
HAL Id: hal-03132228
https://amu.hal.science/hal-03132228

Submitted on 4 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Refinement of Conflict History Search Through
Multi-Armed Bandit

Mohamed Sami Cherif, Djamal Habet, Cyril Terrioux

To cite this version:
Mohamed Sami Cherif, Djamal Habet, Cyril Terrioux. On the Refinement of Conflict History Search
Through Multi-Armed Bandit. IEEE 32nd International Conference on Tools with Artificial Intelli-
gence (ICTAI), Nov 2020, Baltimore, United States. pp.264-271, �10.1109/ICTAI50040.2020.00050�.
�hal-03132228�

https://amu.hal.science/hal-03132228
https://hal.archives-ouvertes.fr

On the Refinement of Conflict History Search
Through Multi-Armed Bandit

Mohamed Sami Cherif Djamal Habet
Aix-Marseille Univ, Université de Toulon, CNRS, LIS, France
{mohamedsami.cherif, djamal.habet, cyril.terrioux}@lis-lab.fr

Cyril Terrioux

Abstract—Reinforcement learning has shown its relevance in
designing search heuristics for backtracking algorithms dedicated
to solving decision problems under constraints. Recently, an
efficient heuristic, called Conflict History Search (CHS), based on
the history of search failures was introduced for the Constraint
Satisfaction Problem (CSP). The Exponential Recency Weighted
Average (ERWA) is used to estimate the hardness of constraints
and CHS favors the variables that often appear in recent failures.
The step parameter is important in CHS since it controls the
estimation of the hardness of constraints and its refinement may
lead to notable improvements. The current research aims to
achieve this objective. Indeed, a Multi-Armed Bandits (MAB)
framework can select an appropriate value of this parameter
during the restarts performed by the search algorithm. Each arm
represents a CHS with a given value for the step parameter and it
is rewarded by its ability to improve the search. A training phase
is introduced earlier in the search to help MAB choose a relevant
arm. The experimental evaluation shows that this approach leads
to significant improvements regarding CHS and other state-of-
the-art heuristics.

Index Terms—Constraint programming, Conflict History
Search, Multi-Armed Bandits

I. INTRODUCTION

The Constraint Satisfaction Problem (CSP) is used success-
fully in modeling and solving a large variety of academic and
real-world problems [1]. In a CSP instance, the variables are
defined by their domain values and the constraints specify
the relations between variables. The corresponding problem
consists in finding an assignment of all the variables that
satisfies all the constraints. The solvers dedicated to this NP-
complete problem are often based on backtracking algorithms
with powerful embedded techniques such as filtering, learning,
restarts and search heuristics [1]. A search or branching
heuristic determines the manner of visiting the search space
by deciding the next variable to assign or to fix. Such a
heuristic has a significant impact on the size of the search tree
developed by a backtracking algorithm, and consequently on
its running time. Although finding the best branching variable
while minimizing the search-tree size is NP-hard [2], many
search heuristics have been proposed (e.g. [3], [4], [5], [6],
[7], [8], [9], [10], [11]) and are intended to dynamically
exploit solving related information such as filtering efficiency
or constraint hardness.

This work has been published in the proceedings of the 32nd IEEE
International Conference on Tools with Artificial Intelligence, ICTAI 2020,
Baltimore, MD, USA, November 9-11, 2020. ISBN 978-1-7281-9228-4 DOI
10.1109/ICTAI50040.2020.00050

Recent research has shown the interest of machine learning
in designing efficient search heuristics for CSP [12], [13]
as well as for other decision problems [14]. One of the
motivations is the difficulty of defining a heuristic which can
have high performance on any considered instance. Indeed,
a heuristic can perform very well on a family of instances
while falling drastically on another [13]. In this context,
reinforcement learning under the Multi-Armed Bandit (MAB)
framework is employed to tend towards a relevant heuristic
among a set of candidates which constitute the arms of the
MAB. An arm/heuristic is selected accordingly at each node
of the search tree [13] or at each restart of the backtracking
algorithm [12].

Another motivation for considering reinforcement learning
is to estimate the hardness of constraints while relying on the
history of the search steps and, in particular, those leading
to dead-ends. This estimation is then used to guide the
search on variables appearing in hard constraints. Conflict
History Search (CHS) [15] is designed with this in mind.
The estimation of the hardness is achieved by the Exponential
Recency Weighted Average (ERWA) [16]. ERWA calculates
the constraint hardness value by considering its current value
and a reward value which becomes higher when the constraint
leads to dead-ends over short periods. An important parameter
is involved in keeping a balance between these two values,
namely the step-size value or step parameter. Although it is
identified as a hard task, a relevant initialization of the step
parameter may lead to significant improvements [15].

Hence, the main contribution of this paper is refining CHS
by dealing with the problem of efficiently setting the step-size
parameter in CHS. Indeed, a MAB framework is proposed
on the basis of CHS while taking advantage of the restart
mechanism in backtracking algorithms. Recall that restarts
are widely used to prevent the heavy-tailed phenomena [17].
Each run has a duration expressed in terms of the number of
decisions, conflicts or backtracks and a restart policy is chosen
to define the effective duration of the runs, such as geometric
[18] or Luby [19] sequences. The candidate heuristics or arms
of the MAB are CHS instances which differ by the initial value
of the step parameter taken from a range of given values.

Important components of the MAB framework are the
reward assigned to each arm and the policy that selects
the next arm to use after a restart. Even if any policy can
be employed in this framework, UCB (Upper Confidence
Bound) is used as it has shown its relevance in other work

https://doi.org/10.1109/ICTAI50040.2020.00050
https://doi.org/10.1109/ICTAI50040.2020.00050

[20], [12], [13]. Furthermore, any policy is supported by
the reward function which should be able to estimate the
positive impact of a heuristic on the efficiency of the search.
Accordingly, a reward function is proposed to favor the arm
that reaches dead-ends quickly. A training phase is also
proposed consisting in a series of runs with an identical
duration conducted according to a round-robin policy on the
arms. The aim of this initialization phase is to speed-up the
convergence of the MAB framework. The proposed MAB
framework based on CHS, denoted by MAB-CHS, is evaluated
on XCSP3 benchmarks1http://www.xcsp.org. The empirical
results confirm the relevance of the proposed approach as
MAB-CHS not only improves the performance of CHS but
also shows improvements regarding similar approaches and
other powerful heuristics.

The paper is organized as follows. Definitions and notations
are given in Section II and related work is described in Section
III. The proposed MAB-CHS framework is detailed in Section
IV and experimentally evaluated in Section V. We conclude
and discuss perspective work in Section VI.

II. BACKGROUND

An instance of a Constraint Satisfaction Problem (CSP)
consists of a triplet (X,D,C) such that X = {x1, · · · , xn}
is a set of n variables, D = {D1, ..., Dn} is a set of finite
domains, and C = {c1, · · · , ce} is a set of e constraints.
The domain of each variable xi is Di. Each constraint cj
is defined by its scope S(cj) = {xj1 , · · · , xjk} ⊆ X and its
compatibility relation R(cj) ⊆ Dj1×· · ·×Djk . The constraint
satisfaction problem consists in finding an assignment of
the variables xi ∈ X , within their respective domains Di

(1 ≤ i ≤ n), which satisfies each constraint in C. Such
an assignment is said to be consistent and is a solution of
the given instance. Checking whether a CSP instance has a
solution is NP-complete [1].

CSP solving is mainly based on a backtracking algorithm
while maintaining a given level of consistency (e.g. the Gen-
eralized Arc Consistency property [21]). A usual algorithm
is Maintaining Arc Consistency (MAC) [22]. A search tree
is constructed where each node corresponds to a decision
(xi = v or xi 6= v) with respect to a selected variable xi
which is not yet fixed and a domain value v. The choice of
the variable xi is taken according to a search heuristic (i.e.
variable branching heuristic). MAC can embed sophisticated
techniques, such as nogood recording and efficient handling of
global constraints [1], leading to high performance. Further-
more, restarts are used to address the heavy-tail phenomena
related to irrelevant decisions during the search [17]. The
search algorithm performs a series of runs. Each run has
a duration expressed in terms of the authorized number of
decisions, conflicts, backtracks, etc. The duration of each run
is determined following several policies, such as geometric
[18] or Luby [19] sequences.

In a Multi-Armed Bandit framework (MAB), a bandit, i.e.
an agent, has to choose an arm from a set of candidates by
relying on information collected through a sequence of trials.

1http://www.xcsp.org

The information available to the bandit are rewards attributed
to each arm. One of the earliest MAB models, stochastic
MAB, was introduced in [23]. As a decision process, a MAB
faces an important dilemma which is the trade-off between
exploitation and exploration, i.e. the bandit needs to explore
underused arms often enough to have a robust feedback
while also exploiting good candidates which have the best
rewards. To this end, many policies have been devised such
as the ε-Greedy strategy [16], which does random exploration,
Thompson Sampling [24] and the Upper Confidence Bound
(UCB) family [25], [26], [27], which conduct smart explo-
ration adequate for uncertain environments, among others.

III. RELATED WORK

The state-of-the-art in terms of search heuristics is very
rich. Indeed, many heuristics have been proposed aiming
mainly to satisfy the first-fail principle [28] which advises ”to
succeed, try first where you are likely to fail”. In this context,
efficient heuristics are adaptive and dynamic, by basing the
branching decisions on information gathered throughout the
solving process, such as the effectiveness of filtering as in ABS
[9] and IBS [10] or the hardness of constraints as employed
in dom/wdeg [5] and its variants [8], [12], [11]. In addition,
heuristics such as LC [29] and COS [30] attempt to consider
the search history and require the use of auxiliary heuristics.

The Conflict History-Based (CHB) branching heuristic [31],
based on the Exponential Recency Weighted Average (ERWA)
[16], was introduced for the satisfiability problem. CHB
rewards the activity of variables favoring the ones that are
involved in recent conflicts. In particular, the reward associated
to each variable is updated whenever it is branched on or
propagated and its score is calculated after each restart. The
Learning Rate Branching (LRB) heuristic [14] extends CHB
by exploiting locality and introducing the learning rate of
variables. Recently, CHB was also implemented in the context
of CSP [32]. The Conflict-History Search (CHS) heuristic [15]
is also inspired from CHB and similarly considers the history
of constraint failures, favoring the variables that are involved
in recent failures. Conflicts are dated and the constraints are
weighted on the basis of ERWA. Weights are coupled with the
variable domains to calculate the Conflict-History scores of the
variables. The present work revolves around the CHS heuristic,
which we will address more in detail in the next section, and
how to refine it using reinforcement learning techniques.

Reinforcement learning techniques have already been stud-
ied in constraint programming. In particular, the Multi-Armed
Bandit (MAB) framework was used to select adaptively the
consistency level of propagation at each node of the search tree
[20]. MAB was also used to select a restart strategy in [33].
Moreover, a linear regression method was applied to learn the
scoring function of value heuristics [34]. Rewards, calculated
for each node of the search tree, were also used to select adap-
tively a backtracking strategy in [35]. Furthermore, a learning
process based on the Least Squares Policy Iteration technique
was used to tune adaptively the parameters of stochastic
local search algorithms [36]. Upper Confidence Bound (UCB)
and Thompson Sampling techniques were employed to select

automatically, at each node of the search tree, a branching
heuristic for CSP, among a set of candidate ones [13]. A recent
work proposes a MAB framework to select at each restart in
a backtracking algorithm a search heuristic among a set of
candidate ones, such as ABS, IBS or CHS [12]. In particular,
a reward function was designed to favor, among the set of
candidate heuristics, those able to prune large parts of the
search tree and the UCB policy was identified as the most
powerful in this framework. In our work we use an algorithm
in the UCB family, namely UCB1 [26], to refine the CHS
heuristic as we will explain in the next section.

IV. MAB FRAMEWORK FOR THE REFINEMENT OF CHS
In this section, we explain how MAB can be used to address

the refinement of CHS by selecting a relevant value for the
step parameter. In particular, we introduce our reward function
which is based on search failures and we explain the UCB
policy used in the MAB framework. Finally, we present and
describe a training phase which can help initialize the MAB
parameters in order for it to converge quickly.

A. An overview of CHS
The Conflict History Search (CHS) heuristic considers the

history of constraint failures and favors the variables that
often appear in recent ones [15]. The conflicts are dated and
the constraints are weighted on the basis of the Exponential
Recency Weighted Average (ERWA) [16]. These weights are
coupled with the variable domains to calculate the Conflict-
History scores of the variables. More precisely, CHS maintains
for each constraint cj a score q(cj) which is initialized to 0.
If cj leads to a failure during the search because the domain
of a variable in S(cj) is emptied by propagation then q(cj) is
updated by the formula below derived from ERWA.

q(cj) = (1− α)× q(cj) + α× r(cj)

The parameter 0 < α < 1 is the step-size, also referred to as
the step parameter, and r(cj) is the reward value for constraint
cj . The parameter α fixes the importance given to the old
value of the score q at the expense of the reward r and its
value decreases over time. Starting from an initial value α0, α
decreases by 10−6 at each constraint failure to a minimum of
0.06. Higher rewards are given to constraints that fail regularly
over short periods according to the following formula:

r(cj) =
1

Conflicts− Conflict(cj) + 1

Conflicts is the number of conflicts that occurred since the
beginning of the search. Conflict(cj) is updated to the current
value of Conflicts when cj leads to a failure. The Conflict-
History score of a variable xi ∈ X is defined as follows:

chv(xi) =

∑
cj∈C: xi∈S(cj)∧|Uvars(cj)|>1

(q(cj) + δ)

|Di|
Uvars(cj) denotes the set of unassigned variables in S(cj)
and Di is the current domain of xi updated by propagation.
The δ parameter is a positive real number close to 0 used
to guide branching according to the degree of the variables

instead of randomly, at the beginning of the search. CHS
chooses the variable to branch on with the highest chv value.
It focuses the branching on variables with a small domain size
belonging to constraints which appear recently and repetitively
in conflicts. When CHS is used in a backtracking algorithm
with restarts, Conflict(cj) and q(cj) are not reinitialized from
a run to another. Nevertheless, the scores of all constraints
cj ∈ C are smoothed at each restart as follows:

q(cj) = q(cj)× 0.995Conflicts−Conflict(cj)

More importantly, for the rest of the paper, CHS resets the
value of α to α0 at each new run.

B. A Multi-Armed Bandit for an Adaptive CHS

The experimental evaluation conducted on CHS reveals
that the initial value of the parameter α, i.e. α0, can be
better adjusted to improve the effectiveness of CHS [15]. As
an indication, when CHS was tested within a backtracking
algorithm with nine different α0 values, ranging from 0.1
to 0.9 (with a step of 0.1), the Virtual Best Solver (VBS)
was able to solve several dozen additional instances [15]. In
order to achieve this objective, the present work proposes to
use the Multi-Armed Bandit (MAB) framework to choose the
relevant values of the α0 parameter which is of particular
importance in CHS. Such a choice will be made at each restart
done by the backtracking algorithm. Each arm of the MAB
corresponds to a CHS with a different initial α value, i.e. α0. A
training phase is also proposed for a better initialization of the
parameters of the arms. Next, we will introduce the proposed
MAB framework, detail its use and particularly explain our
choice of the reward function.

1) MAB Framework: For a given i ∈ {1 · · ·K}, CHS(αi
0)

is defined as CHS where α0 is set to αi
0 at the beginning of the

current restart or run. The arms of the MAB are the candidate
heuristics CHS(αi

0), i = 1 · · ·K. Considering a set of K CHS
heuristics with different α0 values and a CSP instance to solve,
the proposed framework selects a heuristic CHS(αi

0) where
i ∈ {1 · · ·K} at each restart of the backtracking algorithm
according to a MAB policy called Upper Confidence Bound
(UCB) [26]. To choose an arm, UCB relies on a reward
function calculated at the end of each restart to estimate
the performance of the backtracking algorithm regarding the
employed search heuristic.

2) Reward Function: An important factor in the efficiency
of MAB and, particularly UCB, is the reward function. Indeed,
the reward function must reflect the impact of a heuristic on the
efficiency of the backtracking algorithm while relying on the
information that can be assessed during each run in which it is
used. Several criteria can be considered, such as the ability of
a heuristic to reduce the size of the search space or to quickly
reach failures.

In the proposed MAB framework, any reward function can
be used and adapted to a suitable case of use regarding, for
example, the instance features or any other criteria. For the
current work, several functions have been evaluated through
extensive experimentation which highlighted a stronger prefer-
ence for a reward estimating the ability of a heuristic to reach

failures quickly. This is not surprising as a good part of state-
of-the-art heuristics are based on the first-fail principle [28].

Furthermore, the proposed MAB framework is independent
from the restart policy, which can be related to the number
of conflicts, backtracks, decisions, etc. In this work, the run
duration is based on the maximum number of authorized
backtracks before achieving a new restart. nct denotes the
number of conflicts which are permitted during the run t. At
each conflict j = 1 · · ·nct, nuj variables remain unassigned.
Therefore, at conflict j, the ratio pj of unassigned variables is
pj = nuj/n where n = |X|. If a heuristic CHS(αi

0) (arm i)
is used at the current run t, its reward is calculated at the end
of this run as follows:

Rt(i) =

∑nct
j=1 pj

nct

Hence, this reward function consists in an average of the
ratios of unassigned variables encountered during conflicts,
assessing the heuristic’s ability to quickly identify inconsistent
assignments. In other words, the fewer the variables are
assigned, the greater the assigned reward value will be for
the corresponding heuristic. Finally, one should observe that
the values of the rewards are defined in the interval [0, 1].

3) UCB Policy: Consider that t runs are performed since
the beginning of the search. The employed MAB policy for
selecting the next heuristic is UCB1 [26] which is an algorithm
in the Upper Confidence Bound family [25], [26], [27]. UCB1
maintains the following parameters for each candidate arm i:
• nt(i) is the number of times that an arm i is selected

during the t runs,
• R̂t(i) is the empirical mean of the rewards of arm i over

the t runs.
Accordingly, UCB1 selects the arm that maximizes the fol-
lowing term:

R̂t(i) + c.

√
ln(t)

nt(i)
(1)

The left side of the formula, i.e. R̂t(i), aims to put em-
phasis on candidate heuristics (arms) that received the highest
rewards. Conversely, the right side, i.e.

√
ln(t)
nt(i)

, ensures the
exploration of underused arms. The parameter c can help to
appropriately balance the interchange between the exploitation
and exploration phases in the MAB framework.

A strategy for MAB is evaluated by its expected cumulative
regret, i.e., the difference between the cumulative expected
value of the reward if the best arm is used at each restart and
its cumulative value for the total runs of the MAB, denoted
T . If at ∈ {1 · · ·K} denotes the arm chosen at run t, the
expected cumulative regret is formally defined as follows:

RT = max
1≤i≤K

T∑
t=1

E[Rt(i)]−
T∑

t=1

E[Rt(at)]

In particular, UCB1 guaranties an expected cumulative
regret no worse than O(

√
T.K. lnK).

Note that MAB with UCB has been initially defined for
rewards following a stationary probability distribution. In our

case, the probability distribution is clearly unknown and we
cannot ensure that it is stationary. Indeed, the rewards may
evolve during the search since we consider MAC with restarts
[37] as solving algorithm. As it records some nogoods when
a restart occurs, the problem changes over time. There exists
variants of UCB adapted for changing environments. However,
it is known that the standard version is unlikely to exhibit
pathological behavior in such environments [38]. So using
UCB1 in this context is relevant.

4) Training Phase: The number of restarts often seems
insufficient to fully evaluate the potential of each candidate
heuristic thus rendering difficult for the MAB framework to
converge quickly to the most adequate arms for the CSP
instance. For this reason, a training phase can be conducted. It
consists in choosing each arm one at a turn, like a round-robin
policy on the different values of α0. Each arm, among the K
candidates, will be attributed the same restart duration limit.
In other words, restarts will have a constant duration dt in
this training phase so as to not favor one arm at the expense
of another. The round-robin is repeated a certain number of
times denoted by dp.

This training phase can be considered as an initialization
step for the parameters used in the MAB framework, especially
the reward values and their means. Once the training is
completed, UCB1 takes over to select an arm among the
candidate search heuristics. It should be noted that by doing
so, the expected regret of UCB1 remains in O(

√
T.K. lnK).

Indeed, the training phase is launched first, it has no effect on
the expected regret of UCB1. Furthermore, during the training
phase, in addition to the initialization of MAB parameters, the
weights of CHS are updated during each run when a conflict
occurs or at the end of a run through smoothing. This phase
may also lead to the discovery of some nogoods if the solver
is able to handle them like in [37]. Finally, the training phase
alone may suffice to solve some instances.

V. EXPERIMENTAL EVALUATION

In this section, we first describe the experimental protocol
we use. In Subsection V-B1, we observe the sensitivity of
MAB-CHS(+Train) to some parameters. In Subsection V-C,
we assess the benefits of the training phase. Afterwards,
we compare our MAB approach with state-of-the-art search
heuristics in Subsection V-D. Finally, we combine our MAB
framework with Last Conflict (LC) heuristic and measure its
performance in Subsection V-E.

A. Experimental Protocol

We consider all the CSP instances from the XCSP3 repos-
itory2 and the XCSP3 2018 competition3, resulting in 16,947
instances. XCSP3, for XML-CSP version 3, is an XML-
based format to represent instances of combinatorial con-
strained problems. Our solver (the same as [15]) is com-
pliant with the rules of the competition except that the
global constraints cumulative, circuit and some vari-
ants of the allDifferent constraint (namely except and

2http://www.xcsp.org/series
3http://www.cril.univ-artois.fr/XCSP18/

list) and the noOverlap constraint are not yet supported.
Consequently, from the 16,947 obtained instances, we first
discard 1,233 unsupported ones. We also remove 2,813 in-
stances which are detected as inconsistent by the initial arc-
consistency preprocessing and, thus, having no interest for the
present comparison. Hence, our benchmark contains 12,901
instances, including notably structured instances and instances
with global constraints.

We consider the following classical heuristics dom/wdeg,
ABS, wdegca.cd [11] and CHS. We do not take into account
IBS [10] and CHB [32] which turn to be less relevant [15],
[11]. For ABS, we fix the decay parameter γ to 0.999 as in [9].
In CHS, δ is set to 0.0001 while we consider various values of
α0, notably 0.1 and 0.4. For MAB-based heuristics, in addition
to our proposed MAB approach, we consider the one defined
in [12], which we will refer to as MAB-VH (for MAB with
Various Heuristics). MAB-VH exploits five heuristics namely
ABS, IBS, dom/ddeg [39], CHS(0.4) and wdegca.cd [12]. It
aims to take benefit of the heterogeneity of these heuristics in
order to identify a relevant one. It relies on a UCB1 policy
with c = 2

√
2 and a reward function based on the size of

the pruned trees, this size being expressed in terms of the
product of the size of the domains of unassigned variables.
On the other hand, we discard the MAB approach described
in [13] since, in practice, it performs worse than MAB-VH
[12]. In order to make the comparison fair, the lexicographic
order is used for the choice of the next value to assign within
the domains of the variables.

Regarding the solving step, we exploit MAC with restarts
[37]. Restarts can be based on various policies. In our ex-
periments, the duration of a run can be measured in the
number of backtracks or in the number of decisions. Its
evolution can follow a geometric or a Luby sequence. By
default, when MAC exploits a classical heuristic alone (resp.
MAB-CHS(+Train)), we consider backtrack-based geometric
sequences for which the initial cutoff is set to 100 (resp. 50)
and the increasing factor to 1.1 (resp. 1.05). For MAB-VH,
we consider the setting of [12] with a decision-based Luby
sequence whose initial cutoff is set to 100. Moreover, for the
sake of simplicity, the duration dt used in the training phase
is equal to the initial cutoff of the restart policy. By default,
we set dp to 10.

We have written our own C++ code to implement all the
compared branching heuristics in this section as well as MAC
with restarts. By doing so, we avoid any bias related to the way
the heuristics or the solver are implemented. In particular, the
branching heuristics are all implemented with equal refinement
and care, following the recommendations outlined in [40]. The
experiments are performed on Dell PowerEdge R440 servers
with Intel Xeon Silver 4112 processors (clocked at 2.6 GHz)
under Ubuntu 18.04. Each solving process is allocated a slot
of 30 minutes and at most 16 GB of memory per instance.
The noted time is the cumulative runtime, i.e. the sum of the
runtime over all the considered instances.

B. Parameter Sensitivity
1) Exploration vs. Exploitation: We are interested in as-

sessing the impact of the value of parameter c (in the right term

 10000

 10100

 10200

 10300

 10400

 10500

 10600

 10700

 10800

 10900

 200 400 600 800 1000 1200 1400 1600 1800

#i
ns

ta
nc

es

runtime (s)

0.5 1 2

Fig. 1. Number of solved instances as a function of the elapsed time (from
60 s) for MAC with MAB-CHS when c is set respectively to 0.5, 1 or 2.

of Equation 1) on the ability of MAC with MAB-CHS to solve
instances. In the literature, various values of c are considered.
This is an important parameter since it controls the balance
between the exploitation and exploration phases in the MAB
framework. As mentioned before, the reward values in MAB-
CHS, and also in MAB-VH, belong to [0, 1]. Nonetheless,
the values we observe in practice are seldom close to 1. On
the contrary, they are often less than 0.5. This trend is even
more pronounced when considering R̂t(i) due to the effect
of the mean. As a consequence, the MAB tends more often
towards the exploration part than the exploitation one and,
therefore, may be close to a random MAB. Figure 1 depicts
the number of solved instances as a function of the elapsed
time for different values of c. Clearly, the three values of c
we consider lead to close results. However, the value c = 1
obtains slightly better results. Indeed it succeeds in solving 6
additional instances (resp. 5) w.r.t. c = 0.5 (resp. c = 2). Note
that this behavior is close to that of MAC with a random MAB,
which solves six instances less than MAC with our MAB for
c = 1. Therefore, in the following experiments, c is set to 1.

2) Restart Policy Setting: We consider the increasing factor
of the geometric sequence. Indeed this parameter can also
influence the behaviour of our MAB. As we can see in Figure
2, values 1.05 and 1.075 turn out to be relevant trade-offs
between a weak increase (but more restarts) and a more rapid
one (but less restarts). Note that more restarts can mean a
better chance for the MAB to make a relevant choice. But, at
the same time, it can lead to a less effective search. We can
also observe that value 1.05 leads to the best results.

3) Training Phase Setting: We assess the impact of the
value of dt. As the value of dt is the initial cutoff of the
used restart policy, the considered values do not exceed 75
in order to ensure that the duration of runs grows slowly. By
doing so, we expect to have enough restarts for the MAB to
be able to identify a relevant arm. Figure 3 provides the results
of MAC with MAB-CHS+Train. Clearly, dt = 50 turns out
to be the best value. Indeed, it allows MAC to solve 10,875
instances against 10,861 and 10,843 respectively for 25 and
75. This gain in number of solved instances is accompanied
by a slight reduction of cumulative runtime (1,038 h for 50
against 1,042 h and 1,041 h for 25 and 75). So, dt = 50

 9900

 10000

 10100

 10200

 10300

 10400

 10500

 10600

 10700

 10800

 10900

 200 400 600 800 1000 1200 1400 1600 1800

#i
ns

ta
nc

es

runtime (s)

1.025 1.05 1.075 1.1

Fig. 2. Number of solved instances as a function of the elapsed time (from
60 s) for MAC with MAB-CHS+Train when the increasing factor is set
respectively to 1.025, 1.05, 1.075 or 1.1.

 9900

 10000

 10100

 10200

 10300

 10400

 10500

 10600

 10700

 10800

 10900

 200 400 600 800 1000 1200 1400 1600 1800

#i
ns

ta
nc

es

runtime (s)

25 50 75

Fig. 3. Number of solved instances as a function of the elapsed time (from
60 s) for MAC with MAB-CHS+Train when dt is set respectively to 25, 50
or 75.

seems to make a good trade-off between the duration of runs
and their number.

Finally, We study the MAB-CHS+Train behavior w.r.t.
the value of dp. By varying the value of dp, the number
of instances solved by MAC with MAB-CHS+Train ranges
between 10,836 and 10,875. We can clearly observe in Figure
4 the existence of a peak for dp = 10 whatever the limit
of runtime we consider above 300 s. Furthermore, the gap
between dp = 10 and the other values of dp is quite significant.
For instance, for a timeout of 1,800 s, in most cases, MAC
with dp = 10 solves between 20 and 39 additional instances.

To sum up, in the next experiments, we consider the
following settings c = 1, dt = 50, dp = 10 and an increasing
factor of 1.05.

C. Benefits of the Training Phase

First, we compare the results of MAC with MAB-CHS
and MAB-CHS+Train (see Figure 5). MAB-CHS+Train leads
to the best results. Notably, MAC with MAB-CHS+Train
succeeds in solving 10,875 instances against 10,853 for MAC
with MAB-CHS. The gain may seem relatively low. However,
as we can see in Figure 5, most of the instances are solved
easily since, more than 10,000 of them are solved in less than
one minute. If we consider the Best Virtual Solver (denoted

 9800

 9900

 10000

 10100

 10200

 10300

 10400

 10500

 10600

 10700

 10800

 10900

 5 10 15 20 25 30 35 40 45 50

#i
ns

ta
nc

es

dp

60 s
300 s

600 s
900 s

1,200 s
1,500 s

1,800 s

Fig. 4. Number of solved instances within x seconds as a function of the
value of dp for MAC with MAB-CHS+Train.

 9400

 9600

 9800

 10000

 10200

 10400

 10600

 10800

 11000

 200 400 600 800 1000 1200 1400 1600 1800

#i
ns

ta
nc

es

runtime (s)

wdegca.cd

ABS
dom/wdeg

CHS(0.4)
CHS(0.1)
MAB-VH

MAB-CHS
MAB-CHS+Train

Fig. 5. Number of solved instances as a function of the elapsed time (from
60 s) for MAC with each considered heuristic.

VBS-CHS) which returns the best answer obtained by MAC
with a given CHS(α0) among the nine considered here, we
observe that it solves 10,987 instances. Most of the additional
instances it solves are solved by a small number of CHS(α0)
(often only one). So we can suppose that these instances are
hard. Note that about 74% of solved instances are solved
during the training phase.

Now, we compare MAC with MAB-CHS+Train to VBS-
CHS (see Figure 6(a)). Note that by using a MAB approach,
our aim is to get as close as possible to VBS-CHS. Of
course, MAC with MAB-CHS+Train solves less instances
than VBS-CHS and is slower, but this comparison is not
fair since the virtual best solver is only a theoretical tool.
However, we can observe that the runtime of MAC with MAB-
CHS+Train is generally competitive w.r.t. that of VBS-CHS.
Interestingly, we observe that MAC with MAB-CHS+Train is
able to outperform VBS-CHS on some instances, and even
solve instances which are not solved by VBS-CHS within the
timeout.

D. MAB-CHS(+Train) vs. Other Search Heuristics
In this subsection, we first compare MAB-CHS(+Train)

to some classical branching heuristics of the state-of-the-
art. According to Figure 5, MAC with MAB-CHS or MAB-
CHS+Train outperforms MAC with any classical heuristic.
For MAC with MAB-CHS+Train, the gain in the number of

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0.0001 0.001 0.01 0.1 1 10 100 1000

M
A

B-
CH

S+
Tr

ai
n

VBS-CHS

(a)

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0.001 0.01 0.1 1 10 100 1000

M
A

B-
CH

S+
Tr

ai
n

MAB-VH

(b)
Fig. 6. Runtime comparison of MAB-CHB+Train vs. VBS-CHB (a) and
MAB-VH (b).

solved instances ranges between 95 and 279 instances. The
best classical heuristic is CHS with α0 = 0.1. Note that 0.1
corresponds to the value of α0 giving the best results when α0

varies between 0.1 and 0.9 by step of 0.1. One could consider
that the good performance of MAC with MAB-CHS(+Train)
is related to the use of the best settings. This is not the
case. Indeed, whatever the settings we have considered, we
observe that MAC with MAB-CHS(+Train) solves at least
10,836 instances, that is more than 50 additional instances
than any classical heuristic.

Next, we compare MAB-CHS(+Train) to another MAB-
based approach, namely MAB-VH [12]. MAC with MAB-
CHS+Train (resp. MAB-CHS) solves 38 additional instances
(resp. 26) than MAB-VH. Roughly, the results of MAB-
VH are close to the ones with the worst settings we have
considered for MAB-CHS(+Train). Regarding the cumulative
runtime, MAB-CHS+Train allows MAC to be faster than
MAB-VH (1,038 h vs. 1,068 h). Figure 6(b) confirms this
trend where a majority of the instances are solved faster by
MAC with MAB-CHS+Train. This result was not a foregone
conclusion. Indeed, if both MAB frameworks aim to identify
the most relevant heuristic, one may expect that a MAB with
different heuristics is more likely to find a relevant one than a
MAB using the same heuristic with a different settings in each
arm. This can be all the more surprising since the number of
instances solved by each CHS variant are close to each other
as shown in [15]. One possible explanation lies in the fact
that, in practice, different values of α0 enable us to obtain
diversified heuristics. This trend seems to be sustained by the
fact that VBS-CHS is able to solve several dozen additional
instances than any considered CHS(αi

0) [15].

 9800

 10000

 10200

 10400

 10600

 10800

 11000

 200 400 600 800 1000 1200 1400 1600 1800

#i
ns

ta
nc

es

runtime (s)

CHS(0.1)
LC+CHS(0.1)

MAB-CHS
MAB-LC+CHS

MAB-CHS+Train
MAB-LC+CHS+Train
LC+MAB-CHS+Train

Fig. 7. Number of solved instances as a function of the elapsed time (from 60
s) for MAC with CHS(0.1), MAB-CHS(+Train) and their combination with
LC.

E. Combination with LC

The Last Conflict (LC) heuristic [29] aims to focus on the
last encountered conflict and chooses a new branching variable
only when needed, i.e. when there is no current conflict. In
the latter case, it relies on an auxiliary heuristic to make this
choice. LC can be used in two different ways with a MAB
approach. The first one consists in considering the MAB as
the auxiliary heuristic exploited by LC. We denote LC+MAB-
CHS(+Train) this version. The second one consists in using
LC in each arm of the MAB. In other words, for each arm
i, instead of CHS(αi

0), we consider LC with CHS(αi
0) as

an auxiliary heuristic. We denote MAB-LC+CHS(+Train) this
version.

In Figure 7, we compare the behavior of MAC when
using these two versions with and without training. We also
consider CHS(0.1) and LC+CHS(0.1). Clearly, the use of
LC improves the behavior of MAC whatever the auxiliary
heuristic we use. We can also observe that the gains, in terms
of the number of solved instances, is less important when
the auxiliary heuristic alone leads to good results. It seems
that the less efficient the heuristic is, the easier it is to solve
additional instances. Indeed, incorporating LC has no impact
on the hierarchy given in the previous subsection. Moreover,
using LC does not make better a given auxiliary heuristic
than the next auxiliary heuristic in this hierarchy. For in-
stance, LC+CHS(0.1) does not perform better than CHS-MAB
and similarly MAB-LC+CHS performs worse in comparison
to MAB-CHS+Train. Finally, the best results are achieved
by MAC when using LC+MAB-CHS+Train. It succeeds in
solving 22 additional instances w.r.t. MAB-CHS+Train. The
gain w.r.t. classical heuristics is even more significant. For
example, if we consider the best one, i.e. CHS(0.1), 54
additional instances are solved if we combine LC and CHS,
117 otherwise.

VI. CONCLUSION AND FUTURE WORK

Algorithms (or solvers) dedicated to CSP are more and
more powerful, but may include parameters which are hard
to fix while their values depend on the input instance or any
other characteristic. The present work has drawn a framework

based on MAB to refine a single heuristic, namely CHS,
regarding an important parameter for estimating the hardness
of the constraints following ERWA. The experimental evalu-
ation has validated this approach. Indeed, the performance of
CHS was improved and the proposed framework is shown
competitive with the state-of-the-art heuristics. MAB-CHS
components were also widely investigated. To summarise, our
results establish the following hierarchy between the evaluated
heuristics in terms of the number of solved instances on
the considered benchmark: LC+MAB-CHS+Train > MAB-
CHS+Train > MAB-CHS > MAB-VH > classical heuristics
(dom/wdeg, ABS, wdegca.cd and CHS). The originality of
this work relies on using MAB with a set of CHS instances
differing by the initialization value of the step parameter, while
similar work use different heuristics in the MAB framework.
The proposed training phase is another contribution which
shows its benefits in improving the behavior of the proposed
framework.

As perspective of our work, it would be interesting to study
the effect of combining our MAB framework with the one
introduced in [12], MAB-VH, by adding different heuristics
from CHS as arms to MAB-CHS(+Train). Furthermore, re-
fining the reward function by relying on a combination of
different criteria [41], [42] may lead to the improvement of
our framework as it is difficult to fully reflect the behavior of
solvers, which have complex environments, while relying on a
single criterion. Finally, it would be relevant to apply the same
framework on close problems such as SAT, where the reward
function may be related to the quality of clause learning [43],
which is an important module in modern SAT solvers.

ACKNOWLEDGMENT

This work has been funded by the Agence Nationale de la
Recherche project ANR-16-CE40-0028.

REFERENCES

[1] F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint Program-
ming, ser. Foundations of Artificial Intelligence. Elsevier, 2006, vol. 2.

[2] P. Liberatore, “On the complexity of choosing the branching literal in
DPLL,” Artificial Intelligence, vol. 116, no. 1-2, 2000.

[3] C. Bessière, A. Chmeiss, and L. Saı̈s, “Neighborhood-based variable or-
dering heuristics for the constraint satisfaction problem,” in Proceedings
of CP, 2001, pp. 565–569.

[4] C. Bessière and J.-C. Régin, “MAC and Combined Heuristics: Two
Reasons to Forsake FC (and CBJ?) on Hard Problems,” in Proceedings
of CP, 1996, pp. 61–75.

[5] F. Boussemart, F. Hemery, C. Lecoutre, and L. Saı̈s, “Boosting System-
atic Search by Weighting Constraints,” in Proceedings of ECAI, 2004,
pp. 146–150.

[6] P. A. Geelen, “Dual Viewpoint Heuristics for Binary Constraint Satis-
faction Problems,” in Proceedings of ECAI, 1992, pp. 31–35.

[7] S. W. Golomb and L. D. Baumert, “Backtrack programming,” Journal
of the ACM, vol. 12, pp. 516–524, 1965.

[8] E. Hebrard and M. Siala, “Explanation-Based Weighted Degree,” in
Proceedings of CPAIOR, 2017, pp. 167–175.

[9] L. Michel and P. V. Hentenryck, “Activity-based search for black-box
constraint programming solvers,” in Proceedings of CPAIOR, 2012, pp.
228–243.

[10] P. Refalo, “Impact-based search strategies for constraint programming,”
in Proceedings of CP, 2004, pp. 557–571.

[11] H. Wattez, C. Lecoutre, A. Paparrizou, and S. Tabary, “Refining Con-
straint Weighting,” in Proceedings of ICTAI, 2019, pp. 71–77.

[12] H. Wattez, F. Koriche, C. Lecoutre, A. Paparrizou, and S. Tabary,
“Learning Variable Ordering Heuristics with Multi-Armed Bandits and
Restarts,” in Proceedings of ECAI, 2020.

[13] W. Xia and R. H. C. Yap, “Learning Robust Search Strategies Using a
Bandit-Based Approach,” in Proceedings of AAAI, 2018, pp. 6657–6665.

[14] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Learning Rate
Based Branching Heuristic for SAT Solvers,” in Proceedings of SAT,
2016, pp. 123–140.

[15] D. Habet and C. Terrioux, “Conflict History based Search for Constraint
Satisfaction Problem,” in Proceeding of SAC, Knowledge Representation
and Reasoning Technical Track, 2019, pp. 1117–1122.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[17] C. P. Gomes, B. Selman, N. Crato, and H. A. Kautz, “Heavy-Tailed Phe-
nomena in Satisfiability and Constraint Satisfaction Problems,” Journal
of Automated Reasoning, vol. 24, no. 1/2, pp. 67–100, 2000.

[18] T. Walsh, “Search in a Small World,” in Proceedings of IJCAI, 1999,
pp. 1172–1177.

[19] M. Luby, A. Sinclair, and D. Zuckerman, “Optimal speedup of Las
Vegas algorithms,” Information Processing Letters, vol. 47(4), pp. 173–
180, 1993.

[20] A. Balafrej, C. Bessiere, and A. Paparrizou, “Multi-Armed Bandits for
Adaptive Constraint Propagation,” in Proceedings of IJCAI, 2015, pp.
290–296.

[21] A. K. Mackworth, “Consistency in networks of relations,” Artificial
Intelligence, vol. 8, p. 99–118, 1977.

[22] D. Sabin and E. C. Freuder, “Contradicting Conventional Wisdom in
Constraint Satisfaction,” in Proceedings of ECAI, 1994, pp. 125–129.

[23] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[24] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, no. 3/4, pp. 285–294, 1933.

[25] R. Agrawal, “Sample mean based index policies by o (log n) regret
for the multi-armed bandit problem,” Advances in Applied Probability,
vol. 27, no. 4, pp. 1054–1078, 1995.

[26] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the
Multiarmed Bandit Problem,” Mach. Learn., vol. 47, no. 2-3, pp. 235–
256, 2002.

[27] E. Kaufmann, O. Cappé, and A. Garivier, “On Bayesian Upper Confi-
dence Bounds for Bandit Problems,” in Proceedings of AISTATS, 2012,
pp. 592–600.

[28] R. M. Haralick and G. L. Elliot, “Increasing tree search efficiency for
constraint satisfaction problems,” Artificial Intelligence, vol. 14, pp. 263–
313, 1980.

[29] C. Lecoutre, L. Sais, S. Tabary, and V. Vidal, “Last Conflict Based
Reasoning,” in Proceedings of ECAI, 2006, pp. 133–137.

[30] S. Gay, R. Hartert, C. Lecoutre, and P. Schaus, “Conflict Ordering Search
for Scheduling Problems,” in Proceedings of CP, G. Pesant, Ed., 2015,
pp. 140–148.

[31] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Exponential
Recency Weighted Average Branching Heuristic for SAT Solvers,” in
Proceedings of AAAI, 2016, pp. 3434–3440.

[32] C. Schulte, “Programming branchers,” in Modeling and Programming
with Gecode, C. Schulte, G. Tack, and M. Z. Lagerkvist, Eds., 2018,
corresponds to Gecode 6.0.1.

[33] M. Gagliolo and J. Schmidhuber, “Learning Restart Strategies,” in
Proceedings of IJCAI, 2007, pp. 792–797.

[34] G. Chu and P. J. Stuckey, “Learning Value Heuristics for Constraint
Programming,” in Integration of AI and OR Techniques in Constraint
Programming. Springer International Publishing, 2015, pp. 108–123.

[35] I. Bachiri, J. Gaudreault, C. Quimper, and B. Chaib-draa, “RLBS: An
Adaptive Backtracking Strategy Based on Reinforcement Learning for
Combinatorial Optimization,” in Proceedings of ICTAI, 2015, pp. 936–
942.

[36] R. Battiti and P. Campigotto, An Investigation of Reinforcement Learning
for Reactive Search Optimization. Springer Berlin Heidelberg, 2012,
pp. 131–160.

[37] C. Lecoutre, L. Sais, S. Tabary, and V. Vidal, “Recording and Mini-
mizing Nogoods from Restarts,” JSAT, vol. 1, no. 3-4, pp. 147–167,
2007.

[38] Álvaro Fialho, L. D. Costa, and M. S. Marc Schoenauer, “Analyzing
bandit-based adaptive operator selection mechanisms,” Ann. Math. Artif.
Intell., vol. 60(1-2), pp. 25–64, 2010.

[39] B. M. Smith and S. A. Grant, “Trying Harder to Fail First,” in
Proceedings of ECAI, 1998, pp. 249–253.

[40] J. N. Hooker, “Testing Heuristics: We Have It All Wrong,” Journal of
Heuristics, vol. 1(1), pp. 33–42, 1995.

[41] W. Chu, L. Li, L. Reyzin, and R. Schapire, “Contextual Bandits with
Linear Payoff Functions,” in Proceedings of AISTATS, 2011, pp. 208–
214.

[42] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A Contextual-
Bandit Approach to Personalized News Article Recommendation,” in
Proceedings of WWW, 2010, pp. 661–670.

[43] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Proceedings
of SAT, 2003, pp. 502–518.

	Introduction
	Background
	Related Work
	MAB Framework for the Refinement of CHS
	An overview of CHS
	A Multi-Armed Bandit for an Adaptive CHS
	MAB Framework
	Reward Function
	UCB Policy
	Training Phase

	Experimental Evaluation
	Experimental Protocol
	Parameter Sensitivity
	Exploration vs. Exploitation
	Restart Policy Setting
	Training Phase Setting

	Benefits of the Training Phase
	MAB-CHS(+Train) vs. Other Search Heuristics
	Combination with LC

	Conclusion and Future Work
	References

