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Abstract—Adapting a resolution proof for SAT to a Max-
SAT resolution proof without increasing considerably the size
of the proof is an open question. This paper contributes to this
topic by exhibiting linear adaptations, in terms of the input SAT
proof size, in restricted cases which are regular tree resolution
refutations, tree resolution refutations and a new introduced class
of refutations that we refer to as semi-tree resolution refutations.
We also extend these results by proposing a complete adaptation
for any unrestricted SAT refutation to a Max-SAT refutation,
which is exponential in the worst case.

Index Terms—Resolution, Max-SAT Resolution, Refutation,
Regular Resolution, Tree Resolution

I. INTRODUCTION

Given a Boolean formula in Conjunctive Normal Form
(CNF), the Max-SAT problem consists in determining the
maximum number of clauses that it is possible to satisfy by an
assignment of the variables, while the SAT problem asks for
the existence of an assignment which satisfies all the clauses. A
well-known proof system for Max-SAT is Max-SAT resolution
[20] which extends the resolution rule [24] used in the context
of SAT. Max-SAT resolution plays a prominent role in Max-
SAT as it is the most studied inference rule, both in theory
and practice [1], [2], [7], [18], [20], [22].

In the context of SAT, an unsatisfiable formula can be
refuted with a sequence of resolution steps which leads to
the empty clause. Sequences of Max-SAT resolution steps are
more constrained than sequences of resolution steps. Indeed,
resolution adds the conclusion to the premises whereas the
premise clauses are replaced by the conclusions when applying
Max-SAT resolution. Switching from a read-once resolution
proof, where each clause is used once, to a Max-SAT reso-
lution proof is possible and well-known [11]. However, the
adaptation of any resolution proof to a Max-SAT resolution
one, especially in the context of a refutation, is an established
problem. Bonet et al. state that "it seems difficult to adapt a
classical resolution proof to get a Max-SAT resolution proof,
and it is an open question if this is possible without increasing
substantially the size of the proof" [20].

This paper attempts to contribute to this open question on
refutation proofs by proposing a way to deal with non-read-
once clauses, i.e. clauses used several times as a premise of
a resolution step. Indeed, to adapt any resolution refutation, it
is necessary to duplicate the non-read-once clauses in some
form while also preserving Max-SAT equivalence. To this

end, we augment Max-SAT resolution with a simple split rule
which allows to generate two clauses subsumed by the original
clause. Intuitively, applying the split rule on a non-read-once
clause will duplicate it since only literals that will not affect
the rest of the proof will be added.

Accordingly, we deal first with regular tree resolution refu-
tations [4], [26], showing that a linear adaptation of a SAT
refutation to a Max-SAT one is possible in this case. Then, we
extend this result to tree resolution refutations using a known
result in [25] which stipulates that a minimal tree resolution
refutation is regular. Furthermore, we introduce a new class
of refutations that we refer to as semi-tree-like, which is a
generalization of tree resolution refutations, and we extend our
linear result to this class of refutations. Finally, we propose a
complete adaptation of any (or unrestricted) resolution refu-
tation to a Max-SAT refutation, although with an exponential
factor, using the fact that any resolution refutation can be made
tree-like with an exponential cost.

This paper is organized as follows. Section II gives some
necessary definitions and notations. Sections III to VI describe
the above contributions in detail. Finally, we conclude and
discuss future work in Section VII.

II. PRELIMINARIES

A. Definitions and Notations

Let X be the set of propositional variables. A literal l
is a variable x ∈ X or its negation x. A clause c is a
disjunction (or a set) of literals (l1 ∨ l2 ∨ ... ∨ lk). A formula
in Conjunctive Normal Form (CNF) φ is a conjunction (or a
multiset) of clauses φ = c1 ∧ c2 ∧ ... ∧ cm. An assignment
I : X → {true, false} maps each variable to a boolean
value and can be represented as a set of literals. A literal
l is satisfied (resp. falsified) by an assignment I if l ∈ I
(resp. l ∈ I). A clause c is satisfied by an assignment I if
at least one of its literals is satisfied by I , otherwise it is
falsified by I . The empty clause � contains zero literals and
is always falsified. A clause c opposes a clause c′ if c contains
a literal whose negation is in c′, i.e. ∃l ∈ c, l ∈ c′. A clause
c subsumes a clause c′ if each literal of c is a literal of c′, i.e.
∀l ∈ c, l ∈ c′. We denote var(c) the variables appearing in
the clause c. A CNF formula φ is satisfied by an assignment
I , that we call model of φ, if each clause c ∈ φ is satisfied
by I , otherwise it is falsified by I . Solving the Satisfiability
(SAT) problem consists in determining whether there exists an



assignment I that satisfies a given CNF formula φ. In the case
where such an assignment exists, we say that φ is satisfiable,
otherwise we say that φ is unsatisfiable or inconsistent. The
cost of an assignment I , denoted costI(φ), is the number of
clauses falsified by I . The Maximum Satisfiability (Max-SAT)
problem is an optimization extension of SAT which, for a
given CNF formula φ, consists in determining the maximum
number of clauses that can be satisfied by an assignment
of φ. Equivalently, it consists in determining the minimum
number of clauses that each assignment must falsify, i.e.
min
I

costI(φ).

B. Resolution Refutations in SAT

To certify that a CNF formula is satisfiable, it is sufficient
to simply exhibit a model of the formula. On the other hand,
to prove that a CNF formula is unsatisfiable, we need to
refute the existence of a model. To this end, we can exhibit a
SAT refutation which consists of a sequence of equivalence-
preserving transformations (in the sense of SAT as defined
below) starting from the formula and ultimately deducing an
empty clause.

Definition 1 (SAT Equivalence). Let φ and φ′ be two CNF
formulas. We say that φ is equivalent (in the sense of SAT) to φ′

if for any assignment I : var(φ) ∪ var(φ′)→ {true, false},
I is a model of φ if and only if I is a model of φ′.

A well-known SAT refutation system is based on an infer-
ence rule for SAT called resolution [24]. Refutations in this
system are referred to as resolution refutations. The resolution
rule, defined below, deduces a clause called resolvent from
two opposed clauses which can be added to the formula while
preserving SAT equivalence. Resolution plays an important
role in the context of Conflict Driven Clause Learning (CDCL)
[21]. Furthermore, it was shown that CDCL can polynomially
simulate general resolution [23]. As showcased in Example 1,
a resolution proof can be represented as a Directed Acyclic
Graph (DAG) whose nodes are clauses in the proof either
having two or zero incoming arcs (resp. if they are resolvents
or clauses of the initial formula).

Definition 2 (Resolution [24]). Given two clauses c1 = (x∨A)
and c2 = (x ∨B), the resolution rule is defined as follows:

c1 = (x ∨A) c2 = (x ∨B)
c3 = (A ∨B)

Example 1. We consider the CNF formula φ = (x1 ∨ x3) ∧
(x1) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3). A resolution refutation of φ is
represented as a DAG in Fig. 1.

Many restricted classes of resolution refutations have been
studied in the literature namely linear resolution [19], unit
resolution [12], input resolution [12], regular resolution [26],
read-once resolution [14] and tree (or tree-like) resolution [4]
refutations among others. In particular, a resolution refutation
is tree-like if every intermediate clause, i.e. resolvent, is used
at most once in the proof. It is known that DPLL algorithms
[8] on unsatisfiable instances correspond to tree resolution

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3

x2

x3

�

Fig. 1. Resolution refutation

refutations [9]. Similarly, a resolution refutation is read-once
if each clause is used at most once in the proof. Clearly, read-
once resolution refutations are also tree-like since they form a
restricted class of tree resolution refutations. It was shown in
[14] that there exists unsatisfiable CNF formulas which cannot
be refuted using read-once resolution. Finally, a resolution
is regular if every variable is resolved on at most once in
each branch of the DAG, i.e. path from a clause of the initial
formula to the empty clause. It was shown that CDCL without
restarts can polynomially simulate regular resolution [6]. We
say that an irregularity is a sequence of clauses (each clause
must be deduced using the previous one as premise) such that
the first clause and the last one contain a literal l but at least
one of the intermediate clauses does not contain this literal l.
In other words, an irregularity is a certificate that a resolution
refutation is not regular.

Example 2. We consider the refutation of φ in Example 1.
The refutation is clearly tree-like but it is not read-once since
clause (x1) is used two times as a premise of a resolution step.
The refutation is also regular as every variable is resolved on
at most once in every branch of the DAG in Fig. 1.

C. Max-SAT Refutations

Several complete proof systems for Max-SAT were in-
troduced in the litterature, namely the Max-SAT resolution
Calculus in [20] and the Clause Tableau Calculus in [17].
In particular, Max-SAT resolution, one of the first known
complete systems for Max-SAT, was inspired from Resolution.
The aim of complete Max-SAT systems is not to refute the
formula per se but to compute the Max-SAT optimum of a
given CNF formula, i.e. the maximum number of falsified
clauses. The formula is thus refuted as many times as its
optimum through equivalence-preserving transformations in
the sense of Max-SAT as defined below.

Definition 3 (Max-SAT Equivalence). Let φ and φ′ be two
CNF formulas. We say that φ is equivalent (in the sense of
Max-SAT) to φ′ if for any assignment I : var(φ)∪var(φ′)→
{true, false}, we have costI(φ) = costI(φ

′).

The Max-SAT resolution proof system relies on an inference
rule that extends resolution for Max-SAT. Other than the resol-



vent clause, this rule, called Max-SAT resolution and defined
below, introduces new clauses referred to as compensation
clauses essential to preserve Max-SAT equivalence. As a sound
and complete rule for Max-SAT [20], Max-SAT resolution
plays an important role in the context of Max-SAT theory
and solving. In particular, it is extensively used in the context
of Branch and Bound algorithms for Max-SAT to transform
inconsistent subsets [2], [15], [18] as well as in the context
of SAT-based algorithms to transform cores returned by SAT
oracles [11], [22]. For a given CNF formula, it is possible
to generate a Max-SAT resolution proof of its optimum
by applying the saturation algorithm [20] to deduce empty
clauses. As showcased in Example 3, a Max-SAT resolution
proof can also be represented as a DAG whose nodes are
multisets of clauses either having two or zero incoming arcs
(resp. if they are clauses produced by a Max-SAT resolution
step or clauses of the initial formula.

Definition 4 (Max-SAT resolution [5], [16], [20]). Given two
clauses c1 = x ∨ A and c2 = x ∨ B with A = a1 ∨ ... ∨ as
and B = b1 ∨ ...∨ bt. The Max-SAT resolution rule is defined
as follows:

c1 = x ∨A c2 = x ∨B
cr = A ∨B

cc1 = x ∨A ∨ b1
cc2 = x ∨A ∨ b1 ∨ b2

...
cct = x ∨A ∨ b1 ∨ ... ∨ bt−1 ∨ bt

cct+1 = x ∨B ∨ a1
cct+2 = x ∨B ∨ a1 ∨ a2

...
cct+s = x ∨B ∨ a1 ∨ ... ∨ as−1 ∨ as

where cr is the resolvent clause and cc1, ..., cct+s are com-
pensation clauses.

Remark 1. Unlike resolution, the Max-SAT resolution rule
replaces the premises by the conclusions.

Example 3. We consider the CNF formula from Example 1. A
hand-made Max-SAT resolution refutation of φ was proposed
in [20] and is represented in Fig. 2.

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3
x1 ∨ x3

x2 ∨ x3
x1 ∨ x2 ∨ x3
x1 ∨ x2 ∨ x3 x3

�

Fig. 2. A Max-SAT resolution proof

In this paper, we also augment Max-SAT resolution with
the split rule defined below. Intuitively, this rule allows to
duplicate a clause by adding one literal.

Definition 5 (Split rule). Given a clause c1 = (A) where A is
a disjunction of literals and x a variable, the Max-SAT split
rule is defined as follows:

c1 = (A)
c2 = (x ∨A) c3 = (x ∨A)

Remark 2. Like the Max-SAT resolution rule, the split rule
replaces the premise by the conclusions.

Finally, we choose to maintain the designation ’refutation’
in the context of Max-SAT. A Max-SAT refutation (or max-
refutation) will thus consist of a sequence of Max-SAT
preserving transformations, namely Max-SAT resolutions and
splits in this paper, allowing to deduce an empty clause from a
given unsatisfiable formula. The size of a (SAT or Max-SAT)
refutation is the number of its inference steps.

III. FROM REGULAR TREE RESOLUTION REFUTATIONS TO
MAX-REFUTATIONS

In this section, we show how it is possible to adapt a regular
tree resolution refutation to obtain a max-refutation with linear
size. If a clause c is used k times (k > 1) as a premise of a
resolution step, we use the split rule to duplicate clause c into
k distinct clauses subsumed by c. We will then use these new
clauses to replace c as a premise of a resolution step. Given a
branch starting from a clause c, we say that this branch accepts
the substitution of c by c ∨ l if updating the branch after the
substitution of c by c ∨ l does not affect the validity of the
resolution refutation. The following lemma guarantees that, for
a given non-read-once clause, there exists a variable x such
that some branches starting from c accept the substitution of
c by c∨ x while the rest accept the substitution of c by c∨ x.

Lemma 1. Given a non-read-once regular tree resolution
refutation P and a non-read-once clause c in P , there exists
a variable x /∈ var(c) such that it is possible to partition
the branches starting from c into two non-empty subsets
of branches, the branches in the first subset accepting the
substitution of c by c ∨ x and the branches in the second
accepting the substitution of c by c ∨ x.

Proof. Let P a non-read-once regular tree resolution refutation
and c a non-read-once clause in P . There exists a node v of the
DAG of P representing a resolution step on variable x such
that v is the first junction point of all the paths starting from c.
The existence is ensured since this junction point is eventually
the empty clause. Furthermore, every path starting from the
clause c leads to one (and only one) of the premises of the
resolution step in the node v. Indeed, a path leading to both
premises entails the existence of an intermediate non-read-
once clause which is not possible since the refutation is tree-
like. We partition the branches starting from c into two subsets
containing respectively the paths leading to the first and second
premise of the resolution step in the node v. Each partition is



non empty since if there exists an empty subset v can’t be
the first junction point of the branches. Let x be the variable
eliminated at this resolution step and suppose w.l.o.g that the
first premise contains literal x while the second contains literal
x. As P is regular, x is not a variable of c and the subset of
branches starting from c leading to the first premise accepts
the substitution of c by c ∨ x while the subset of branches
leading to the second premise accepts the substitution of c by
c ∨ x.

�

The result established in Lemma 1 ensures the possibility
to fix any non-read-once clause used k > 1 times by using the
split rule. Indeed, we can apply this rule to replace a non-read-
once clause used k > 1 times by two clauses used respectively
1 ≤ k1 < k and 1 ≤ k2 < k such that k = k1 + k2. By
iterating this method, we can fix every non-read-once clause.
Then, we only need to replace the resolution rule by the Max-
SAT resolution rule to obtain an adaptation from any regular
tree resolution refutation to a max-refutation in linear size.

Theorem 1. Given an unsatisfiable formula φ and a regular
tree resolution refutation P of φ, there exists a max-refutation
of φ containing O(|P |) inference steps.

Proof. Let P be a regular tree resolution refutation of φ. We
set T1 = ∅ and T2 =MR(P ), where MR(P ) is obtained from
P after replacing each resolution by Max-SAT resolution. If
P is read-once, T2 is a max-refutation of φ containing |P |
inference steps (which is obviously in O(|P |)). Now, let c be
a non-read-once clause of P . Using Lemma 1, there exists a
variable x /∈ var(c) and a partition of the branches starting
from c into two non-empty subsets, the first accepting c ∨ x
and the second accepting c ∨ x. We apply the Max-SAT split
rule on c to obtain c ∨ x and c ∨ x and we replace c as
premise by c ∨ x on the first subset of branches and c by
c ∨ x on the second. Doing this, we augment T1 by adding
one split and we change T2 by replacing the premise clause
c as described above. As T2 is a tree-like regular resolution
refutation of (φ\c)∧(c∨x)∧(c∨x), it is possible to iteratively
apply this operation on T2 until we obtain a read-once regular
tree resolution refutation. Therefore, after the last iteration,
we have a couple (T1, T2) such that T1 is a sequence of
applications of the split rule transforming φ into a Max-SAT
equivalent φ′ and T2 is a read-once regular max-refutation of
φ′. Therefore, these transformations form a max-refutation of
φ.

To prove that the size of the max-refutation is in O(|P |),
we first consider how to fix a leaf clause of P (i.e. how to
replace it by read-once clauses). If c is a leaf clause of P used
k times, we prove by induction on k that it is possible to fix
this clause using at most k − 1 splits:
• If k = 1, we clearly need 0 splits to fix the read-once

clause c.
• Suppose that the assertion is true for any k′ < k and

let c be a clause used k times. Using Lemma 1, it is
possible to use 1 split to replace c by two clauses c1 and

c2 respectively used k1 and k2 times with k1, k2 > 0 and
k1 + k2 = k. Using our assertion for k1 and k2, it is
possible to fix c1 with at most k1 − 1 splits and c2 with
at most k2 − 1 splits. Therefore, it is possible to fix c
with at most 1 + (k1 − 1) + (k2 − 1) = k − 1 splits.

Let c1, ..., cp be the leaf clauses of P used respectively
k1, k2, ..., kp times. Notice that k1 + k2 + ...+ kp = |P |+ 1
since P has exactly 2|P | premises, i.e. uses of clauses, and
|P |−1 intermediate clauses (the empty clause is not used and
we neglect the trivial cases where a non-empty intermediate
clause is not used and where the proof produces several
empty clauses). Using the previous induction, we need at most
k1 − 1 + k2 − 1 + ...+ kp − 1 ≤ |P | splits to fix every non-
read-once leaf clause of P . Consequently, |T1| ≤ |P |. On the
other hand, the number of Max-SAT resolutions in T2 is by
construction equal to the number of resolution steps in P and,
therefore, |T2| = |P |. We conclude that the complete max-
refutation contains at most 2|P | inference steps, which is in
O(|P |).

�

Example 4. We consider the regular tree resolution refutation
from Example 1 represented by the DAG in Fig. 1. We observe
that the original clause (x1) is used two times as a premise
of a resolution step. The junction point of the left and right
branches eliminates variable x3 such that the branch on the
left leads to the premise containing literal x3 and the branch
on right leads to the premise containing literal x3. We apply
the split rule on clause (x1) to get (x1∨x3) and (x1∨x3) and
we replace (x1) by (x1∨x3) and (x1∨x3) respectively on the
left and right branches. Finally, we replace all resolutions by
Max-SAT resolutions to obtain the complete max-refutation.

x1

x1 ∨ x3 x1 ∨ x3 x1 ∨ x3 x1 ∨ x2 x2 ∨ x3

x3

x2 ∨ x3
x1 ∨ x2 ∨ x3
x1 ∨ x2 ∨ x3 x3

�

Fig. 3. Applying the split rule to deal with a non-read once clause

IV. FROM TREE RESOLUTION REFUTATIONS TO
MAX-REFUTATIONS

In the previous section, we proposed a linear adaptation
from regular tree resolution refutations to max-refutations. We
propose in this section to extend the case where this adaptation
guarantees linear size of the obtained max-refutation to tree
resolution refutations. To this end, we simply exhibit a known
transformation from any tree resolution refutation to a regular



tree resolution refutation without increasing its size. This result
was proved in [25] in the form of the following lemma (cf.
Lemma 5.1 in [25]). The proof relies on a transformation
which consists in iteratively discarding the first resolution in
the case of an irregularity and updating the rest of the resolu-
tion proof accordingly, potentially discarding other resolution
steps which are no longer necessary.

Lemma 2. [25] A tree resolution refutation of minimal size
is regular.

Example 5. We consider the tree resolution refutation rep-
resented in Fig. 5. This refutation is not regular since x1 is
eliminated two times in the same branch. As shown in Fig.
5, this refutation can be minimized and thus made regular by
discarding the first resolution on variable x1 in the irregularity
and updating the rest of the proof, Notice that after the
transformation, clauses (x1∨x3) and (x3) are no longer used
in the refutation.

x1 ∨ x3 x1 ∨ x2

x3 x2 ∨ x3

x1 ∨ x2 x2

x1 x1

�

Fig. 4. Tree resolution refutation containing an irregularity on variable x1

x1 ∨ x2 x1 ∨ x2

x1 x1

�

Fig. 5. Regular tree resolution refutation after minimization

Since it is possible to make a tree resolution refutation
regular without increasing the size of the proof, we can apply
the adaptation in Theorem 1 to produce a max-refutation with
linear size as shown in the following corollary.

Corollary 1. Given an unsatisfiable formula φ and a tree
resolution refutation P of φ, there exists a max-refutation of
φ containing O(|P |) inference steps.

Proof. Using Lemma 2, there exists a regular tree resolution
refutation P2 such that |P2| = O(|P |). By applying Theorem
1, we obtain a max-refutation containing O(|P2|) = O(|P |)
inference steps.

�

V. FROM SEMI-TREE RESOLUTION REFUTATIONS TO
MAX-REFUTATIONS

In Section IV, we proposed a linear adaptation from any
tree resolution refutation to a max-refutation. We propose in
this section to extend this linear result to semi-tree resolution
refutations defined below. As shown in Proposition 1, this class
of refutations extends tree resolution refutations, i.e. every tree
resolution refutation is semi-tree-like.

Definition 6 (semi-tree resolution refutation). A resolution
refutation is semi-tree-like if, for any branch of the refutation,
at most one clause is non-read-once.

Example 6. We consider the resolution refutation P in Fig. 6.
P is clearly semi-tree-like since in each branch at most one
clause is non-read-once. Notice also that P is not tree-like
since (x1) is an intermediate non-read-once clause.

x1 ∨ x4 x1 ∨ x4

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3

x2

x3

�

Fig. 6. Semi-tree-like resolution refutation

Proposition 1. Let P be a resolution refutation. If P is tree-
like then P is semi-tree-like.

Proof. Suppose that P is tree-like. By definition, each in-
termediate clause is read-once. In each branch, the only
clause that can be non-read-once in P is by definition a leaf.
Therefore, at most one clause is non-read-once in each branch
and we conclude that P is semi-tree-like.

�

To extend our result to semi-tree-like resolution refutations,
we propose a method which relies on the fact that semi-tree
resolution refutations can be partitioned into two parts where
the first part is a read-once sequence of resolutions and the
second part is a tree-like resolution refutation. As the first
part is a read-once sequence of resolutions, it is possible to
adapt it for Max-SAT using a similar method to the one in
[11], i.e. replacing each resolution by a Max-SAT resolution.
As the second part is a tree resolution refutation, it is possible
to adapt it for Max-SAT using the result in Corollary 1. After
transforming the two parts, we glue them back to construct
the complete max-refutation.



Theorem 2. Given an unsatisfiable formula φ and a semi-tree
resolution refutation P of φ, there exists a max-refutation of
φ containing O(|P |) inference steps.

Proof. As P is semi-tree-like, each branch of P contains at
most one non-read-once clause. We partition P into two parts
P1 and P2 as follows:

• For each branch containing one non-read-once clause, the
transformations until this clause are put in P1 and the
transformations after this clause are put in P2.

• For each branch not containing a non-read-once clause,
the transformations are put in P2.

By construction, P1 is a read-once sequence of resolutions so it
is possible to adapt it to obtain a Max-SAT transformation P ′1
containing exactly |P1| inference steps by replacing resolutions
with Max-SAT resolutions as in [11]. Furthermore, P2 is a tree
resolution refutation because the non-read-once clauses of P
are leaf clauses in P2. Consequently, it is possible to adapt P2

into a max-refutation P ′2 containing O(|P2|) inference steps
using the result in Corollary 1. Finally, we can combine P ′1
and P ′2 to obtain a Max-SAT refutation containing at most
O(|P1|+ |P2|) and we conclude that the complete adaptation
contains O(|P |) inference steps.

�

Example 7. We consider the semi-tree resolution refutation
in Example 6, represented in Fig. 6. To adapt this semi-tree
resolution refutation to a max-refutation, we put aside the top
resolution on variable x1 taking clauses (x1∨x4) and (x1∨x4)
and we obtain the tree-like resolution refutation in Example
1, represented in Fig. 1. We adapt this tree-like resolution
refutation as in Example 4 and we replace the resolution
step on x1 by a Max-SAT resolution step (in this case no
compensation clauses are generated). We glue back the two
parts to obtain the complete max-refutation represented in Fig.
7.

x1 ∨ x4 x1 ∨ x4

x1

x1 ∨ x3 x1 ∨ x3 x1 ∨ x3 x1 ∨ x2 x2 ∨ x3

x3

x2 ∨ x3
x1 ∨ x2 ∨ x3
x1 ∨ x2 ∨ x3 x3

�

Fig. 7. Adapting a semi-tree resolution refutation to a max-refutation

VI. FROM UNRESTRICTED RESOLUTION REFUTATIONS TO
MAX-REFUTATIONS

In Sections III, IV and V, we proposed linear adapta-
tions from specific classes of resolution refutations to max-
refutations. In this section, we propose an adaptation from
any resolution refutation to a max-refutation. To make this
adaptation, we will simply extend the adaptation described in
section IV by adding a first transformation to make the initial
resolution refutation tree-like as described in Lemma 3. Notice
that we could make the initial resolution refutation semi-tree-
like (instead of tree-like) but this choice does not affect the
theoretical size of the obtained max-refutation.

To achieve this first intermediate transformation, we will
iteratively search in the proof for the first non-read-once
intermediate clause c. If this clause is used k > 1 times as
a premise of another resolution step, we consider the part of
the proof leading to c and we dupplicate it k times in order to
get a tree-like sequence of resolutions generating k resolvents
c1, c2, ..., ck (with c1 = c), each resolvent ci containing exactly
the same literals as c and is generated by a similar sequence
of resolution steps. Consequently, c is no longer used several
times as a premise of a resolution step, the input clauses are.
Repeating this operation forces the resolution refutation to
become tree-like. Fixing a non-read-once intermediate clause
can, in the worst case, double the size of the current resolution
refutation. As such, the size of the obtained tree-like resolution
refutation is exponentially bounded by the size of the initial
unrestricted resolution refutation. To polish this upper bound,
we introduce a new parameter defined below, which is the
number of multi-uses of intermediate clauses. Notice how, in
the definition, we subtract 1 use for each clause. Intuitively,
we consider the first use of any non-read-once intermediate
clause as authorized.

Definition 7. Let P be a resolution refutation. The number
of multi-uses of intermediate non-read-once clauses, denoted
µ(P ), is defined as follows:

µ(P ) =
∑

c intermediate non-read-once in P

(d+(c)− 1)

where d+(c) denotes the number of uses of the clause c, i.e.
the number of outgoing arcs from c in the DAG representation
of P .

Lemma 3. Given an unsatisfiable formula φ and a resolution
refutation P of φ, there exists a tree resolution refutation of
φ containing O(2µ(P ) × |P |) resolution steps.

Proof. Let P be a resolution refutation of φ. We iteratively
make the intermediate non-read-once clauses read-once. Each
time, we pick the first intermediate non-read-once clause c and
duplicate the sub-proof deriving c exactly d+(c) − 1 times.
Each iteration decrements the number of intermediate non-
read-once clauses by 1 until the resolution refutation becomes
tree-like. Clearly, for each duplication, the size of the proof
is doubled in the worst case and we perform exactly µ(P )
duplications. We conclude that the size of the obtained tree



resolution refutation is bounded by O(2µ(P ) × |P |).
�

Now that we can transform any resolution refutation to a
tree-like resolution refutation, we just have to adapt the ob-
tained tree-like resolution refutation with the method described
in section IV as shown in the following Theorem.

Theorem 3. Given an unsatisfiable formula φ and an un-
restricted resolution refutation P of φ, there exists a max-
refutation of φ with O(2µ(P ) × |P |) inference steps.

Proof. Let P be an unrestricted resolution refutation of φ.
We adapt P to obtain a tree resolution refutation Pt of size
O(2µ(P ) × |P |) using Lemma 3. Then, using Theorem 1, we
obtain a max-refutation of size O(2µ(P ) × |P |).

�

Example 8. We consider the resolution refutation represented
in Fig. 8. This refutation is not semi-tree-like since the clauses
(x1) and (x4) are two non read-once clauses in the same
branch. First, we duplicate the resolutions leading to (x1) and
we obtain the tree-like resolution refutation represented in Fig.
9. Then, we apply the transformations described in Section IV
to get the max-refutation represented in Fig. 10.

x1 ∨ x3 ∨ x4 x4 x1 ∨ x4 x1 ∨ x2 x2 ∨ x3

x1 ∨ x3 x1

x3 x2

x3

�

Fig. 8. Unrestricted resolution refutation

x1 ∨ x3 ∨ x4 x4 x1 ∨ x4 x1 ∨ x2 x2 ∨ x3

x1 ∨ x3 x1 x1

x3 x2

x3

�

Fig. 9. Adapting a resolution refutation to a tree-like resolution refutation

x4

x3 ∨ x4 x3 ∨ x4

x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4 x1 ∨ x4

x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4x1 ∨ x3 ∨ x4

x1 ∨ x2

x2 ∨ x3

x1 ∨ x3 x1 ∨ x3 x1 ∨ x3
x1 ∨ x3 ∨ x4

x3 x2 ∨ x3
x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x3

x3

�

Fig. 10. Adapting an unrestricted resolution refutation to a max-refutation

We finish this section by exhibiting resolution refutations
whose adaptations as in Theorem 3 is exponential. To this
end, we introduce in the following definition a new pattern
which we will use to build such refutations.

Definition 8 (Diamond pattern). Let A be a disjunction of
literals and let x /∈ var(A) and y /∈ var(A) two distinct
variables. We define the diamond pattern (x, y,A) as the
sequence of resolutions represented in Fig.11.

x ∨Ax ∨ y x ∨ y

y ∨A y ∨A

A

Fig. 11. Diamond pattern (x, y,A)

Fig. 12. Simplified representation of a diamond pattern

We can represent this pattern by a diamond as in Fig. 12.
Notice that in particular, the diamond pattern (x, y,�) is a
resolution refutation. Now, imagine that the topmost clause
of (x, y,�) is derived through another diamond pattern. We
iterate the same reasoning to define a k-stacked diamonds
pattern as follows:

Definition 9 (k-stacked diamond pattern). Let k ≥ 1 be a
natural number and let xi and yi where 1 ≤ i ≤ k be
distinct variables. A k-stacked diamond pattern is formed by
k diamond patterns (xi, yi, Ai) where 1 ≤ i ≤ k such that
A1 = � and Ai = (x1 ∨ · · · ∨ xi−1) for 1 < i ≤ k. Each
diamond (xi, yi, Ai) is stacked on top of (xi−1, yi−1, Ai−1)
such that the last conclusion of the former is the topmost
central premise of the latter.



A k-stacked diamond pattern is represented as a stack of
diamonds as shown in Fig.13 for k = 3. Clearly, k-stacked
diamond are resolution refutations as they deduce the empty
clause �. In particular, when k > 2, a k-stacked diamond
is not semi-tree-like. The size of a k-stacked diamond P is
|P | = 3k. Furthermore, we have µ(P ) = k − 1. Therefore,
after the application of the adaptation described in Theorem 3,
we obtain a max-refutation whose size is at least 2k−1 showing
that the proposed adaptation can be exponential in the worst
case.

Fig. 13. Simplified representation of a 3-stacked diamond pattern

VII. CONCLUSIONS AND FUTURE WORK

The contributions of this work are related to adapting
resolution refutations to Max-SAT refutations. In particular,
we have proposed linear adaptations regarding the size of the
resolution refutations in the following cases: regular tree res-
olution, tree resolution and semi-tree resolution. These results
are achieved by augmenting Max-SAT resolution with the split
rule which enabled us to duplicate clauses by adding literals
when necessary. We have also generalised our adaptation to
unrestricted resolution refutations, even though the proposed
transformation can produce a max-refutation whose size is
exponential in the worst case. Notice that our results remain
valid for weighted Max-SAT formulas as we simply need to
augment the previous rules with another split rule for weights.
Indeed, the overhead of this rule is linear in terms of the size
of the refutation since we need to apply it once on the clauses
in the weighted MAX-SAT formula to produce clauses with
same weight, i.e. the minimum of all the weights as done in
the context of SAT-based (weighted) Max-SAT algorithms [3].

These results may help to exhibit proofs based on Max-SAT
resolution for Max-SAT algorithms which remains an unex-
plored topic whereas, in SAT, practically all modern solvers
are able to compute a resolution proof of unsatisfiability (in
different formats [10], [13]). Indeed, it would be interesting
to include the proposed adaptations in SAT-based algorithms
for Max-SAT. Such extended algorithms would thus iteratively
call a SAT oracle to get a resolution refutation, adapt this
resolution refutation to get a Max-SAT refutation based on our
results and transform the formula accordingly. This treatment
is repeated until reaching a satisfiable formula and a set of
empty clauses whose size is the optimum value of the formula.
Such implementation would require an efficient SAT oracle
which returns a resolution refutation. Finally, the existence of
an adaptation that does not increase substantially the size of

an unrestricted resolution proof remains an open question. We
will continue to investigate this topic either by exhibiting a
polynomial adaptation or refuting its existence.
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