
HAL Id: hal-03120387
https://amu.hal.science/hal-03120387

Submitted on 25 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A novel multi-scale large deformation approach for
modelling of granular collapse

Hao Xiong, Zhen-Yu Yin, François Nicot, Antoine Wautier, Marie Miot, Félix
Darve, Guillaume Veylon, Pierre Philippe

To cite this version:
Hao Xiong, Zhen-Yu Yin, François Nicot, Antoine Wautier, Marie Miot, et al.. A novel multi-scale
large deformation approach for modelling of granular collapse. Acta Geotechnica, 2021, 16, pp.2371-
2388. �10.1007/s11440-020-01113-5�. �hal-03120387�

https://amu.hal.science/hal-03120387
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

A novel multi-scale large deformation approach for modelling of
granular collapse

Hao Xiong · Zhen-Yu Yin* · François Nicot · Antoine
Wautier · Miot Marie · Félix Darve · Guillaume
Veylon · Pierre Philippe

Received: date / Accepted: date

Abstract Collapse of granular material is usually accompanied by long run-out granular flows in natural
hazards, e.g., rock/debris flow and snow avalanches. This paper presents a novel multi-scale approach for
modelling granular column collapse with large deformation. This approach employs the smoothed particle
hydrodynamics (SPH) method to solve large deformation boundary value problems while using a microme-
chanical model to derive the non-linear material response required by the SPH method. After examining
the effect of initial cell size, the proposed approach is subsequently applied to simulate the flow of granular
column in a rectangular channel at a low water content by varying the initial aspect ratio. The numerical
results show good agreement with various experimental observations on both collapse process and final
deposit morphology. Furthermore, the mesoscale behavior is also captured owing to the advantages of the
micromechanical model. Finally, it was demonstrated that the novel multi-scale approach is helpful in
improving the understanding of granular collapse and should be an effective computational tool for the
analysis of real-scale granular flow.
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INRAE, Aix-Marseille University, UR RECOVER, 3275 Rte Cézanne, CS 40061, F-13182 Aix-en-Provence Cedex 5, France

Félix Darve
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1 Introduction

The transformation of granular material from a stationary state into a dynamic flow state can be a prototype
found in many natural disasters and industrial processes. The understanding of granular flow mechanisms
plays a crucial role in minimizing natural hazards (e.g., landslides, snow avalanches, and soil liquefaction)
and in optimizing industrial processes (e.g., mineral processing, ceramic, food processing, pharmaceutical
manufacture, and civil engineering applications). Many theories and assumptions have been proposed in the
attempt to explain the apparent high mobility of granular material, including the bubbles at the bottom of
granular flow (Shreve, 1968; Han et al., 2019), sand fluidization (Hungr and Evans, 2004; Jianbo et al., 2020),
grain segregation-induced friction decrease (Phillips et al., 2006). However, these theories and assumptions
have not been fully confirmed by experiments, and there are still many mechanisms of granular flow that
are still unclear.

It has been recognized that debris flows and granular flows may behave similarly: for instance, they can
sustain shear stresses with very slow deformation due to lasting, frictional grain contacts, and they can
flow rapidly, sustaining inelastic grain collisions (Iverson, 1997; Fávero Neto et al., 2020). Thus, research
has mainly focused on small scale laboratory experiments and numerical simulations of granular materials
(Tan et al., 2019, 2020; Chen et al., 2019, 2020; Lajeunesse et al., 2005; Crosta et al., 2009; Lube et al.,
2005, 2004; Rondon et al., 2011; Fern and Soga, 2017; Zhao et al., 2019; Brezzi et al., 2020; Kermani and
Qiu, 2020). Among them, two classic experiments are widely performed: rectangular channel flowing tests
and column flowing tests. In the former, granular collapse is obtained by putting the granular material in a
rectangular channel and quickly removing a vertical side boundary, whereas, in the latter, granular material
is in a hollow cylinder pipe. This study only discusses the former.

There are many possible solutions to simulate the granular column collapse by using numerical methods,
e.g., the finite element method (FEM) using the arbitrary Lagrangian-Eulerian (ALE) technique (Crosta
et al., 2009; Wu et al., 2019), the discrete element method (DEM) (Utili et al., 2015; Li et al., 2020), the
particle finite element method (PFEM) (Zhang et al., 2015), the smoothing particle finite element method
(SPFEM) (Jin et al., 2020), the material point method (MPM) (So lowski and Sloan, 2015), and the smooth
particle hydrodynamics (SPH) method (Peng et al., 2015; Fávero Neto and Borja, 2018; Wang et al., 2019;
Peng et al., 2019; Bui et al., 2008; Yin et al., 2018; Jin et al., 2019b,a). Furthermore, some multi-scale
approaches have also been employed to simulate the granular column collapse problem, e.g., a hierarchical
coupling scheme to integrate MPM with DEM packings for multi-scale modelling of large deformation
in granular materials (Liang and Zhao, 2019). These methods have contributed to the investigation of
granular flows, but problems remain. On one side, although ALE technology can be used to solve large
deformation problems in continuum methods, it does not really simulate the flow of granular materials
because it lacks a unified formulation for going from solid to fluid in continuum mechanics. On the other
side, the discretization methods require lots of calculations and are not suitable for large-scale boundary
value problems. However, micromechanical models try to give the best compromise. The micromechanical
models have no explicit constitutive behavior but the implicit description by statistical description of grain
interactions, e.g. (Zhao et al., 2018; Zhu et al., 2006; Xiong et al., 2017; Nicot and Darve, 2011; Zhu et al.,
2010; La Ragione et al., 2008; Zhao and Kruyt, 2020).

In this paper, a novel multi-scale framework is proposed. Under this framework, the SPH method is used
to solve the large deformation boundary value problem while the 3D-H model is used to derive the non-
linear constitutive material response of granular material required by SPH for each point. The 3D-H model
is also extended to the condition of low water content by considering the capillary forces in water bridges
between connected grains. Firstly, five simulations with different initial cell size are compared. Then, the
proposed framework is subsequently applied to simulate the rectangular channel flowing tests at a low water
content by varying the initial aspect ratio of the granular column. By comparing with various experimental
observations, it verified that the proposed framework is able to predict the collapse process and the final
deposit morphology. Furthermore, the mesoscopic analysis is performed owing to the advantages of the
3D-H model.

2 Multi-scale framework for granular flows

2.1 Fundamentals of the SPH method

The SPH method was adopted in this study to model large deformation of granular collapse. The SPH
method was initially proposed by (Gingold and Monaghan, 1977; Lucy, 1977) in astrophysics. It was then
introduced to other fields owing its further developments. The derivation of the SPH method can be
divided into two stages. The first stage implements a kernel approximation, where all the physical variables
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Fig. 1: Particle approximations using particles within the integration domain of the smoothing function W
for particle i.

are approximated using an integral transformation of discrete quantities involving the convolution of the
physical variable with a chosen kernel function.

The kernel approximation of a function f(x) at position x = (x, y, z) in physical domain Ω is expressed
as

〈f(x)〉 =

∫
Ω

f(x′)W (x− x′, h)dx′ (1)

where W is the kernel function and h is the smoothing length.
The kernel function W has to satisfy certain requirement such as normalization condition, delta function

property and compact support condition (Monaghan, 1988; Peng et al., 2019). The cubic spine kernel is
employed in this study. The kernel approximation of the gradient of the function∇f(x) can also be obtained
in the same manner to give

〈∇f(x)〉 = −
∫
Ω

f(x′)∇x′W (x− x′, h)dx′ (2)

where ∇x′ indicates that the derivatives are evaluated at x′. If we assume that the continuous field 〈f(x)〉
comes from a piecewise constant field f , then the kernel representation for a function and its gradient as
exhibited above can be approximated by a Riemann summation over the particles (i.e. the subdomains Ωj
where f takes constant value f(xj), xj being the center of Ωi) used in the simulation, thus

〈f(x)〉 =
N∑
j=1

f(xj)W (xi − xj , h)
mj

ρj
(3)

〈∇f(x)〉 = −
N∑
j=1

f(xj)∇jW (xi − xj , h)
mj

ρj
(4)

where ρj and mj are the density and mass of particle j (mj/ρj = |Ωj |), respectively, and N is the number
of particles. Note that ∇iW (xi − xj , h) = −∇jW (xi − xj , h) due to the symmetry of the kernel function.

The second stage of the SPH method involves solving the equations governing granular impact; namely,
the mass and momentum balance equations. These equations can be discretized with the kernel approxi-
mation as follows: 

dρi
dt

=
N∑
j=1

mj

(
vαi − vαj

)
· ∂W (xi − xj , h)

∂xαi

dvαi
dt

=
N∑
j=1

mj

(
σαβi + σαβj

ρiρj
+Πijδ

αβ

)
∂W (xi − xj , h)

∂xβi

(5)
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Fig. 2: General homogenization scheme of 3D-H model (Cambou et al., 1995).

where ρi, vi, pi, σi, mi are the density, velocity, pressure, stress and mass of particle i; d(·)/dt denotes
the time derivative of a physical quantity. The term Πij in the momentum equation is the Monaghan-
type artificial viscosity. This term is introduced to smooth potential unphysical oscillations, to prevent
unphysical particle-particle penetrations, and to stabilize the numerical solutions. The Monaghan-type
artificial viscosity is incorporated into the momentum equation as follows (Monaghan, 1988):

Πij =


−acijφij + βφ2

ij

ρij
vij · xij < 0

0 vij · xij ≥ 0

(6)

where φij = (hijvij · xij)/(|xij |2 +ϕ2), cij = 1
2 (ci + cj), ρij = 1

2 (ρi + ρj), hij = 1
2 (hi + hj), vij = vi− vj ,

and xij = xi − xj . Here ci is the speed of sound associated with the particle i; α and β are constant
coefficients that have values of about 1.0; and, φ = 0.1hij is applied in order to avoid singularity when two
particles come too close.

2.2 Multi-scale constitutive model: 3D-H model

In Equation 5, the stress tensor has to be specified. This stress is linked to the strain field through a
constitutive equation. In the present work, we chose to account for this constitutive equation in an implicit
way with use of a micromechanical model. The 3D-H model (Xiong et al., 2017) was previously proposed
by the authors and has been successfully implemented within a finite element code to solve geotechnical
engineering problem (Xiong et al., 2019a,b). Based on the kinematic hypothesis, the 3D-H model enables
the derivation of the macroscopic stress tensor from the macroscopic strain tensor according to the following
steps (Figure 2):

(1) Kinematic localisation: The meso-structure (shown in Figure 4) is a connection between the macro-
and meso-scale. The dimension of the meso-structure can be characterised by the vector: L = [l1, l2, l3]T ,
wherein l1, l2, l3 represent the lengths along directions n, t, w, respectively (see Figure 5a and Figure 6a).
Thus the kinematic localisation assumption gives:

δl1
l1

= tn · δε · n =
(
P · δε · P−1

)
11

δl2
l2

= tt · δε · t =
(
P · δε · P−1

)
22

δl3
l3

= tw · δε ·w =
(
P · δε · P−1

)
33

(7)

where δε is the incremental macroscopic strain tensor, and P is the rotation matrix from global frame
(x1,x2,x3) to local frame (n, t,w) (see Figure 3).

The kinematic localisation defined by Equation 7 is a homogenisation process. It is analogous to the usual
Voigt approximation in the field of continuous media. The reader should note that the localisation process
goes from the macro- to the meso-scale, not to the micro-scale, as assumed in the Voigt approximation.
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Fig. 3: Global and local coordinate system transformation by employing Euler angles in 3D conditions.
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Fig. 4: The 3D mesostructure and its decomposition procedure in the 3D-H model.

Moreover, it has been widely used in granular materials, such as in (Cambou et al., 1995; Nicot and Darve,
2011; Nicot et al., 2005).

In the 3D-H model, the hexagon deformation described by the vector δL = [δl1, δl2, δl3]T is derived from
the macroscopic strain tensor. Then, the term δL is used as the known variable to compute the relative
displacement at each contact and to compute contact forces.

(2) Meso-structure behaviour: The meso-structure (Figure 4) can be decomposed into two independent
hexagon patterns: Hexagon A (Figure 5) and Hexagon B (Figure 6), both being similar. The geometrical
configuration and external forces applied to the meso-structure are symmetrical; thus for each hexagon,
only two grains need to be analysed. For Hexagon A, as shown in Figure 5, only grains 1 and 2 are analysed.
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The contact between grains 1 and 2 is denoted by contact 1, whereas the contact between grains 2 and 3
is denoted by contact 2. Then, the kinematic relations read (for Hexagon A):


δu1n = δd1
δu1t = d1δα1

δu2n = δd2

(8)

where uin and uit represent the normal and tangential relative displacements at contact i (For Hexagon
A, i = 1 or 2, for Hexagon B, i = 3 or 4), respectively. As depicted in Figure 5a, the geometrical description
for Hexagon A gives:

{
l1 = d2 + 2d1 cosα1

l2 = 2d1 sinα1
(9)

The force balance of grain 1 along direction n and of grain 2 along directions w and n, together with the
moment balance of grain 2, reads:

F a1 =2(N1 cosα1 + T1 sinα1) (10a)

F2 =N1 sinα1 − T1 cosα1 (10b)

N2 =N1 cosα1 + T1 sinα1 +G2 (10c)

G2 =T2 (10d)

where Ni and Ti represent the normal and tangential contact forces of contact i, respectively. The elastic-
perfect plastic inter-particle contact law reads in an incremental form, for a given contact i:

δNi = knδu
i
n

δTi = min
{∥∥Ti + ktδui

t

∥∥ , tanϕg (Ni + δNi)
}
×

Ti + ktδui
t∥∥Ti + ktδui
t

∥∥− Ti
(11)

After simplifying (see more details in Appendix A), the contact law (for Hexagon A) can be rewritten as
follows: 

δN1 = −knδd1
δN2 = −knδd2
δT1 = B1δα1 −A1δd1 + C1

(12)

Term C1 differs from zero only during a transition from an elastic to a plastic regime. For very small
strain increments, as considered throughout this paper, term C1 can therefore be neglected.

To obtain the incremental evolution of the external forces, δd1, δd2 and δα1 need to be expressed as
a function of the mesoscopic strain. Three equations are therefore required. Compatibilities (Equations 9)
provide two relations. The third is the balance equation of grain 2 along direction n (Equation 10c). By
taking the inter-particle contact law (Equations 12) into account, we reach the following algebraic system
expressing the incremental changes in δd1, δd2 and δα1 with respect to the incremental changes in δl1 and
δl2:

 2 cosα1 1 −2d1 sinα1

2 sinα1 0 2d1 cosα1

cosα1 + A1

kn
(sinα1 + 1) −1 F2−B1(sinα1+1)

kn

 δd1δd2
δα1

 =

 δl1δl2
0

 (13)

where A1, B1 are given in A.

Differentiating Equation 10a, Equation 10b and combining with Equations 12 gives:

{
δF a1 = −kn cosα1δu

1
n + kt sinα1δu

1
t − F2δα1

δF2 = −kt cosα1δu
1
t − kn sinα1δu

1
n + F a1 δα1

(14)

Thus, combining Equations 8, Equations 13 and Equation 14, the incremental constitutive relation for
Hexagon A can be expressed as follows:

1

|D|a
[
Ka

11 K
a
12

Ka
21 K

a
22

] [
δl1
δl2

]
=

[
δF a1
δF2

]
(15)
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Fig. 5: Mechanical description of Hexagon A.

where: 

Ka
11 = 2

(
F2 sinα1 − knd1cos2α1 − ktd1sin2α1

)
Ka

12 = (ktd1 sinα1 − F2)

(
A1

kn
sinα1 +

A1

kn
+ 3 cosα1

)
− cosα1 (B1 sinα1 +B1 − F2 + 2knd1 sinα1)

Ka
21 = 2 (kt − kn) d1 sinα1 cosα1 − 2F a1 sinα1

Ka
22 = (F a1 − ktd1 cosα1)

(
A1

kn
sinα1 +

A1

kn
+ 3 cosα1

)
− sinα1 (B1 sinα1 +B1 − F2 + 2knd1 sinα1)

|D|a =
2

kn
(B1 sinα1 +A1d1 cosα1)(sinα1 + 1)

−
2

kn
(F2 sinα1 + knd1 cos2 α1 + 2knd1)

(16)

Similarly, the incremental constitutive relation for Hexagon B can also be obtained. Consequently,
superimposing Hexagon A and Hexagon B, the total incremental force along direction n is δF1 = δF a

1 +δF b
1 .

The incremental constitutive relation of the 3D meso-structure is finally obtained.

(3) Stress averaging: Averaging the mesoscopic stress σ̃ taking place within all the meso-structures in
the specimen of volume V can be performed as follows:

σ =
1

V

∫∫∫
ω(θ, ϕ, ψ)P−1Ṽ σ̃(n, t,w)P sinϕdθdϕdψ (17)

where σ is the macro-stress tensor operating on the specimen scale, Ṽ is the volume of meso-structure
along the local frame (n, t,w), V is total volume of the specimen, which is computed from Ṽ as follows:

V =

∫∫∫
ω(θ, ϕ, ψ)Ṽ sinϕdθdϕdψ (18)

ω(θ, ϕ, ψ) is a probability density function, which fulfills the following relation:

∫ 2π

0

∫ π

0

∫ 2π

ω(θ, ϕ, ψ) sinϕdθdϕdψ = 1 (19)
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Fig. 6: Mechanical description of Hexagon B.

For an isotropic specimen, ω0 = 1/4π2. Ṽ σ̃ with respect to the local frame can be computed from the
local variables (Figure 5 and Figure 6) using the Love-Weber formula (De Saxcé et al., 2004; Love, 2013;
Christoffersen et al., 1981; Mehrabadi et al., 1982):


Ṽ σ̃11 = 4N1d1cos2α1 + 4T1d1 cosα1 sinα1 + 2N2d2

+4N3d3cos2α2 + 4T3d3 cosα2 sinα2 + 2N4d4
Ṽ σ̃22 = 4N1d1sin2α1 − 4T1d1 cosα1 sinα1

Ṽ σ̃33 = 4N3d3sin2α2 − 4T3d3 cosα2 sinα2

(20)

Notably, the local void ratio is related to the opening angle, which is not related to local anisotropy. The
opening angle α1(2) is a geometrical parameter (Figure 5 and Figure 6). The opening angle, together with
the components l1, l2, l3, determine the initial shape of the hexagons as well as the local void ratio of the
meso-structure. For a virgin specimen, the initial opening angle is denoted as α0. Then, α1 = α2 = α0. The
initial void ratio e0(n, t,w) of each meso-structure belonging to the local frame (n, t,w) can be estimated
using the initial opening angle α0 as follows:

e0 = −
4

π
cos3α0 −

6

π
cos2α0 +

4

π
cosα0 +

6

π
− 1 (21)

In summary, the total number of input parameters of the 3D-H model is four (in case of initial mi-
crostructure isotropy). Three material parameters plus one geometry parameter. All parameters can be
obtained by conventional drained triaxial test. The validations of this constitutive model have been con-
ducted in our previous works (Xiong et al., 2017, 2019a, 2020), in which an excellent agreement between
the 3D-H model and experimental data on dry sand has been achieved; therefore, these will not be repeated
here.

2.3 Extension of 3D-H model at a low water content

At low water contents, water in a granular material forms individual capillary bridges between pairs of
grains. These capillary bridges modify the constitutive behaviour of granular materials by introducing
some cohesion. In this section, we show how the 3D-H model used so far can be extended to take into
account capillary forces directly at contact scale for low water contents. The macroscopic effect of the
capillary cohesion thus introduced is then investigated on the same numerical set up of Figure 13.

From a mechanical point of view, a capillary bridge between two grains can be taken into account in the
form of an attractive force between the two connected grains. This capillary force can be computed with
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use of a surface energy minimization method. Thus, the total surface energy Es of two grains connected by
a volume of water is given by

Es = γlgAlg +
2∑
i=1

γsli A
sl
i +

2∑
i=1

γsgi A
sg
i (22)

where γlg = 0.073 N.m−1 is the surface tension of air/water interface at 20◦C given in Molenkamp and
Nazemi (2003), Alg is the area of the liquid/gas interface, γsli and Asli are respectively the surface tension
and the area of the interface between grain i ∈ {1, 2} and water, and γsgi and Asgi are respectively the
surface tension and the area of the interface between grain i and air.

The surface tensions of the interfaces are related to the wetting angle θ by the Young-Dupré equation
Yuan and Lee (2013):

γsli − γsgi = − cos θiγ
lg (23)

Thus the surface energy can be expressed by:

Es = γlgAlg − γlg
2∑
i=1

cos θiA
sl
i + C (24)

where C =
∑2
i=1 γ

sg
i A

s
i is a constant, with Asi = Asgi +Asli the total area of grain i.

The geometries of the liquid/gas and the solid/liquid interfaces are determined numerically with the sur-
face energy minimization method implemented in Surface Evolver Brakke (1992). The numerical procedure
is briefly detailed in the following. First, a rough mesh of the interfaces is created. With use of a gradient
descent method, the nodes of the mesh are moved in order to minimize the total energy while keeping
constant the volume of water. Then, the mesh is refined and the gradient descent procedure repeated until
a precise geometry of the capillary bridge is obtained.

Eventually, the capillary force acting between the two grains is obtained from the virtual work principle.
As presented in Figure 7, an incremental displacement δd is imposed to one of the grain in the direction of
the bridge, and the surface energy of this new configuration Es(δd) is calculated and compared with the
original one. In a closed, static system without gravity, there are neither kinetic nor potential and internal
energy. The incremental work δW of the capillary force Fc is thus related to the surface energy variation
as:

δW = Fc.δd = δEs (25)

This means that the capillary force Fc can be expressed as a function of the variation of surface energy
Es(δd)− Es(0) and the incremental displacement δd:

Fc =
Es(δd)− Es(0)

δd
(26)

By repeating the whole procedure for varying liquid volume, the dimensionless capillary force F ∗c = Fc

γslr

and the half-filling angle β (as defined in Figure 7) can be computed as functions of the dimensionless liquid
volume V ∗ = V/R3 where R is the grain radius. Note that, in the present work, the two grains are of equal
radius and in contact. The reason for this restriction lies in the fact that the purpose of these simulations
is to provide an empirical expression of the capillary force acting in between the contacting grains of the
ten grain meso-structure of the H-model (Figure 10). Figure 8 shows that the capillary force in a liquid
bridge can be approximated fairly well with a 4th degree polynomial while Figure 9 shows that the half
filling angle can be approximated really accurately with a power law:{

F ∗c = 0.701V ∗
4

− 3.167V ∗
3

+ 5.150V ∗
2

− 4.290V ∗ + 5.380

β = 68.0V ∗
0.293 (27)

For low water contents, water in a meso-structure forms independent capillary bridges between grains
two by two, as presented in Figure 10.

We suppose that the water content wc provided at macroscale is the same in all the meso-structures
(whatever their local orientations). This hypothesis can be seen as a localisation of the water content, as for
the strain localisation. Under this hypothesis, the dimensionless water volume V ∗w in a given meso-domain
is:

V ∗w = wcV
∗
s
γs
γw

(28)
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Fig. 7: Calculation of capillary force in a liquid bridge based on the Virtual Work Principle.

Fig. 8: Capillary force in a liquid bridge between two grains in contact as a function of the water vol-
ume calculated with the surface energy minimization method (solid line) and approached by a 4th degree
polynomial (dashed line).

Fig. 9: Half-filling angle in a liquid bridge between two grains in contact as a function of the water volume
calculated with the surface energy minimization method (solid line) and approached by a power law (dashed
line).
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Fig. 10: Individual capillary bridges between grains in the H-model meso-structure. Vertical bridges are
coloured in blue while inclined bridges are coloured in green

with Vs being the volume of the 10 grains contained into the meso-domain V ∗s = Vs

r3 = 40
3 π, and γs

γw
= 2.4

the ratio of the solid and liquid specific weight.
The total volume of water V ∗w lying inside the dodecahedron come from the contribution of the four

vertical bridges and eight inclined bridges visible in Figure 10. To keep the symmetry of the meso-structure,
we assume that all vertical bridges have the same volume V ∗v and all inclined bridges have the same volume
V ∗i . As a result, the total volume of water splits as:

V ∗w = 8V ∗i + 4V ∗v (29)

In the above equation, we have one degree of freedom to split the volume V ∗w between V ∗i and V ∗v . We
suppose that the distribution of water volume between the different capillary bridges is the distribution
which minimizes the total surface energy in the meso-structure. However, this distribution has to insure
that the bridges are not in contact, which would involve the merging of capillary bridges into more complex
coalesced bridges (this particular point will be deeply investigated in a forthcoming paper). To carry on the
computation, it is hypothesized that grain interpenetration is neglected so that the two hexagonal patterns
of a cell are identical. Thus, it is assumed that:α =

α1 + α2

2

d1 = d3 = d2 = d4 = 2r
(30)

The dimensionless total surface energy in a meso-structure Emeso
∗

s can therefore be written as:

Emeso
∗

s = 8Ebridge
∗

s (V ∗i ) + 4Ebridge
∗

s (V ∗v ) = 8Ebridge
∗

s (
V ∗w − 4V ∗v

8
) + 4Ebridge

∗

s (V ∗v ) (31)

The derivative of the total surface energy with respect to the volume of one vertical bridge is:

dEmeso
∗

s

dV ∗v
= −4

dEbridge
∗

s

dV ∗v
(
V ∗w − V ∗v

4
) + 4

dEbridge
∗

s

dV ∗v
(V ∗v ) (32)

Figure 11 shows the surface energy in a bridge. The minimum of Emeso
∗

s , given by
dEmeso∗

s

dV ∗
v

= 0 corre-

sponds to the case where V ∗i = V ∗v =
V ∗

w

12 .
To insure that the bridges do not touch each other, the filling angles of the vertical bridges βv and of

the inclined bridges βi, as defined in Figure 12, should fulfil the following conditions: cosβi > cosβi,coal =

√
1 + cos2 α

2

βv > βv,coal = π − α− βi
(33)

where βi,coal is the limit half-filling angle of the inclined bridges corresponding to the contact of the inclined
bridge and βv,coal is the limit half-filling angle of the vertical bridges corresponding to the contact between
inclined and vertical bridges.
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Fig. 11: Surface energy in a liquid bridge between two grains in contact, as a function of the water volume.

Fig. 12: Definition of the vertical filling angle βv and the inclinated filling angle βi.

The conditions of contact defined by Equation 33 are checked for V ∗i = V ∗w/12. In case of contact, Vi is
decreased to the maximal value which insure the independence of the capillary bridges, in order to obtain
the geometrically compatible configuration with the minimal surface energy.

At this point, volume in each bridge is known, and the capillary force at each contact of the cell can
be deduced from the Equation 27. These capillary forces, noted Ncap

1 or Ncap
3 in the inclined bridges and

Ncap
2 or Ncap

4 in the vertical bridges are added to the contact forces. At mesoscale, Ṽ σ̃ are replaced by

Ṽ σ̃cap in Equation 20 and Equation 17, thus, using Love-Weber formula:

Ṽ σ̃cap11 = 4(N1 +Ncap
1 )d1cos2α1 + 4T1d1 cosα1 sinα1 + 2(N2 +Ncap

2 )d2
+4(N3 +Ncap

3 )d3cos2α2 + 4T3d3 cosα2 sinα2 + 2(N4 +Ncap
4 )d4

Ṽ σ̃cap22 = 4(N1 +Ncap
1 )d1sin2α1 − 4T1d1 cosα1 sinα1

Ṽ σ̃cap33 = 4(N3 +Ncap
3 )d3sin2α2 − 4T3d3 cosα2 sinα2

(34)

σ =
1

V

∫∫∫
ω(θ, ϕ, ψ)P−1Ṽ σ̃cap(n, t,w)P sinϕdϕdθdψ (35)

When considering a large deformation problem such as sand column collapse, an invariant stress tensor
with respect to rigid-body rotation must be applied. Accordingly, the Green-Naghdi rate which gives an
objective measure of the stress rate was adopted in this study (Green and Naghdi, 1964; Fávero Neto and
Borja, 2018; Fávero Neto et al., 2020; Liang and Zhao, 2019; Jin et al., 2020; Systèmes, 2014):

σOG = σ̇ −Ω · σ + σ ·ΩT (36)
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Table 1: Parameters selected in calibration and prediction phases

kn/rg(Pa) kt/kn e0 ϕg(◦) wc

1.90× 109 0.6 0.53 25 10%

Test Aspect ratio Initial length Initial height particle number Initial cell size Water content
a Li (mm) Hi (mm) - (mm) wc

cell500 1.0 100 100 500 10 0%
cell1183 1.0 100 100 1183 7.5 0%
cell2048 1.0 100 100 2048 6.3 0%
cell4000 1.0 100 100 4000 5 0%
cell8125 1.0 100 100 8125 4 0%

a0.5 0.5 100 50 1024 6.3 0%
a1.0 1.0 100 100 2048 6.3 0%
a1.5 1.5 100 150 3072 6.3 0%
a3.0 3.0 100 300 6144 6.3 0%
a7.0 7.0 100 700 14336 6.3 0%
a9.0 9.0 100 900 18432 6.3 0%
dry 1.0 100 100 8125 6.3 0%

unsaturated 1.0 100 100 8125 6.3 10%

Table 2: Dimension and discretization parameters for all numerical simulations

where Ω = Ṙ ·RT , R is the rigid body rotation in the polar decomposition of the deformation gradient
F . The differences between Green-Naghdi rate and Jaumann rate are significant only if finite rotation of a
material point is accompanied by finite shear.

2.4 Implementation of 3D-H model in SPH

The implementation of the 3D-H model in the SPH codes constitutes a complete multi-scale procedure.
The SPH method is an effective method to solve the large deformation boundary value problem. SPH
searches whether particles i and j interact with each other. Once determined that the two particles interact,
the statistical representative volume element (RVE) of the 3D-H model embedded in the SPH particles
begins to work. As illustrated before, the 3D-H model localizes the incremental macro strain tensor by
using Equation 7. Then, the meso-structures are decomposed into two perpendicular hexagons, in which
the constitutive behaviour is able to be solved (Equation 13). Hereafter, the incremental macro stress tensor
of the RVE is obtained by stress averaging (Equation 17). Finally, the position and velocity of SPH particles
are updated. The entire calculation process of the proposed multi-scale approach is shown in Figure 13.

3 Multi-scale modelling of granular collapse

3.1 Model setup

The numerical example chosen for the demonstration of the proposed multi-scale approach is a classical
dynamic problem: the two-dimensional granular column collapsed to frictional ground under gravity. The
geometry and the boundary conditions of the granular column are shown in Figure 14. Li and Hi denote the
initial length and initial height, respectively. The initial aspect ratio is defined as a = Hi/Li. After granular
columns collapse to finial deposit profile, Lf and Hf denote the run-out distance and deposit height,
respectively. Except for the ground, other boundary walls are frictionless walls. The contact between SPH
particles and the frictional wall is described by the classical Coulomb friction law with a friction coefficient of
0.3. Dimension and discretization parameters for all numerical simulations are summarized in Table 2. The
parameters used in the extended 3D-H model is reported in Table 1. The process of numerical simulation is
divided into two stages: (1) SPH particles are generated and are reached the self-weight balance; (2) move
up the right wall with a speed of 1 m/s. It is worth noting that the initial stress of SPH particles is set to
balance with the self-weight. Due to the particularity of the micro-mechanical model, all RVEs need to be
confined up to the initial stress to obtain the state variables at the microscopic scale, just like DEM. During
the calculation, six representative SPH particles (A-F marked by red cross in Figure 14a) are selected for
meso-scale analysis.
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Fig. 13: Flowchart of the proposed multi-scale approach.



A novel multi-scale large deformation approach for modelling of granular collapse 15

Fig. 14: Model setup and final deposit configurations for the collapse of granular column: (a) initial sample;
(b) final deposit (Li: initial length; Hi: initial height; Lf : run-out distance; Hf : deposit height). Selected
particles for meso-scale analysis is marked as red cross
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Fig. 15: Comparison of final deposition profiles between different initial cell sizes.

3.2 Effect of initial cell size

Negligence of initial cell size can sometimes be an embarrassment in SPH, especially in large deformation
problems and dynamic problems. Thus the effect of initial cell size of the proposed multi-scale approach
is first examined. Five tests with different numbers of SPH particles are performed. Figure 15 shows a
comparison of the final deposition profile between different initial cell size tests. The results show that
there are slight differences that are negligible.

3.3 Performance of the proposed approach

The problem of granular column collapse has been extensively studied in the literature. For granular flows,
the assessment of the final run-out distance is crucially significant, as it determines the extent of the regions
affected by the avalanches or landslides. In this section, our simulations have been compared with previous
numerical results from (Staron and Hinch, 2005; Crosta et al., 2009; Utili et al., 2015) and experimental
observations from (Lajeunesse et al., 2005; Lube et al., 2005) in the literature. Following the dimensional
analysis by (Utili et al., 2015), the final normalized deposit height is defined as [H] = Hf/Li while the
final normalized run-out distance is defined as [L] = (Lf − Li)/Li. Figure 16 shows the final normalized
deposit height [H] and the final normalized run-out distance [L] versus different initial aspect ratio. As
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Fig. 16: Comparison between the numerical results (wc = 0%) of this study and results from literatures.

shown in Figure 16a, it can be observed that the final normalized run-out distance predicted by this study
shows good agreement with experimental observations and numerical results from a qualitative viewpoint,
including (Lube et al., 2005) from experimental tests performed under plane strain conditions, the 3D
DEM numerical results from (Utili et al., 2015), and the 2D FEM numerical results from (Crosta et al.,
2009). The difference between experimental observations from (Lajeunesse et al., 2005) and the results
obtained by this study probably stems from the usage of glass beans. Since particle angularity tends to
reduce run-out, the unrealistically large run-out distance is observed by (Lajeunesse et al., 2005). Similarly,
unrealistically large run-out distance is also observed by (Staron and Hinch, 2005), due to the fact that 2D
DEM simulations are employed. Meanwhile, the final normalized deposit height shown in Figure 16b has
similar observations as the final normalized run-out distance. The predicted results are consistent with the
results obtained by (Lube et al., 2005; Utili et al., 2015; Crosta et al., 2009), but lower than (Lajeunesse
et al., 2005; Staron and Hinch, 2005). It can be concluded that the proposed approach is able to predict
the final deposit morphology of collapse of granular column.

The prediction of the final deposit profile by the proposed approach was discussed previously, below
we will focus on the collapse process. In Figure 17, the evolutions of normalized granular spreading length
versus normalized time is plotted for various initial aspect ratio. Following (Lube et al., 2005; Crosta et al.,
2009), time has been normalized by [t] = t/

√
Hi/g, which can be thought of as the time taken by a

single particle in free fall to travel from the centre of the column to the base. As shown in the figure, the
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Fig. 17: Normalized granular spreading length versus normalized time of experimental and numerical (wc =
0%) results.

development of the curve of all the results can be roughly divided into four stages: (1) 0 6 [t] < 1, the
onset of collapse with an initial transient acceleration; (2) 1 6 [t] < 2, the development of collapse with a
constant velocity flow; (3) 2 6 [t] < 3 stabilizing of granular flow with a gradual deceleration; (4) [t] ≥ 3
final deposit of granular flow. By comparing the numerical results obtained by this study with the results
from literatures, it can be found that the predicted results by the proposed approach located in a reasonable
range. This verifies the correctness of the proposed multi-scale approach from another point of view.

Certainly, the verification of Figure 17 is only from the perspective of the spreading length of granular
column collapse. For the sake of concision, the test a=1.0 is selected for a detailed comparison of the
collapse process. Figure 18 shows the comparison of failure progress of granular collapse between numerical
results obtained by proposed approach and experimental observations from (Nguyen et al., 2017) for initial
aspect ratio a=1.0 for both dry and unsaturated materials. The results of dry material are shown on the left
column while the unsaturated case with water content wc = 10% are shown on the right column. It is worth
noting that the velocity fields obtained by numerical calculations are all extracted in strict accordance with
the time points recorded in the experiment. In general, the simulated predictions are basically consistent
with the observed morphological evolution. Since the experimental results are based on dry conditions,
the numerical results of dry case is closer to the experimental results. It also implies that the proposed
approach can not only predict the final deposit state, but also capture the whole process of granular column
collapse problem. The comparison between the dry and unsaturated conditions shows that the capillary
forces delay the collapse and reduces the run-out distance of the granular column. This observation is
qualitatively in agreement with experimental results obtained by (Gabrieli et al., 2013) and reproduced
numerically by (Wang et al., 2019). Quantitative comparison are out of the scope of the present paper but
will be performed in forthcoming works.

3.4 Meso-scale analysis

Taking advantage of the 3D-H model, a meso-scale analysis can be performed. The key microscopic be-
haviours hiding behind the macroscopic scale are helpful to understand and interpret the micro-mechanisms
governing the overall response. Six representative SPH particles (A-F, marked as red cross in Figure 14a)
are selected. Figure 19 and Figure 20 reveal the microscopic variable distributions of 3D-H model inside
SPH particles at three states of dry case: (1) initial state at t=0; (2) developing of collapse at t=0.118
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Fig. 18: Comparison of failure progress of granular collapse between simulations and experiments for initial
aspect ratio (a = 1): left column shows the results of dry material while right column shows the results of
unsaturated material with water content wc = 10%.

s; and (3) final deposit state at t=0.571 s. For the sake of simplification, the original 3D distributions of
hexagons are plotted in 2D by integrating over two Euler angles θ and ψ as follows:

σ̃In(ϕ) =
∫∫
ωσ̃ndθdψ

σ̃It (ϕ) =
∫∫
ωσ̃tdθdψ

(37)

where σ̃n and σ̃t are normal and tangential stress on the meso-scale, thus σ̃In(ϕ) and σ̃It (ϕ) can be considered
as a function of the last Euler angle ϕ, it should be noted that ϕ = 0◦ coincides with the positive z-axis
direction in the global coordinate system.

The first observation is that all mesoscopic variables are isotropically distributed when t=0 s, as men-
tioned earlier. The initial magnitude of the mesoscopic variables at each selected point is different, depending
on the initial stress at which the point is located. As the collapse progressed, the distribution of σ̃In(ϕ) and
σ̃It (ϕ) gradually became anisotropic, indicating that force fabric gradually evolved into anisotropy. This is
a natural evolution of the 3D-H model, with no parameter control. In response to the large deformation
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Fig. 19: Meso-scale variable distributions of 3D-H model inside SPH particles A, B and C at three states.
The selected SPH particle positions are marked as red cross in Figure 14a.

dynamics problem, such as granular column collapse, the proposed approach is dedicated to simulating
macroscopic stress-strain response based on the evolution of microscopic and mesoscopic information. Nat-
urally, In granular materials, the change in contact fabric is due to the disconnection of existing contacts
and the re-contact of new contacts. In the current version of the 3D-H model, when a meso-structure fails,
it is not lost, but stored in the system with a ‘no-contribution’ label. If the global deformation develops and
makes this opening contact re-contact, the failed meso-structure is reactivated. However, we do mention
that in the current version of the model, no new local meso-structure can appear during a loading program.
The meso-scale analysis helps to compare the observations by micro-CT or results by DEM simulations
and further improve the model, especially in an actual boundary value problem.
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Fig. 20: Meso-scale variable distributions of 3D-H model inside SPH particles D, E and F at three states.
The selected SPH particle positions are marked as red cross in Figure 14a.
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4 Conclusions

This paper presents a new multi-scale coupling approach for simulation of granular column collapse without
using the traditional phenomenological constitutive models. The SPH method is employed to solve large
deformation boundary value problems while the 3D-H model is used to derive the necessary constitutive
response for the representative volume element embedded in each material point of the SPH. A preliminary
attempt of the 3D-H model for a low water content condition has been made by taking into account the
capillary force between connected grains. The main results are summarized as below:

1. The impact of capillary forces for small water contents is noticeable and impacts both the dynamic of
the collapse and the run-out distance of the granular column. Nevertheless, the impact for small water
contents is shown to be quantitatively limited. The maximum water content that can be presently
reached is limited by the pendular regime approximation. Capillary forces calculation in 3D-H model
for higher water contents, for which pendular bridges merge, is currently being investigated.

2. With regard to the large deformation problem, the multi-scale approach can not only capture the final
deposition profiles of the granular material after large deformation, but also capture the microstructure
failure process from small deformation to large deformation.

3. The final deposit profiles of granular column predicted by the proposed approach quantitatively match
the DEM analysis by (Utili et al., 2015) and experimental results by (Lube et al., 2005). The evolution of
final normalized run-out distance [L] and deposit height [H] versus initial aspect ratio α are consistent
with the results by (Lajeunesse et al., 2005; Staron and Hinch, 2005; Crosta et al., 2009).

4. Different four stages have been observed in the evolution of normalized run-out distance [L] versus
normalized time [t]. The whole process of collapse is consistent with the experimental observations by
(Nguyen et al., 2017).

5. Owing to the advantages of the proposed multi-scale approach, the meso-scale analysis is performed
within six material points in SPH. It shows how the mesoscopic variables evolve during such a dynamic
large deformation problem. It also helps to the further improvements of the micromechanical model by
comparing with the observations by micro-CT or numerical results by DEM.

Finally, the coupling multi-scale approach provides an effective computational tool for the analysis of
granular flows.

5 Acknowledgment

The financial support provided by the GRF project (Grant No. 15209119) and the RIF project (Grant No.
PolyU R5037-18F) from the Research Grants Council (RGC) of Hong Kong are gratefully acknowledged.
We also gratefully acknowledge the CNRS International Research Network GeoMech for having offered the
opportunity to make this project possible through a long term collaboration of all the authors (http://gdr-
mege.univ-lr.fr/).

A Contact law

This elastic-perfect plastic model includes a Mohr-Coulomb criterion and can be expressed under the following incremental
formalism: {

δNi = knδuin

δTi = min
{∥∥Ti + ktδuit

∥∥ , tanϕg
(
Ni + knδuin

)}
× Ti+ktδu

i
t

‖Ti+ktδu
i
t‖
− Ti

(38)

where: i = 1, 2, 3, 4 denotes the identifier of contact number.
According to Equations 8, Equations 38 can be rewritten as follows: δNi = −knδdi

δTi = ktdiδαj elastic regime
δTi = tanϕg (Ni − knδdi) ξi − Ti plastic regime

(39)

where: ξi is the sign of Ti + ktdiδαj ; j = 1 when i = 1, 2; j = 2 when i = 3, 4; plastic regime is reached when
‖ ktdiδαj + Ti ‖> tanϕg (Ni − knδdi), otherwise it is in elastic regime.

To facilitate the derivation, Ipi and Iei are introduced as indicator functions of the contact state, expressed as follow:

Ipi =

{
1 in plastic regime
0 in elastic regime

; Iei = 1− Ipi (40)

Thus, the constitutive relations can be expressed as:{
δNi = −knδdi
δTi = Biδαj −Aiδdi + Ci

(41)
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where:

Ai = Ipi knξi tanϕg
Bi = Iei ktdi
Ci = Ipi (ξi tanϕgNi − Ti)
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