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A novel multi-scale large deformation approach for modelling of granular collapse
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Collapse of granular material is usually accompanied by long run-out granular flows in natural hazards, e.g., rock/debris flow and snow avalanches. This paper presents a novel multi-scale approach for modelling granular column collapse with large deformation. This approach employs the smoothed particle hydrodynamics (SPH) method to solve large deformation boundary value problems while using a micromechanical model to derive the non-linear material response required by the SPH method. After examining the effect of initial cell size, the proposed approach is subsequently applied to simulate the flow of granular column in a rectangular channel at a low water content by varying the initial aspect ratio. The numerical results show good agreement with various experimental observations on both collapse process and final deposit morphology. Furthermore, the mesoscale behavior is also captured owing to the advantages of the micromechanical model. Finally, it was demonstrated that the novel multi-scale approach is helpful in improving the understanding of granular collapse and should be an effective computational tool for the analysis of real-scale granular flow.

Introduction

The transformation of granular material from a stationary state into a dynamic flow state can be a prototype found in many natural disasters and industrial processes. The understanding of granular flow mechanisms plays a crucial role in minimizing natural hazards (e.g., landslides, snow avalanches, and soil liquefaction) and in optimizing industrial processes (e.g., mineral processing, ceramic, food processing, pharmaceutical manufacture, and civil engineering applications). Many theories and assumptions have been proposed in the attempt to explain the apparent high mobility of granular material, including the bubbles at the bottom of granular flow [START_REF] Shreve | Leakage and fluidization in air-layer lubricated avalanches[END_REF][START_REF] Han | Functional Catastrophe Analysis of Progressive Failures for Deep Tunnel Roof Considering Variable Dilatancy Angle and Detaching Velocity[END_REF], sand fluidization [START_REF] Hungr | Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism[END_REF][START_REF] Jianbo | Experimental investigation on granular flow past baffle piles and numerical simulation using a µ(I)-rheology-based approach[END_REF], grain segregation-induced friction decrease [START_REF] Phillips | Enhanced mobility of granular mixtures of fine and coarse particles[END_REF]. However, these theories and assumptions have not been fully confirmed by experiments, and there are still many mechanisms of granular flow that are still unclear.

It has been recognized that debris flows and granular flows may behave similarly: for instance, they can sustain shear stresses with very slow deformation due to lasting, frictional grain contacts, and they can flow rapidly, sustaining inelastic grain collisions [START_REF] Iverson | The physics of debris flows[END_REF][START_REF] Neto | Simulation of debris flow on an instrumented test slope using an updated Lagrangian continuum particle method[END_REF]. Thus, research has mainly focused on small scale laboratory experiments and numerical simulations of granular materials [START_REF] Tan | New simple method for calculating impact force on flexible barrier considering partial muddy debris flow passing through[END_REF][START_REF] Tan | Experimental study on impact and deposition behaviours of multiple surges of channelized debris flow on a flexible barrier[END_REF][START_REF] Chen | Influence of matric suction on nonlinear time-dependent compression behavior of a granular fill material[END_REF][START_REF] Chen | Crushing and flooding effects on one-dimensional time-dependent behaviors of a granular soil[END_REF][START_REF] Lajeunesse | Granular slumping on a horizontal surface[END_REF][START_REF] Crosta | Numerical modeling of 2-d granular step collapse on erodible and nonerodible surface[END_REF][START_REF] Lube | Collapses of two-dimensional granular columns[END_REF][START_REF] Lube | Axisymmetric collapses of granular columns[END_REF][START_REF] Rondon | Granular collapse in a fluid: role of the initial volume fraction[END_REF][START_REF] Fern | Granular column collapse of wet sand[END_REF][START_REF] Zhao | Mechanical behavior of intact completely decomposed granite soils along multi-stage loading-unloading path[END_REF][START_REF] Brezzi | Collapse of granular-cohesive soil mixtures on a horizontal plane[END_REF][START_REF] Kermani | Simulation of quasi-static axisymmetric collapse of granular columns using smoothed particle hydrodynamics and discrete element methods[END_REF]. Among them, two classic experiments are widely performed: rectangular channel flowing tests and column flowing tests. In the former, granular collapse is obtained by putting the granular material in a rectangular channel and quickly removing a vertical side boundary, whereas, in the latter, granular material is in a hollow cylinder pipe. This study only discusses the former.

There are many possible solutions to simulate the granular column collapse by using numerical methods, e.g., the finite element method (FEM) using the arbitrary Lagrangian-Eulerian (ALE) technique [START_REF] Crosta | Numerical modeling of 2-d granular step collapse on erodible and nonerodible surface[END_REF][START_REF] Wu | Numerical modelling of granular column collapse using coupled eulerian-lagrangian technique with critical state soil model[END_REF], the discrete element method (DEM) [START_REF] Utili | 3d dem investigation of granular column collapse: evaluation of debris motion and its destructive power[END_REF][START_REF] Li | Modelling the shearing behaviour of joints using an improved shear box genesis approach in particle flow code (2d) and its validation[END_REF], the particle finite element method (PFEM) [START_REF] Zhang | Numerical simulation of a flow-like landslide using the particle finite element method[END_REF], the smoothing particle finite element method (SPFEM) [START_REF] Jin | An edge-based strain smoothing particle finite element method for large deformation problems in geotechnical engineering[END_REF], the material point method (MPM) (So lowski and Sloan, 2015), and the smooth particle hydrodynamics (SPH) method [START_REF] Peng | A sph approach for large deformation analysis with hypoplastic constitutive model[END_REF][START_REF] Neto | Continuum hydrodynamics of dry granular flows employing multiplicative elastoplasticity[END_REF][START_REF] Wang | Smooth particle hydrodynamics studies of wet granular column collapses[END_REF][START_REF] Peng | Loquat: an open-source gpu-accelerated sph solver for geotechnical modeling[END_REF][START_REF] Bui | Lagrangian meshfree particles method (sph) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model[END_REF][START_REF] Yin | Novel sph simsand-based approach for modeling of granular collapse[END_REF]Jin et al., 2019b,a). Furthermore, some multi-scale approaches have also been employed to simulate the granular column collapse problem, e.g., a hierarchical coupling scheme to integrate MPM with DEM packings for multi-scale modelling of large deformation in granular materials [START_REF] Liang | Multiscale modeling of large deformation in geomechanics[END_REF]. These methods have contributed to the investigation of granular flows, but problems remain. On one side, although ALE technology can be used to solve large deformation problems in continuum methods, it does not really simulate the flow of granular materials because it lacks a unified formulation for going from solid to fluid in continuum mechanics. On the other side, the discretization methods require lots of calculations and are not suitable for large-scale boundary value problems. However, micromechanical models try to give the best compromise. The micromechanical models have no explicit constitutive behavior but the implicit description by statistical description of grain interactions, e.g. [START_REF] Zhao | Integrating a micromechanical model for multiscale analyses[END_REF][START_REF] Zhu | Three-dimensional constitutive relations for granular materials based on the dilatant double shearing mechanism and the concept of fabric[END_REF][START_REF] Xiong | A three-dimensional micromechanically based model[END_REF][START_REF] Nicot | The H-microdirectional model: accounting for a mesoscopic scale[END_REF][START_REF] Zhu | A micromechanics-based elastoplastic damage model for granular materials at low confining pressure[END_REF][START_REF] La Ragione | A simplified model for inelastic behavior of an idealized granular material[END_REF][START_REF] Zhao | An evolution law for fabric anisotropy and its application in micromechanical modelling of granular materials[END_REF].

In this paper, a novel multi-scale framework is proposed. Under this framework, the SPH method is used to solve the large deformation boundary value problem while the 3D-H model is used to derive the nonlinear constitutive material response of granular material required by SPH for each point. The 3D-H model is also extended to the condition of low water content by considering the capillary forces in water bridges between connected grains. Firstly, five simulations with different initial cell size are compared. Then, the proposed framework is subsequently applied to simulate the rectangular channel flowing tests at a low water content by varying the initial aspect ratio of the granular column. By comparing with various experimental observations, it verified that the proposed framework is able to predict the collapse process and the final deposit morphology. Furthermore, the mesoscopic analysis is performed owing to the advantages of the 3D-H model.

2 Multi-scale framework for granular flows

Fundamentals of the SPH method

The SPH method was adopted in this study to model large deformation of granular collapse. The SPH method was initially proposed by [START_REF] Gingold | Smoothed particle hydrodynamics: theory and application to non-spherical stars[END_REF][START_REF] Lucy | A numerical approach to the testing of the fission hypothesis[END_REF] in astrophysics. It was then introduced to other fields owing its further developments. The derivation of the SPH method can be divided into two stages. The first stage implements a kernel approximation, where all the physical variables Smoothing function, W Integration domain i j Fig. 1: Particle approximations using particles within the integration domain of the smoothing function W for particle i.

are approximated using an integral transformation of discrete quantities involving the convolution of the physical variable with a chosen kernel function.

The kernel approximation of a function f (x) at position x = (x, y, z) in physical domain Ω is expressed as

f (x) = Ω f (x )W (x -x , h)dx (1)
where W is the kernel function and h is the smoothing length.

The kernel function W has to satisfy certain requirement such as normalization condition, delta function property and compact support condition [START_REF] Monaghan | An introduction to sph[END_REF][START_REF] Peng | Loquat: an open-source gpu-accelerated sph solver for geotechnical modeling[END_REF]. The cubic spine kernel is employed in this study. The kernel approximation of the gradient of the function ∇f (x) can also be obtained in the same manner to give

∇f (x) = - Ω f (x )∇ x W (x -x , h)dx (2)
where ∇ x indicates that the derivatives are evaluated at x . If we assume that the continuous field f (x) comes from a piecewise constant field f , then the kernel representation for a function and its gradient as exhibited above can be approximated by a Riemann summation over the particles (i.e. the subdomains Ω j where f takes constant value f (x j ), x j being the center of Ω i ) used in the simulation, thus

f (x) = N j=1 f (x j )W (x i -x j , h) m j ρ j (3) ∇f (x) = - N j=1 f (x j )∇ j W (x i -x j , h) m j ρ j (4)
where ρ j and m j are the density and mass of particle j (m j /ρ j = |Ω j |), respectively, and N is the number of particles. Note that ∇ i W (x i -x j , h) = -∇ j W (x i -x j , h) due to the symmetry of the kernel function.

The second stage of the SPH method involves solving the equations governing granular impact; namely, the mass and momentum balance equations. These equations can be discretized with the kernel approximation as follows:

             dρ i dt = N j=1 m j v α i -v α j • ∂W (x i -x j , h) ∂x α i dv α i dt = N j=1 m j σ αβ i + σ αβ j ρ i ρ j + Π ij δ αβ ∂W (x i -x j , h) ∂x β i (5)
Fig. 2: General homogenization scheme of 3D-H model [START_REF] Cambou | Homogenization for granular materials[END_REF].

where ρ i , v i , p i , σ i , m i are the density, velocity, pressure, stress and mass of particle i; d(•)/dt denotes the time derivative of a physical quantity. The term Π ij in the momentum equation is the Monaghantype artificial viscosity. This term is introduced to smooth potential unphysical oscillations, to prevent unphysical particle-particle penetrations, and to stabilize the numerical solutions. The Monaghan-type artificial viscosity is incorporated into the momentum equation as follows [START_REF] Monaghan | An introduction to sph[END_REF]:

Π ij =      -ac ij φ ij + βφ 2 ij ρ ij v ij • x ij < 0 0 v ij • x ij ≥ 0 (6) 
where

φ ij = (h ij v ij • x ij )/(|x ij | 2 + ϕ 2 ), c ij = 1 2 (c i + c j ), ρ ij = 1 2 (ρ i + ρ j ), h ij = 1 2 (h i + h j ), v ij = v i -v j , and x ij = x i -x j .
Here c i is the speed of sound associated with the particle i; α and β are constant coefficients that have values of about 1.0; and, φ = 0.1h ij is applied in order to avoid singularity when two particles come too close.

Multi-scale constitutive model: 3D-H model

In Equation 5, the stress tensor has to be specified. This stress is linked to the strain field through a constitutive equation. In the present work, we chose to account for this constitutive equation in an implicit way with use of a micromechanical model. The 3D-H model [START_REF] Xiong | A three-dimensional micromechanically based model[END_REF] was previously proposed by the authors and has been successfully implemented within a finite element code to solve geotechnical engineering problem (Xiong et al., 2019a,b). Based on the kinematic hypothesis, the 3D-H model enables the derivation of the macroscopic stress tensor from the macroscopic strain tensor according to the following steps (Figure 2): (1) Kinematic localisation: The meso-structure (shown in Figure 4) is a connection between the macroand meso-scale. The dimension of the meso-structure can be characterised by the vector: L = [l 1 , l 2 , l 3 ] T , wherein l 1 , l 2 , l 3 represent the lengths along directions n, t, w, respectively (see Figure 5a and Figure 6a). Thus the kinematic localisation assumption gives:

     δl 1 l 1 = t n • δε • n = P • δε • P -1 11 δl 2 l 2 = t t • δε • t = P • δε • P -1 22 δl 3 l 3 = t w • δε • w = P • δε • P -1 33 (7)
where δε is the incremental macroscopic strain tensor, and P is the rotation matrix from global frame (x 1 , x 2 , x 3 ) to local frame (n, t, w) (see Figure 3).

The kinematic localisation defined by Equation 7 is a homogenisation process. It is analogous to the usual Voigt approximation in the field of continuous media. The reader should note that the localisation process goes from the macro-to the meso-scale, not to the micro-scale, as assumed in the Voigt approximation. 
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Fig. 4: The 3D mesostructure and its decomposition procedure in the 3D-H model.

Moreover, it has been widely used in granular materials, such as in [START_REF] Cambou | Homogenization for granular materials[END_REF][START_REF] Nicot | The H-microdirectional model: accounting for a mesoscopic scale[END_REF][START_REF] Nicot | A multi-scale approach to granular materials[END_REF].

In the 3D-H model, the hexagon deformation described by the vector δL = [δl 1 , δl 2 , δl 3 ] T is derived from the macroscopic strain tensor. Then, the term δL is used as the known variable to compute the relative displacement at each contact and to compute contact forces.

(2) Meso-structure behaviour: The meso-structure (Figure 4) can be decomposed into two independent hexagon patterns: Hexagon A (Figure 5) and Hexagon B (Figure 6), both being similar. The geometrical configuration and external forces applied to the meso-structure are symmetrical; thus for each hexagon, only two grains need to be analysed. For Hexagon A, as shown in Figure 5, only grains 1 and 2 are analysed.

The contact between grains 1 and 2 is denoted by contact 1, whereas the contact between grains 2 and 3 is denoted by contact 2. Then, the kinematic relations read (for Hexagon A):

   δu 1 n = δd 1 δu 1 t = d 1 δα 1 δu 2 n = δd 2 (8)
where u i n and u i t represent the normal and tangential relative displacements at contact i (For Hexagon A, i = 1 or 2, for Hexagon B, i = 3 or 4), respectively. As depicted in Figure 5a, the geometrical description for Hexagon A gives:

l 1 = d 2 + 2d 1 cos α 1 l 2 = 2d 1 sin α 1 (9)
The force balance of grain 1 along direction n and of grain 2 along directions w and n, together with the moment balance of grain 2, reads:

F a 1 =2(N 1 cos α 1 + T 1 sin α 1 ) (10a) F 2 =N 1 sin α 1 -T 1 cos α 1 (10b) N 2 =N 1 cos α 1 + T 1 sin α 1 + G 2 (10c) G 2 =T 2 (10d)
where N i and T i represent the normal and tangential contact forces of contact i, respectively. The elasticperfect plastic inter-particle contact law reads in an incremental form, for a given contact i:

   δN i = k n δu i n δT i = min T i + k t δu i t , tan ϕ g (N i + δN i ) × T i + k t δu i t T i + k t δu i t -T i (11) 
After simplifying (see more details in Appendix A), the contact law (for Hexagon A) can be rewritten as follows:

   δN 1 = -k n δd 1 δN 2 = -k n δd 2 δT 1 = B 1 δα 1 -A 1 δd 1 + C 1 (12)
Term C 1 differs from zero only during a transition from an elastic to a plastic regime. For very small strain increments, as considered throughout this paper, term C 1 can therefore be neglected.

To obtain the incremental evolution of the external forces, δd 1 , δd 2 and δα 1 need to be expressed as a function of the mesoscopic strain. Three equations are therefore required. Compatibilities (Equations 9) provide two relations. The third is the balance equation of grain 2 along direction n (Equation 10c). By taking the inter-particle contact law (Equations 12) into account, we reach the following algebraic system expressing the incremental changes in δd 1 , δd 2 and δα 1 with respect to the incremental changes in δl 1 and δl 2 :

  2 cos α 1 1 -2d 1 sin α 1 2 sin α 1 0 2d 1 cos α 1 cos α 1 + A 1 k n (sin α 1 + 1) -1 F 2 -B 1 (sin α 1 +1) k n     δd 1 δd 2 δα 1   =   δl 1 δl 2 0   ( 13 
)
where A 1 , B 1 are given in A.

Differentiating Equation 10a, Equation 10b and combining with Equations 12 gives:

δF a 1 = -k n cos α 1 δu 1 n + k t sin α 1 δu 1 t -F 2 δα 1 δF 2 = -k t cos α 1 δu 1 t -k n sin α 1 δu 1 n + F a 1 δα 1 (14)
Thus, combining Equations 8, Equations 13 and Equation 14, the incremental constitutive relation for Hexagon A can be expressed as follows: where:

1 |D| a K a 11 K a 12 K a 21 K a 22 δl 1 δl 2 = δF a 1 δF 2 (15) d 1 d 2 d 1 d 2 d 1 d 1 α 1 l 2 l 1 (a) Dimension of Hexagon A 1 4 5 3 6 2 F a 1 F a 1 F 2 F 2 F 2 F 2 G 2 G 2 G 2 G 2 (b) External forces 2 N 2 N 1 T 1 G 2 F 2 1 F a 1 N 1 T 1 N 1 T 1 (c)
                                           K a 11 = 2 F 2 sin α 1 -k n d 1 cos 2 α 1 -k t d 1 sin 2 α 1 K a 12 = (k t d 1 sin α 1 -F 2 ) A 1 k n sin α 1 + A 1 k n + 3 cos α 1 -cos α 1 (B 1 sin α 1 + B 1 -F 2 + 2k n d 1 sin α 1 ) K a 21 = 2 (k t -k n ) d 1 sin α 1 cos α 1 -2F a 1 sin α 1 K a 22 = (F a 1 -k t d 1 cos α 1 ) A 1 k n sin α 1 + A 1 k n + 3 cos α 1 -sin α 1 (B 1 sin α 1 + B 1 -F 2 + 2k n d 1 sin α 1 ) |D| a = 2 k n (B 1 sin α 1 + A 1 d 1 cos α 1 )(sin α 1 + 1) - 2 k n (F 2 sin α 1 + k n d 1 cos 2 α 1 + 2k n d 1 ) (16) 
Similarly, the incremental constitutive relation for Hexagon B can also be obtained. Consequently, superimposing Hexagon A and Hexagon B, the total incremental force along direction n is δF 1 = δF a 1 +δF b 1 . The incremental constitutive relation of the 3D meso-structure is finally obtained.

(3) Stress averaging: Averaging the mesoscopic stress σ taking place within all the meso-structures in the specimen of volume V can be performed as follows:

σ = 1 V ω(θ, ϕ, ψ)P -1 V σ(n, t, w)P sin ϕdθdϕdψ ( 17 
)
where σ is the macro-stress tensor operating on the specimen scale, V is the volume of meso-structure along the local frame (n, t, w), V is total volume of the specimen, which is computed from V as follows:

V = ω(θ, ϕ, ψ) V sin ϕdθdϕdψ (18)
ω(θ, ϕ, ψ) is a probability density function, which fulfills the following relation: For an isotropic specimen, ω 0 = 1/4π 2 . V σ with respect to the local frame can be computed from the local variables (Figure 5 and Figure 6) using the Love-Weber formula [START_REF] De Saxcé | About the numerical simulation of the dynamics of granular media and the definition of the mean stress tensor[END_REF][START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF][START_REF] Christoffersen | A micromechanical description of granular material behavior[END_REF][START_REF] Mehrabadi | On statistical description of stress and fabric in granular materials[END_REF]:

2π 0 π 0 2π ω(θ, ϕ, ψ) sin ϕdθdϕdψ = 1 (19) d 3 d 4 d 3 d 4 d 3 d 3 α 2 l 3 l 1 (a) Dimension of Hexagon B 1 4 9 8 10 7 F b 1 F b 1 F 3 F 3 F 3 F 3 G 3 G 3 G 3 G 3 (b) External forces 7 N 4 N 3 T 3 G 3 F 3 1 F b 1 N 3 T 3 N 3 T 3 (c)
       V σ 11 = 4N 1 d 1 cos 2 α 1 + 4T 1 d 1 cos α 1 sin α 1 + 2N 2 d 2 +4N 3 d 3 cos 2 α 2 + 4T 3 d 3 cos α 2 sin α 2 + 2N 4 d 4 V σ 22 = 4N 1 d 1 sin 2 α 1 -4T 1 d 1 cos α 1 sin α 1 V σ 33 = 4N 3 d 3 sin 2 α 2 -4T 3 d 3 cos α 2 sin α 2 (20)
Notably, the local void ratio is related to the opening angle, which is not related to local anisotropy. The opening angle α 1(2) is a geometrical parameter (Figure 5 and Figure 6). The opening angle, together with the components l 1 , l 2 , l 3 , determine the initial shape of the hexagons as well as the local void ratio of the meso-structure. For a virgin specimen, the initial opening angle is denoted as α 0 . Then, α 1 = α 2 = α 0 . The initial void ratio e 0 (n, t, w) of each meso-structure belonging to the local frame (n, t, w) can be estimated using the initial opening angle α 0 as follows:

e 0 = - 4 π cos 3 α 0 - 6 π cos 2 α 0 + 4 π cos α 0 + 6 π -1 (21)
In summary, the total number of input parameters of the 3D-H model is four (in case of initial microstructure isotropy). Three material parameters plus one geometry parameter. All parameters can be obtained by conventional drained triaxial test. The validations of this constitutive model have been conducted in our previous works [START_REF] Xiong | A three-dimensional micromechanically based model[END_REF](Xiong et al., , 2019a[START_REF] Xiong | Programming a micro-mechanical model of granular materials in julia[END_REF], in which an excellent agreement between the 3D-H model and experimental data on dry sand has been achieved; therefore, these will not be repeated here.

Extension of 3D-H model at a low water content

At low water contents, water in a granular material forms individual capillary bridges between pairs of grains. These capillary bridges modify the constitutive behaviour of granular materials by introducing some cohesion. In this section, we show how the 3D-H model used so far can be extended to take into account capillary forces directly at contact scale for low water contents. The macroscopic effect of the capillary cohesion thus introduced is then investigated on the same numerical set up of Figure 13.

From a mechanical point of view, a capillary bridge between two grains can be taken into account in the form of an attractive force between the two connected grains. This capillary force can be computed with use of a surface energy minimization method. Thus, the total surface energy E s of two grains connected by a volume of water is given by

E s = γ lg A lg + 2 i=1 γ sl i A sl i + 2 i=1 γ sg i A sg i (22)
where γ lg = 0.073 N.m -1 is the surface tension of air/water interface at 20 • C given in [START_REF] Molenkamp | Interactions between two rough spheres, water bridge and water vapour[END_REF], A lg is the area of the liquid/gas interface, γ sl i and A sl i are respectively the surface tension and the area of the interface between grain i ∈ {1, 2} and water, and γ sg i and A sg i are respectively the surface tension and the area of the interface between grain i and air.

The surface tensions of the interfaces are related to the wetting angle θ by the Young-Dupré equation Yuan and Lee (2013):

γ sl i -γ sg i = -cos θ i γ lg (23) 
Thus the surface energy can be expressed by:

E s = γ lg A lg -γ lg 2 i=1 cos θ i A sl i + C ( 24 
)
where C = 2 i=1 γ sg i A s i is a constant, with A s i = A sg i + A sl i the total area of grain i. The geometries of the liquid/gas and the solid/liquid interfaces are determined numerically with the surface energy minimization method implemented in Surface Evolver [START_REF] Brakke | The surface evolver[END_REF]. The numerical procedure is briefly detailed in the following. First, a rough mesh of the interfaces is created. With use of a gradient descent method, the nodes of the mesh are moved in order to minimize the total energy while keeping constant the volume of water. Then, the mesh is refined and the gradient descent procedure repeated until a precise geometry of the capillary bridge is obtained.

Eventually, the capillary force acting between the two grains is obtained from the virtual work principle. As presented in Figure 7, an incremental displacement δd is imposed to one of the grain in the direction of the bridge, and the surface energy of this new configuration E s (δd) is calculated and compared with the original one. In a closed, static system without gravity, there are neither kinetic nor potential and internal energy. The incremental work δW of the capillary force F c is thus related to the surface energy variation as:

δW = F c .δd = δE s ( 25 
)
This means that the capillary force F c can be expressed as a function of the variation of surface energy E s (δd) -E s (0) and the incremental displacement δd:

F c = E s (δd) -E s (0) δd (26) 
By repeating the whole procedure for varying liquid volume, the dimensionless capillary force

F * c = F c γ sl r
and the half-filling angle β (as defined in Figure 7) can be computed as functions of the dimensionless liquid volume V * = V /R 3 where R is the grain radius. Note that, in the present work, the two grains are of equal radius and in contact. The reason for this restriction lies in the fact that the purpose of these simulations is to provide an empirical expression of the capillary force acting in between the contacting grains of the ten grain meso-structure of the H-model (Figure 10). Figure 8 shows that the capillary force in a liquid bridge can be approximated fairly well with a 4th degree polynomial while Figure 9 shows that the half filling angle can be approximated really accurately with a power law:

F * c = 0.701V * 4 -3.167V * 3 + 5.150V * 2 -4.290V * + 5.380 β = 68.0V * 0.293 (27) 
For low water contents, water in a meso-structure forms independent capillary bridges between grains two by two, as presented in Figure 10.

We suppose that the water content w c provided at macroscale is the same in all the meso-structures (whatever their local orientations). This hypothesis can be seen as a localisation of the water content, as for the strain localisation. Under this hypothesis, the dimensionless water volume V * w in a given meso-domain is: Fig. 8: Capillary force in a liquid bridge between two grains in contact as a function of the water volume calculated with the surface energy minimization method (solid line) and approached by a 4th degree polynomial (dashed line).

V * w = w c V * s γ s γ w (28) 
Fig. 9: Half-filling angle in a liquid bridge between two grains in contact as a function of the water volume calculated with the surface energy minimization method (solid line) and approached by a power law (dashed line).

Fig. 10: Individual capillary bridges between grains in the H-model meso-structure. Vertical bridges are coloured in blue while inclined bridges are coloured in green with V s being the volume of the 10 grains contained into the meso-domain V * s = V s r 3 = 40 3 π, and γ s γ w = 2.4 the ratio of the solid and liquid specific weight.

The total volume of water V * w lying inside the dodecahedron come from the contribution of the four vertical bridges and eight inclined bridges visible in Figure 10. To keep the symmetry of the meso-structure, we assume that all vertical bridges have the same volume V * v and all inclined bridges have the same volume V * i . As a result, the total volume of water splits as:

V * w = 8V * i + 4V * v (29) 
In the above equation, we have one degree of freedom to split the volume V * w between V * i and V * v . We suppose that the distribution of water volume between the different capillary bridges is the distribution which minimizes the total surface energy in the meso-structure. However, this distribution has to insure that the bridges are not in contact, which would involve the merging of capillary bridges into more complex coalesced bridges (this particular point will be deeply investigated in a forthcoming paper). To carry on the computation, it is hypothesized that grain interpenetration is neglected so that the two hexagonal patterns of a cell are identical. Thus, it is assumed that:

   α = α 1 + α 2 2 d 1 = d 3 = d 2 = d 4 = 2r (30)
The dimensionless total surface energy in a meso-structure E meso * s can therefore be written as:

E meso * s = 8E bridge * s (V * i ) + 4E bridge * s (V * v ) = 8E bridge * s ( V * w -4V * v 8 ) + 4E bridge * s (V * v ) (31) 
The derivative of the total surface energy with respect to the volume of one vertical bridge is:

dE meso * s dV * v = -4 dE bridge * s dV * v ( V * w -V * v 4 ) + 4 dE bridge * s dV * v (V * v ) (32) 
Figure 11 shows the surface energy in a bridge. The minimum of E meso * s , given by

dE meso * s dV * v = 0 corre- sponds to the case where V * i = V * v = V * w 12 .
To insure that the bridges do not touch each other, the filling angles of the vertical bridges β v and of the inclined bridges β i , as defined in Figure 12, should fulfil the following conditions:

     cos β i > cos β i,coal = 1 + cos 2 α 2 β v > β v,coal = π -α -β i (33)
where β i,coal is the limit half-filling angle of the inclined bridges corresponding to the contact of the inclined bridge and β v,coal is the limit half-filling angle of the vertical bridges corresponding to the contact between inclined and vertical bridges. The conditions of contact defined by Equation 33 are checked for V * i = V * w /12. In case of contact, V i is decreased to the maximal value which insure the independence of the capillary bridges, in order to obtain the geometrically compatible configuration with the minimal surface energy.

At this point, volume in each bridge is known, and the capillary force at each contact of the cell can be deduced from the Equation 27. These capillary forces, noted N cap 17, thus, using Love-Weber formula:

V σ cap 11 = 4(N 1 + N cap 1 )d 1 cos 2 α 1 + 4T 1 d 1 cos α 1 sin α 1 + 2(N 2 + N cap 2 )d 2 +4(N 3 + N cap 3 )d 3 cos 2 α 2 + 4T 3 d 3 cos α 2 sin α 2 + 2(N 4 + N cap 4 )d 4 V σ cap 22 = 4(N 1 + N cap 1 )d 1 sin 2 α 1 -4T 1 d 1 cos α 1 sin α 1 V σ cap 33 = 4(N 3 + N cap 3 )d 3 sin 2 α 2 -4T 3 d 3 cos α 2 sin α 2 (34) σ = 1 V ω(θ, ϕ, ψ)P -1 V σcap (n, t, w)P sin ϕdϕdθdψ (35)
When considering a large deformation problem such as sand column collapse, an invariant stress tensor with respect to rigid-body rotation must be applied. Accordingly, the Green-Naghdi rate which gives an objective measure of the stress rate was adopted in this study [START_REF] Green | A general theory of an elastic-plastic continuum[END_REF][START_REF] Neto | Continuum hydrodynamics of dry granular flows employing multiplicative elastoplasticity[END_REF][START_REF] Neto | Simulation of debris flow on an instrumented test slope using an updated Lagrangian continuum particle method[END_REF][START_REF] Liang | Multiscale modeling of large deformation in geomechanics[END_REF][START_REF] Jin | An edge-based strain smoothing particle finite element method for large deformation problems in geotechnical engineering[END_REF][START_REF] Systèmes | Abaqus 6.14 analysis user manual[END_REF]: where Ω = Ṙ • R T , R is the rigid body rotation in the polar decomposition of the deformation gradient F . The differences between Green-Naghdi rate and Jaumann rate are significant only if finite rotation of a material point is accompanied by finite shear.

σ G = σ -Ω • σ + σ • Ω T (36)

Implementation of 3D-H model in SPH

The implementation of the 3D-H model in the SPH codes constitutes a complete multi-scale procedure.

The SPH method is an effective method to solve the large deformation boundary value problem. SPH searches whether particles i and j interact with each other. Once determined that the two particles interact, the statistical representative volume element (RVE) of the 3D-H model embedded in the SPH particles begins to work. As illustrated before, the 3D-H model localizes the incremental macro strain tensor by using Equation 7. Then, the meso-structures are decomposed into two perpendicular hexagons, in which the constitutive behaviour is able to be solved (Equation 13). Hereafter, the incremental macro stress tensor of the RVE is obtained by stress averaging (Equation 17). Finally, the position and velocity of SPH particles are updated. The entire calculation process of the proposed multi-scale approach is shown in Figure 13.

3 Multi-scale modelling of granular collapse

Model setup

The numerical example chosen for the demonstration of the proposed multi-scale approach is a classical dynamic problem: the two-dimensional granular column collapsed to frictional ground under gravity. The geometry and the boundary conditions of the granular column are shown in Figure 14. L i and H i denote the initial length and initial height, respectively. The initial aspect ratio is defined as a = H i /L i . After granular columns collapse to finial deposit profile, L f and H f denote the run-out distance and deposit height, respectively. Except for the ground, other boundary walls are frictionless walls. The contact between SPH particles and the frictional wall is described by the classical Coulomb friction law with a friction coefficient of 0.3. Dimension and discretization parameters for all numerical simulations are summarized in Table 2. The parameters used in the extended 3D-H model is reported in Table 1. The process of numerical simulation is divided into two stages: (1) SPH particles are generated and are reached the self-weight balance;

(2) move up the right wall with a speed of 1 m/s. It is worth noting that the initial stress of SPH particles is set to balance with the self-weight. Due to the particularity of the micro-mechanical model, all RVEs need to be confined up to the initial stress to obtain the state variables at the microscopic scale, just like DEM. During the calculation, six representative SPH particles (A-F marked by red cross in Figure 14a) are selected for meso-scale analysis. 

Effect of initial cell size

Negligence of initial cell size can sometimes be an embarrassment in SPH, especially in large deformation problems and dynamic problems. Thus the effect of initial cell size of the proposed multi-scale approach is first examined. Five tests with different numbers of SPH particles are performed. Figure 15 shows a comparison of the final deposition profile between different initial cell size tests. The results show that there are slight differences that are negligible.

Performance of the proposed approach

The problem of granular column collapse has been extensively studied in the literature. For granular flows, the assessment of the final run-out distance is crucially significant, as it determines the extent of the regions affected by the avalanches or landslides. In this section, our simulations have been compared with previous numerical results from [START_REF] Staron | Study of the collapse of granular columns using two-dimensional discrete-grain simulation[END_REF][START_REF] Crosta | Numerical modeling of 2-d granular step collapse on erodible and nonerodible surface[END_REF][START_REF] Utili | 3d dem investigation of granular column collapse: evaluation of debris motion and its destructive power[END_REF] and experimental observations from [START_REF] Lajeunesse | Granular slumping on a horizontal surface[END_REF][START_REF] Lube | Collapses of two-dimensional granular columns[END_REF] in the literature. Following the dimensional analysis by [START_REF] Utili | 3d dem investigation of granular column collapse: evaluation of debris motion and its destructive power[END_REF], the final normalized deposit height is defined as [H] = H f /L i while the final normalized run-out distance is defined as [L] = (L f -L i )/L i . Figure 16 shows the final normalized deposit height [H] and the final normalized run-out distance [L] versus different initial aspect ratio. As

,QLWLDODVSHFWUDWLRa shown in Figure 16a, it can be observed that the final normalized run-out distance predicted by this study shows good agreement with experimental observations and numerical results from a qualitative viewpoint, including [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF] from experimental tests performed under plane strain conditions, the 3D DEM numerical results from [START_REF] Utili | 3d dem investigation of granular column collapse: evaluation of debris motion and its destructive power[END_REF], and the 2D FEM numerical results from [START_REF] Crosta | Numerical modeling of 2-d granular step collapse on erodible and nonerodible surface[END_REF]. The difference between experimental observations from [START_REF] Lajeunesse | Granular slumping on a horizontal surface[END_REF] and the results obtained by this study probably stems from the usage of glass beans. Since particle angularity tends to reduce run-out, the unrealistically large run-out distance is observed by [START_REF] Lajeunesse | Granular slumping on a horizontal surface[END_REF]. Similarly, unrealistically large run-out distance is also observed by [START_REF] Staron | Study of the collapse of granular columns using two-dimensional discrete-grain simulation[END_REF], due to the fact that 2D DEM simulations are employed. Meanwhile, the final normalized deposit height shown in Figure 16b has similar observations as the final normalized run-out distance. The predicted results are consistent with the results obtained by [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF][START_REF] Utili | 3d dem investigation of granular column collapse: evaluation of debris motion and its destructive power[END_REF][START_REF] Crosta | Numerical modeling of 2-d granular step collapse on erodible and nonerodible surface[END_REF], but lower than [START_REF] Lajeunesse | Granular slumping on a horizontal surface[END_REF][START_REF] Staron | Study of the collapse of granular columns using two-dimensional discrete-grain simulation[END_REF]. It can be concluded that the proposed approach is able to predict the final deposit morphology of collapse of granular column. The prediction of the final deposit profile by the proposed approach was discussed previously, below we will focus on the collapse process. In Figure 17, the evolutions of normalized granular spreading length versus normalized time is plotted for various initial aspect ratio. Following [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF][START_REF] Crosta | Numerical modeling of 2-d granular step collapse on erodible and nonerodible surface[END_REF], time has been normalized by [t] = t/ H i /g, which can be thought of as the time taken by a single particle in free fall to travel from the centre of the column to the base. As shown in the figure, the development of the curve of all the results can be roughly divided into four stages: (1) 0

[L] = (L f -L i )/L i /DMHXQHVVHHWDO /XEHHWDO 6WDURQ +LQFK &URVWDHWDO 8WLOLHWDO 7KLVVWXG\ (a) Final normalized run-out distance ,QLWLDODVSHFWUDWLRa [H] = H f /L i /DMHXQHVVHHWDO /XEHHWDO 6WDURQ +LQFK &URVWDHWDO 8WLOLHWDO 7KLVVWXG\ (b) Final normalized deposit height
t H i /g [L] = (L f -L i )L
[t] < 1, the onset of collapse with an initial transient acceleration; (2) 1 [t] < 2, the development of collapse with a constant velocity flow; (3) 2 [t] < 3 stabilizing of granular flow with a gradual deceleration; (4) [t] ≥ 3 final deposit of granular flow. By comparing the numerical results obtained by this study with the results from literatures, it can be found that the predicted results by the proposed approach located in a reasonable range. This verifies the correctness of the proposed multi-scale approach from another point of view.

Certainly, the verification of Figure 17 is only from the perspective of the spreading length of granular column collapse. For the sake of concision, the test a=1.0 is selected for a detailed comparison of the collapse process. Figure 18 shows the comparison of failure progress of granular collapse between numerical results obtained by proposed approach and experimental observations from [START_REF] Nguyen | A new sph-based approach to simulation of granular flows using viscous damping and stress regularisation[END_REF] for initial aspect ratio a=1.0 for both dry and unsaturated materials. The results of dry material are shown on the left column while the unsaturated case with water content w c = 10% are shown on the right column. It is worth noting that the velocity fields obtained by numerical calculations are all extracted in strict accordance with the time points recorded in the experiment. In general, the simulated predictions are basically consistent with the observed morphological evolution. Since the experimental results are based on dry conditions, the numerical results of dry case is closer to the experimental results. It also implies that the proposed approach can not only predict the final deposit state, but also capture the whole process of granular column collapse problem. The comparison between the dry and unsaturated conditions shows that the capillary forces delay the collapse and reduces the run-out distance of the granular column. This observation is qualitatively in agreement with experimental results obtained by [START_REF] Gabrieli | Discrete particle simulations and experiments on the collapse of wet granular columns[END_REF] and reproduced numerically by [START_REF] Wang | Smooth particle hydrodynamics studies of wet granular column collapses[END_REF]. Quantitative comparison are out of the scope of the present paper but will be performed in forthcoming works.

Meso-scale analysis

Taking advantage of the 3D-H model, a meso-scale analysis can be performed. The key microscopic behaviours hiding behind the macroscopic scale are helpful to understand and interpret the micro-mechanisms governing the overall response. Six representative SPH particles (A-F, marked as red cross in Figure 14a) are selected. Figure 19 

σ I n (ϕ) = ω σ n dθdψ σ I t (ϕ) = ω σ t dθdψ (37) 
where σ n and σ t are normal and tangential stress on the meso-scale, thus σ I n (ϕ) and σ I t (ϕ) can be considered as a function of the last Euler angle ϕ, it should be noted that ϕ = 0 • coincides with the positive z-axis direction in the global coordinate system.

The first observation is that all mesoscopic variables are isotropically distributed when t=0 s, as mentioned earlier. The initial magnitude of the mesoscopic variables at each selected point is different, depending on the initial stress at which the point is located. As the collapse progressed, the distribution of σ I n (ϕ) and σ I t (ϕ) gradually became anisotropic, indicating that force fabric gradually evolved into anisotropy. This is a natural evolution of the 3D-H model, with no parameter control. In response to the large deformation dynamics problem, such as granular column collapse, the proposed approach is dedicated to simulating macroscopic stress-strain response based on the evolution of microscopic and mesoscopic information. Naturally, In granular materials, the change in contact fabric is due to the disconnection of existing contacts and the re-contact of new contacts. In the current version of the 3D-H model, when a meso-structure fails, it is not lost, but stored in the system with a 'no-contribution' label. If the global deformation develops and makes this opening contact re-contact, the failed meso-structure is reactivated. However, we do mention that in the current version of the model, no new local meso-structure can appear during a loading program. The meso-scale analysis helps to compare the observations by micro-CT or results by DEM simulations and further improve the model, especially in an actual boundary value problem. 
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Conclusions

This paper presents a new multi-scale coupling approach for simulation of granular column collapse without using the traditional phenomenological constitutive models. The SPH method is employed to solve large deformation boundary value problems while the 3D-H model is used to derive the necessary constitutive response for the representative volume element embedded in each material point of the SPH. A preliminary attempt of the 3D-H model for a low water content condition has been made by taking into account the capillary force between connected grains. The main results are summarized as below:

1. The impact of capillary forces for small water contents is noticeable and impacts both the dynamic of the collapse and the run-out distance of the granular column. Nevertheless, the impact for small water contents is shown to be quantitatively limited. The maximum water content that can be presently reached is limited by the pendular regime approximation. Capillary forces calculation in 3D-H model for higher water contents, for which pendular bridges merge, is currently being investigated. 2. With regard to the large deformation problem, the multi-scale approach can not only capture the final deposition profiles of the granular material after large deformation, but also capture the microstructure failure process from small deformation to large deformation. 3. The final deposit profiles of granular column predicted by the proposed approach quantitatively match the DEM analysis by [START_REF] Utili | 3d dem investigation of granular column collapse: evaluation of debris motion and its destructive power[END_REF] and experimental results by [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF]. The evolution of final normalized run-out distance [L] and deposit height [H] versus initial aspect ratio α are consistent with the results by [START_REF] Lajeunesse | Granular slumping on a horizontal surface[END_REF][START_REF] Staron | Study of the collapse of granular columns using two-dimensional discrete-grain simulation[END_REF][START_REF] Crosta | Numerical modeling of 2-d granular step collapse on erodible and nonerodible surface[END_REF]. 4. Different four stages have been observed in the evolution of normalized run-out distance [L] versus normalized time [t]. The whole process of collapse is consistent with the experimental observations by [START_REF] Nguyen | A new sph-based approach to simulation of granular flows using viscous damping and stress regularisation[END_REF]. 5. Owing to the advantages of the proposed multi-scale approach, the meso-scale analysis is performed within six material points in SPH. It shows how the mesoscopic variables evolve during such a dynamic large deformation problem. It also helps to the further improvements of the micromechanical model by comparing with the observations by micro-CT or numerical results by DEM.

Finally, the coupling multi-scale approach provides an effective computational tool for the analysis of granular flows.
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A Contact law

This elastic-perfect plastic model includes a Mohr-Coulomb criterion and can be expressed under the following incremental formalism:

δN i = knδu i n δT i = min T i + ktδu i t , tan ϕg N i + knδu i n × T i +k t δu i t T i +k t δu i t -T i (38) 
where: i = 1, 2, 3, 4 denotes the identifier of contact number. According to Equations 8, Equations 38 can be rewritten as follows:

   δN i = -knδd i δT i = ktd i δα j elastic regime δT i = tan ϕg (N i -knδd i ) ξ i -T i plastic regime (39) where: ξ i is the sign of T i + ktd i δα j ; j = 1 when i = 1, 2; j = 2 when i = 3, 4; plastic regime is reached when ktd i δα j + T i tan ϕg (N i -knδd i ), otherwise it is in elastic regime. To facilitate the derivation, I p i and I e i are introduced as indicator functions of the contact state, expressed as follow:

I p i =
1 in plastic regime 0 in elastic regime ; I e i = 1 -I p i (40)

Thus, the constitutive relations can be expressed as:

δN i = -knδd i δT i = B i δα j -A i δd i + C i (41) 
where:

   A i = I p i knξ i tan ϕg B i = I e i ktd i C i = I p i (ξ i tan ϕgN i -T i )
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 3 Fig. 3: Global and local coordinate system transformation by employing Euler angles in 3D conditions.
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 5 Fig. 5: Mechanical description of Hexagon A.

  Fig. 6: Mechanical description of Hexagon B.
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 7 Fig. 7: Calculation of capillary force in a liquid bridge based on the Virtual Work Principle.
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 11 Fig. 11: Surface energy in a liquid bridge between two grains in contact, as a function of the water volume.
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 12 Fig. 12: Definition of the vertical filling angle β v and the inclinated filling angle β i .

  bridges are added to the contact forces. At mesoscale, V σ are replaced by V σ cap in Equation 20 and Equation
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 1315 Fig. 13: Flowchart of the proposed multi-scale approach.
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 16 Fig. 16: Comparison between the numerical results (w c = 0%) of this study and results from literatures.
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 17 Fig. 17: Normalized granular spreading length versus normalized time of experimental and numerical (w c = 0%) results.
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 18 Fig. 18: Comparison of failure progress of granular collapse between simulations and experiments for initial aspect ratio (a = 1): left column shows the results of dry material while right column shows the results of unsaturated material with water content w c = 10%.

Fig. 19 :

 19 Fig.19: Meso-scale variable distributions of 3D-H model inside SPH particles A, B and C at three states. The selected SPH particle positions are marked as red cross in Figure14a.
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 20 Fig.20: Meso-scale variable distributions of 3D-H model inside SPH particles D, E and F at three states. The selected SPH particle positions are marked as red cross in Figure14a.

  

  

Table 1 :

 1 Parameters selected in calibration and prediction phases

			kn/rg(Pa)	kt/kn	e 0	ϕg( • )	wc
			1.90 × 10 9	0.6	0.53	25	10%
	Test	Aspect ratio Initial length Initial height particle number Initial cell size Water content
		a	L i (mm)	H i (mm)		-	(mm)	wc
	cell500	1.0	100	100		500	10	0%
	cell1183	1.0	100	100		1183	7.5	0%
	cell2048	1.0	100	100		2048	6.3	0%
	cell4000	1.0	100	100		4000	5	0%
	cell8125	1.0	100	100		8125	4	0%
	a0.5	0.5	100	50		1024	6.3	0%
	a1.0	1.0	100	100		2048	6.3	0%
	a1.5	1.5	100	150		3072	6.3	0%
	a3.0	3.0	100	300		6144	6.3	0%
	a7.0	7.0	100	700		14336	6.3	0%
	a9.0	9.0	100	900		18432	6.3	0%
	dry	1.0	100	100		8125	6.3	0%
	unsaturated	1.0	100	100		8125	6.3	10%

Table 2 :

 2 Dimension and discretization parameters for all numerical simulations