image in (e) and a "Squirrel" image in (f).
(a) $\quad \begin{aligned} \Delta \delta_{+} & =0^{\circ} \\ \Delta \delta_{-} & =0^{\circ}\end{aligned}$

(b)

(c)

$$
\begin{gathered}
\Delta \delta_{+}=0^{\circ} \\
\Delta \delta_{-}=27.1^{\circ}
\end{gathered}
$$

Figure S5. Fabricated results of metasurface design 1 and design 2 for the optical encryption. (a) Top view and (b) tilt view of metasurface design 1 with rotation angle difference of $\Delta \delta_{ \pm}=0^{\circ}$. (c) Top view and (d) tilt view of metasurface design 2 with rotation angle difference of $\Delta \delta_{+}=0^{\circ}$ and $\Delta \delta_{+}=27.1^{\circ}$. The red scale bar represents $1 \mu \mathrm{~m}$.

Figure S6. Retrieved Jones matrix through ptychographic measurement. Measured Jones matrix of (a) Metasurface 1 and (b) Metasurface 2. The enlarged images of the central rectangle area are shown in (c) and (d). The inset figure in (b) is the color bar with phase encoded as hue and amplitude as brightness. The scale bar in (a) and (b) is $50 \mu \mathrm{~m}$. The scale bar in (a) and (b) is $5 \mu \mathrm{~m}$.

Figure S7. Measurement results of vectorial encoded images using ptychographic measurement. (a) and (d) Retrieved intensity, (b) and (e) azimuth angle, (c) and (f) ellipticity angle of the polarization. A uniformly distributed intensity profile is shown in (a) and (d), a "Blade", "Rocket", "Tree" and "Squirrel" images are shown in (b), (c), (e) and (f). The measurement using conventional optical setup and ptychographic setup agree with the design.

