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Abstract. In this paper, we extend the general descent method proposed by Attouch, Bolte and Svaiter [Math. Pro-
gram. 137 (2013), 91-129] to deal with possible asymmetric like-distances. Using a w-distance as regularization
term, our results guarantee the convergence of bounded sequences under the assumption that the objective function
satisfies the Kurdyka-Łojasiewicz inequality. In particular, it improves some existing works on proximal point
methods with quasi-distance as regularization term because we prove convergence of bounded sequences without
any additional assumption on the w-distance unlike it have been done with quasi-distances. The last section gives
an application relative to the emergence of habits after a succession of worthwhile moves which balance motivation
and resistance to move.
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1. INTRODUCTION

In this paper, we show how first-order methods can modelize habits using the behavioral
context of the recent variational rationality (VR) approach of worthwhile stay and change dy-
namics proposed by Soubeyran; see [24, 25, 26, 27] and more recently, [28, 29]. Theories of
stability and change consider successions of stays and changes. Stays refer to habits, routines,
equilibria, traps, rules and conventions, etc. Changes represent creations, destructions, learning
processes, innovations, attitudes as well as the formation and revision of beliefs, self-regulation
problems, including goal setting, goal striving and goal revision, the formation and break of
habits and routines. In the interdisciplinary context characterizing all these theories in Behav-
ioral Sciences, the variational rationality approach shows how to model the course of human
activities as a succession of worthwhile temporary stays and changes which balance, at each
step, the motivation to change (the utility of advantages to change) and the resistance to change
(the disutility of inconveniences to change).

In 2013, Attouch, Bolte and Svaiter [2] studied the convergence of a general descent method
based on a first-order optimality condition which includes projection methods, proximal point
method, Gauss-Seidel method, forward-backward methods, among others. This general descent
method is unable to procure such an application to economics and social sciences. In fact, it
uses the square of an Euclidean distance as a regularization term, which cannot represent a cost
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of moving or some inconveniences to move (as in our case) because in this setting costs of
changing from x to y are equal to costs of changing from y to x, a very restrictive symmetric
assumption for costs to move. Therefore, a quasi-distance (asymmetric distance) seems to be
more appropriate as regularization term rather than the Euclidean norm.

Recently, Bento and Soubeyran [6, 7] showed when, in a quasi-metric space, a generalized
inexact proximal algorithm (equipped with a generalized perturbation term) defined, at each
step, by a sufficient descent condition and a stopping rule, converges to a critical point, the speed
of convergence and the convergence in finite time depend on the curvature of the perturbation
term and on the Kurdyka-Łojasiewicz property associated to the objective function. These
works are based on the paper of Moreno, Oliveira and Soubeyran [18] who was the first to
deal with proximal point method with a quasi-distance as regularization term. Other works
have been considered proximal-type methods using a quasi-distance as regularization; see, e.g.,
[8, 9, 11].

As proposed in [18], all the previous mentioned works impose a restriction on the quasi-
metric assuming a kind of “not too asymmetric” condition; see Section 2. Although such a
condition makes sense in the VR approach, it restrains the class of quasi-distances, which can
be used as regularizations. Actually, we will prove that this assumption implies the quasi-
distance to be a particular instance of a w-distance; see Section 2. Thus, we enable not only
the proximal point method but a general descent method, which includes projection methods,
proximal point method, Gauss-Seidel method, forward-backward methods, among others, to
deal with a w-distance as regularization term. An interesting application of the alternating
Gauss-Seidel method in how to play Nash potencial games can be found in Soubeyran, Souza
and Cruz Neto [30]. In this context, our work generalizes and improves the above mentioned
papers who perform first-order descent methods using quasi-distances and Euclidean norms as
regularizations.

The rest of this paper is organized as follows. In Section 2, some basic definitions and results
are stated. The method and its convergence analysis is presented in Section 3. Finally, Section 4
provides an application to emergence of habits following worthwhile moves.

2. PRELIMINARIES

Definition 2.1. A quasi metric space is a pair (X ,q) such that X is a nonempty set, and q :
X×X → R+, called a quasi metric or quasi distance, is a mapping satisfying:

(Q1) For all x,y ∈ X , q(x,y) = q(y,x) = 0⇔ x = y;
(Q2) For all x,y,z ∈ X , q(x,z)≤ q(x,y)+q(y,z).

Clearly, metric spaces are quasi metric spaces satisfying the symmetric property q(x,y) =
q(y,x).

The works [6, 7, 11, 18] are devoted to studying algorithms via a quasi distance. Bento and
Soubeyran [6] discussed how a proximal point method using a quasi-distance as regulariza-
tion can be a nice tool to modelize the dynamics of human behaviorus in the context of the
(VR) variational rationality approach; see Soubeyran [24, 25, 26, 27], and more recently in
Soubeyran [28, 29]. Applications of quasi metric spaces to Behavioral Sciences (Psychology,
Economics, Management, Game theory, etc.) and theoretical computer science can be found,
for instance, in [3, 11] and references therein.
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The following assumption has been made for algorithms dealing with quasi-distances. There
exist real numbers α > 0 and β > 0 such that

(H) (Not too asymmetric) α||x− y|| ≤ q(x,y)≤ β ||x− y||, ∀x,y ∈ Rn,

see, for instance, [11, 18] and the references therein.

Example 2.1. Let c1,c2 ∈ R be positive constants such that c1 6= c2. Then, q : R×R→ R+

given by

q(x,y) =
{

c1(x− y), ifx≥ y,
c2(y− x), ifx < y,

is a quasi-distance satisfying assumption (H) with α =min{c1,c2} and β =max{c1,c2}. Clearly,
q is not symmetric and hence q is not a distance. See more examples in Moreno, Oliveira and
Soubeyran [18].

Definition 2.2. A w-distance on a metric space (X ,d) is a mapping p : X ×X → R+ satisfying
the following conditions:

(W1) p(x,y)≤ p(x,z)+ p(z,y), for all x,y,z ∈ X ;
(W2) p(x, ·) : X → R+ is lower semicontinuous for all x ∈ X ;
(W3) For each ε > 0, there exists δ > 0 such that p(x,y)< δ and p(x,z)< δ imply d(y,z)< ε .

This concept was introduced by Kada and Suzuki [16]. Next, we give some classical exam-
ples of w-distance, which can be found, for instance, in [31] and Suzuki and Takahashi [32]. To
this end, let X be a metric space with metric d. The application of w-distance in organizational
change can be found in Bao, Khanh and Soubeyran [4].

Example 2.2. The mapping p : X ×X → R+ given by p(x,y) = c, for every x,y ∈ X , where
c > 0 is real number, is a w-distance.

Example 2.3. Let C be a bounded and closed subset of X containing at least two points and
∆ a constant such that ∆ ≥ diam C, where diam C denotes the diameter of C. The function
p : X×X → R+ given by

p(x,y) =
{

d(x,y), ifx,y ∈C
∆, ifx /∈C or y /∈C

is a w-distance.

Let X be a normed linear space with norm || · ||.

Example 2.4. The mapping p : X ×X → R+ given by p(x,y) = ||x||+ ||y||, for every x,y ∈ X
is a w-distance.

Example 2.5. The mapping p : X ×X → R+ given by p(x,y) = ||y||, for every x,y ∈ X is a
w-distance.

Remark 2.1. One can easily check that none of the above w-distances satisfies assumption (H).

For simplicity, from now on, we will consider the w-distances on the Euclidean metric space
endowed with Euclidean norm d(x,y) = ||x− y||. Now, let us examine what assumption (H)
imposes to the quasi-distance in terms of a w-distance.
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Remark 2.2. Let q be a quasi-distance satisfying assumption (H). Clearly, p(x,y) = ||x− y||
is a w-distance on (Rn,d) with d(x,y) = ||x− y||, i.e., a distance d is a w-distance on (Rn,d).
Then, from (W3), for every ε > 0, there exists δ > 0 such that

p(x,y) = ||x− y||< δ and p(x,z) = ||x− z||< δ imply ||y− z||< ε. (2.1)

Thus, setting δ̄ = αδ , from (H), we have

q(x,y)≤ δ̄ and q(x,z)≤ δ̄ ,

and hence,

||x− y|| ≤ q(x,y)
α
≤ δ̄

α
=

αδ

α
= δ

and

||x− z|| ≤ q(x,z)
α
≤ δ̄

α
=

αδ

α
= δ ,

using the left hand-side inequality in (H) in inequalities above. Thus, from (2.2), we obtain
that, for every ε > 0, there exists δ̄ > 0 such that

q(x,y)< δ̄ and q(x,z)< δ̄ imply ||y− z||< ε.

This is condition (W3) in the definition of w-distance. Note that a quasi-distance satisfies (W1)
and q(x, ·) is Lipchitz continuous (see [18, Proposition 3.6]), in particular, it satisfies (W2).
Therefore, a quasi-distance, which satisfies assumption (H), is a w-distance. This means that
algorithms dealing with a quasi-distance satisfying (H) actually are handling with a particular
class of w-distances.

Let us recall some definitions and properties of the subdifferential theory which can be found,
for instance, in [19, 21].

Definition 2.3. Let f : Rn→ R∪{+∞} be a proper lower semicontinuous function.

(1) The Fréchet subdifferential of f at x, denoted by ∂̂ f (x), is defined as follows

∂̂ f (x) =

 {v ∈ Rn : liminf
y→x
y 6=x

f (y)− f (x)−〈v,y−x〉
||x−y|| ≥ 0}, if x ∈ dom( f );

/0, if x /∈ dom( f ).

(2) The limiting-subdifferential of f at x, denoted by ∂ f (x), is defined as follows

∂ f (x) =
{
{v ∈ Rn : ∃xk→ x, f (xk)→ f (x), vk ∈ ∂̂ f (xk)→ v}, if x ∈ dom( f );

/0, if x /∈ dom( f ).

We denote by dom∂ f = {x ∈ Rn : ∂ f (x) 6= /0}. Recall that the limiting-subdifferential
is closed and ∂̂ f (x) ⊂ ∂ f (x). If f is a proper, lower semicontinuous and convex function,
and x ∈ dom( f ), then ∂̂ f (x) coincides with the classical subdifferential in the sense of convex
analysis and it is a nonempty, closed and convex set.

Dealing with descent methods for convex functions, we can expect that the algorithm pro-
vides globally convergent sequences, i.e., the convergence of the whole sequence. When the
functions under consideration are neither convex nor quasiconvex, the method may provide se-
quences that exhibit highly oscillatory behaviors, and partial convergence results are obtained.
The Kurdyka-Łojasiewicz property has been successfully applied to analyze various types of
asymptotic behavior, in particular, proximal point methods; see, for instance, [2, 7, 13].
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Definition 2.4. A function f :Rn→R∪{+∞} is said to have the Kurdyka-Łojasiewicz property
(here called KL function) at x∗ ∈ dom∂ f if there exist η ∈ (0,+∞], a neighborhood U of x∗ and
a continuous concave function ϕ : [0,η)→ R+ (called desingularizing function) such that:

ϕ(0) = 0, ϕ is C1 on (0,η), ϕ
′(s)> 0, ∀s ∈ (0,η); (2.2)

ϕ
′( f (x)− f (x∗))dist(0,∂ f (x))≥ 1, ∀x ∈U ∩ [ f (x∗)< f < f (x∗)+η ], (2.3)

where [η1 < f < η2] = {x ∈Rn : η1 < f (x)< η2} and C1 means differentiable with continuous
derivative.

One can found the definition of the Kurdyka-Łojasiewicz property and other references on
this subject in Attouch, Bolte and Svaiter [2].

Remark 2.3. One can easily check that the Kurdyka-Łojasiewicz property is satisfied at any
non-critical point x̂∈ dom∂ f . It follows from the Kurdyka-Łojasiewicz property that the critical
points of f lying in U ∩ [ f (x∗) < f < f (x∗)+η ] have the same critical value f (x∗). If f is
differentiable and f (x∗) = 0, then (2.3) can be rewritten as

∇(ϕ ◦ f )(x)≥ 1,

for each convenient x ∈ Rn. This property basically expresses the fact that a function can be
made sharp by a reparameterization of its values; see [2].

Lemma 2.1 ([10], Lemma 4.1). Let {αk} be a sequence of positive numbers such that
+∞

∑
k=1

α2
k

αk−1
< ∞.

Then,
+∞

∑
k=1

αk < ∞.

3. GENERAL DESCENT METHOD USING A W-DISTANCE

In this section, we study the convergence of a general descent method which uses as regu-
larization a w-distance. The domain of applications of this abstract method includes first-order
methods (such as gradient methods), projection methods, proximal point method, Gauss-Seidel
method, forward-backward methods, among others; see [2].

(General descent method) We consider a and b two fixed positive constants. Let f : Rn→R
be a proper lower semicontinuous function. We suppose that f is bounded from below and its set
of critical points S∗ is non-empty. Without loss of generality, we can assume that infx∈Rn f (x) =
0. In the sequel, we consider a sequence {xk} , which satisfies the following conditions:

(C1) (Sufficient descent condition) For each k ∈ N,

f (xk+1)+ap2(xk,xk+1)≤ f (xk);

(C2) (Relative error condition) For each k ∈ N, there exists wk+1 ∈ ∂ f (xk+1) such that

||wk+1|| ≤ bp(xk,xk+1);

(C3) (Continuity condition) There exists a subsequence {xk j} of {xk} and x̂ ∈ Rn such that
xk j → x̂ and f (xk j)→ f (x̂) as j→+∞.
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Remark 3.1. The general descent method was firstly considered in the context of KL functions
in [2]. As mentioned in [2], condition (C1) was intended to model a descent property involving
a measure of the quality of the descent. The use of a like-distance as regularization comes
from the fact that it modelizes costs of moving and, more generally, inconveniences to move
in Behavioral Sciences given in the presentation of the Variational Rationality approach, see
Soubeyran [24, 25, 26, 27], and more recently in Soubeyran [28, 29]. A quick justification
is that costs of moving are non symmetric, because costs of moving from x to y are not the
same as costs of moving from y to x. Furthermore, the triangle inequality comes from the
fact that detours are costly, because of some kind of fixed starting and stopping costs for each
detour. A complete answer for this justification would be too long. It requires to have in mind
the framework of the Variational Rationality approach, where the resistance to change plays
a major role. The applications of this concept applied to the proximal point method can be
found, for instance, in Cruz Neto et al. [11] in optimal size of the firm problem; Bento, Bitar
and Cruz Neto [8] in group dynamic problems; Moreno Oliveira and Soubeyran [18] and Bento
and Soubeyran [6, 7] in habit and routines formation; Bento et al [9] in compromise problem.
It is worth to mention that none of these works deal with a w-distance as we do. All these
works consider as regularization term the (square) Euclidean norm or a quasi-distance satisfying
assumption (H). Both cases are particular instance of a w-distance. In this context, our results
generalize the previously mentioned works.

Remark 3.2. Condition (C2) originates from the well-known fact that most algorithms in opti-
mization are generated by an infinite sequence of subproblems which involve exact or inexact
minimization processes. Condition (C2) corresponds to an inexact optimality condition. This
assertion will be clear in the following example.

Example 3.1. Under some mild assumptions, the proximal point method applied to find a min-
imizer of a function f computes at each iteration a point xk+1 such that

xk+1 = arg min
x∈Rn
{ f (x)+

λk

2
||x− xk||2}, (3.1)

where {λk} is an auxiliary parameter sequence. Using the first-optimality condition in (3.1),
we have

λk(xk− xk+1) ∈ ∂ f (xk+1),

i.e., there exists wk+1 ∈ ∂ f (xk+1) such that ||wk+1|| = λk||xk − xk+1||; see Rockafellar [22].
Comparing (3.1) with (C2), it is clear that xk+1 is computed exactly in (3.1) and inexactly in
(C2).

Note that if p(xk,xk+1) = 0, then we have from (C2) that xk+1 is a critical point of f . So, this
is a natural stopping rule for the method. Next, we prove some classical properties of descent
methods but in the context of w-distances.

Theorem 3.1. The following assertions hold:

(i) { f (xk)} is convergent;
(ii) lim

k→+∞
p(xk,xk+1) = 0.
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Proof. From (C1), we have that { f (xk)} is non-increasing. Since f is bounded from below, then
it is convergent and the first assertion is proved. From (C1), we also have

p2(xk,xk+1)≤ 1
a
[ f (xk)− f (xk+1)], ∀k ∈ N.

Thus,
n

∑
k=0

p2(xk,xk+1)≤ 1
a
[ f (x0)− f (xn+1)]≤ f (x0)

a
,

where the second inequality comes from the fact that f is bounded from below. Letting n→+∞,
we obtain that ∑

+∞

k=0 p2(xk,xk+1)< ∞, and hence, we have limk→+∞ p(xk,xk+1) = 0. �

Theorem 3.2. Assume that {xk} is bounded and f has the Kurdyka-Łojasiewicz property at the
cluster point x̂ specified in (C3). Then, {xk} converges to x̂ which is a critical point of f .

Proof. Let {xk j} be a subsequence of {xk} such that xk j → x̂ as j→ +∞. Combining Theo-
rem 3.1 (i) with (C3), we have that f (xk)→ f (x̂) as k→ +∞ and f (xk) ≥ f (x̂), for all k ∈ N.
The function f has the Kurdyka-Łojasiewicz property at x̂. Then there exit ϕ , U , η as in Def-
inition 2.4. Let δ > 0 be such that B(x̂,δ ) ⊂U and ρ ∈ (0,δ ) (if necessary, shrink η so that
η < a(δ −ρ)2; see [2, Corollary 2.8]). Since ϕ is continuous, we obtain that there exists k̄0 ∈N
such that f (xk) ∈ [ f (x̂), f (x̂)+η), for all k ≥ k̄0, and hence, xk ∈U ∩ [ f (x̂), f (x̂)+η), for all
k ≥ k0 and some k0 ∈ N. Thus, using the fact that ϕ is concave, we have

ϕ( f (xk))−ϕ( f (xk+1))≥ ϕ
′( f (xk))( f (xk)− f (xk+1))≥ aϕ

′( f (xk))p2(xk,xk+1), (3.2)

where the second inequality comes from (C1). On the other hand, from (2.3), we have

ϕ
′( f (xk))||wk|| ≥ 1, ∀wk ∈ ∂ f (xk).

Using this fact combined with (C2) in (3.2), we obtain

ϕ( f (xk))−ϕ( f (xk+1))≥ a
b

p2(xk,xk+1)

p(xk−1,xk)
, ∀k ≥ k0,

and hence,
n

∑
k=k0

p2(xk,xk+1)

p(xk−1,xk)
≤ b

a
ϕ( f (xk0))−ϕ( f (xn+1))≤ b

a
ϕ( f (xk0)).

Letting n→+∞ and applying Lemma 2.1, we have
+∞

∑
k=0

p(xk,xk+1)< ∞. (3.3)

Let {αn} be the sequence of real numbers given by αn = ∑
+∞

k=n p(xk,xk+1). From (3.3), we have
that {αn} converges to 0 as n→ +∞. Therefore, for any δ > 0, there exists n0 ∈ N such that
αn < δ , for all n ≥ n0. On the other hand, given an arbitrary ε > 0, take n0 ∈ N such that
p(xn0,xn)≤ αn0 < δ and p(xn0,xm)≤ αn0 < δ . Thus, from the definition of the w-distance, we
have

||xn− xm||< ε, ∀m,n≥ n0,

i.e., {xk} is a Cauchy sequence. Therefore, {xk} is convergent and it converges to x̂.
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Now, from (C2), we have that 0 ≤ ||wk+1|| ≤ bp(xk,xk+1), where wk+1 ∈ ∂ f (xk+1). Letting
k→+∞ and using Theorem 3.1 (ii), we have that wk→ 0 as k→+∞. Using the closedness of
the subdifferential ∂ f (·), we obtain that 0 ∈ ∂ f (x̂), and hence, x̂ is a critical point of f .

�

4. THE EMERGENCE OF HABITS FOLLOWING WORTHWHILE MOVES

In this last section, we give an application of our generalized descent method to the important
problem of the emergence of habits, when an individual changes gradually his own behavior to
end in a habit. In this way, an agent can promote gradually better habits, like food or health
habits. This section represents a simplified but important application, among many possible
others, of the variational rationality model of human dynamics (Soubeyran [24, 25, 26, 27, 28,
29]). For an initial application relative to habit formation, see Moreno, Oliveira and Soubeyran
[18]. For a general and preliminary presentation of habit forming and breaking in a different
context where preferences can change, see Soubeyran [27].

4.1. Modelling an enduring habit. The difficulty to define a habit. To define a habit is not
easy, because it has a lot of different aspects. Then, in psychology, there are as much definitions
of a habit as aspects an author wants to emphasize. To better see which aspects of a habit the
mathematical part of this paper modelizes, we will list several definitions of a habit, and then,
choose one on them.

• In psychology, a habit can be defined as:
– a recurrent/repeated behavior: “a particular act or way of acting that you tend to do

regularly” (Cambridge Dictionary)”, where recurrent and repeated are not synonym
terms;

– a recurrent/repeated and unconscious behavior: “something that you do often and
regularly, sometimes without knowing that you are doing it” (Cambridge Dictio-
nary);

– a recurrent/repeated, acquired and fixed way of behaving: “a more or less fixed way
of thinking, willing, or feeling acquired through previous repetition of a mental
experience” (Andrews [1]);

– an acquired and unvoluntary behavior: “an acquired mode of behaviour that has
become nearly or completely involuntary” (Merriam-Webster’s online dictionary);

– a recurrent/repeated, acquired by repetition and efficient behaviour pattern, “a be-
haviour pattern acquired by frequent repetition or physiologic exposure that shows
itself in regularity or increased facility of performance” (Merriam-Webster’s online
dictionary);

– a context-behavior association in memory that develop as people repeatedly expe-
rience rewards for a given action in a given context; see Mazar and Wood [17]. We
note that “most modern research begins with a conceptual definition of habits as
cue-response associations in memory that are acquired slowly through repetition
of an action in a stable circumstance” (Gardner [14], Orbell and Verplanken [20],
Wood and Rünger [33]);

– an automatic response: “a settled tendency or usual manner of behaviour” (Merriam-
Webster’s online dictionary). That is, “a habit can also be thought of as a link
between a stimulus and a response. It serves as a mental connection between a
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trigger thought or event (stimulus) and our response to that trigger (the response).
Repeating this connection time and again forms a habit and affects all subsequent
decisions and actions. If repeated often enough, this connection becomes near per-
manent unless we take conscious action to change it. For example, a stimulus for
overeating might be stress. The stress may be physical, emotional or mental and
triggered by such things as a restricted diet, tiredness, an argument, a bad day at
work or even negative thinking. A learned response for dealing with this stress may
be eating. Over time, the bond may become so strong that our automatic or habitual
response to stress is to eat. In psychology, this is known as classical conditioning,
as demonstrated by Pavlov’s dogs. The dogs learnt to associate a tone with food
and would salivate whenever they heard the tone whether there was food present or
not.”; see Joseph [15].

• The Free Dictionary gives the following definitions:
- A recurrent, often unconscious pattern of behavior that is acquired through frequent

repetition: made a habit of going to bed early.
- An established disposition of the mind or character: a pessimistic habit.
- Customary manner or practice: an early riser by habit.
- An addiction, especially to a narcotic drug.

• The MacMillan Dictionary lists a lot of synonyms:
- habit: something that you do often or regularly, often without thinking about it,
- routine: your usual way of doing things, especially when you do them in a fixed

order at the same time,
- daily life: all the things that happen or that you do regularly,
- custom: something that a particular person regularly does,
- tendency: an attitude, habit, or situation that is starting to develop in a particular

way,
- ritual: something that you do regularly and always in the same way,
- way of life: if something is a way of life, it is considered to be what people normally

do or have,
- common practice: something that is done a lot and is considered normal,
- as is someone’s wont: used for saying that someone has a habit of doing a particular

thing,
- proclivity: a tendency to want to do a particular thing, especially something bad.
- the prevailing disposition or character of a person’s thoughts and feelings (Merriam-

Webster’s online dictionary).

4.1.1. A simplified definition of a habit. We will define a habit as a learned repeated activity or
bundle of activities done in the same context. As we will see, it fits well with the mathematical
part. A more complete definition will include the fact that a habit is usually goal driven at the
beginning, and becomes an unconscious and automatic response to the repeated occurrence of
a given context (cue).

4.1.2. A simple representation. a habit is characterized by the repetition, each period, of the
same context e ∈ E (environment), the same activity or bundle of activities a ∈ A (or routine)
and the same per period reward/utility g(x)∈R, where x = (a,e)∈ A×E is a situated bundle of
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activities. This is called the habit loop; see Duhigg [12]. This means that a habit x refers to the
choice of a context, and the choice of an activity or a bundle of activities done in this context
related to the evaluation of a reward g(x).

4.1.3. The stability of good habits, being where you want to be at the very beginning. Let
us define, within a period, good (optimal) habits and their utilities. Let X = Rn and g : x ∈
X 7−→ g(x) ∈ R be a per period utility (reward) function. Let g = sup{g(y), y ∈ X} < +∞ be
the highest utility an individual can expect from doing any situated bundle of activities y ∈ X
within a period. It represents the aspiration level of an individual. A situated bundle of activities
x∗ ∈ X maximizes his per period utility if g(x∗)≥ g(y) for all y ∈ X . It defines an optimal habit
when, by chance, an individual, in the initial period 0, performs the optimal situated bundle
of activities x0 = x∗. In this context he will repeat x∗ again and again, each successive period,
that is, xk = xk+1 = x∗, k = 0,1, . . . , because it will not be advantageous to change this situated
bundle of activities x∗. In this case this optimal situated bundle of activities (different given
activities done in given different environments) becomes an optimal habit.

4.2. Gradual improving processes driven by motivation and resistance to move.

4.2.1. Wanting to improve his utility, being not where he wants to be. Suppose now that, con-
trary to the previous situation, an individual is not initially where he wants to be, wanting to
move from bad habits to good habits. This is the case when, initially, in the first period 0, he
does not perform the optimal situated bundle of activities x∗. That is, if x0 6= x∗, this individ-
ual, in order to improve his utility, must change this bundle of situated activities step by step,
moving from performing x0 to performing x∗. Let f : X → R given by f (y) = g− g(y) ≥ 0
be the unsatisfied need of this individual at y = x0, that is, a need for a higher utility which is
equal to the discrepancy f (y) = g−g(y)≥ 0. This gap represents the dissatisfaction feeling of
this agent when he performs y instead of x∗. The problem of the individual being to reduce this
discrepancy until it disappears at x∗ where f (x∗) = g− g(x∗) = 0. In this setting the problem
of the individual is to minimize gradually his dissatisfied needs until he finds x∗ ∈ X such that
f (x∗)≤ f (y) for all u ∈ X . There are two bechmark cases:

i) global and simultaneous improving processes;
ii) local and sequential improving processes.

4.2.2. Global and simultaneous improving processes. From a practical point of view, consider
a consumer and food habits. In economics, the neoclassical theory supposes that, in a first
stage, a consumer can explore the whole space X of bundles of goods that we identify in this
paper to bundles of situated consumption activities. Then, he will discover the whole graph of
utilities, g(y) for all bundle of goods y ∈ X . As a consequence he will find an optimal bundle of
consumption goods x∗ ∈ X by direct comparison (brute force) of pairs (g(x),g(y)) and elimina-
tion of x or y, the one with the lowest utility. This is the essence of the dichotomy principle of
substantive rationality (see Simon [23]) where optimization is ideally done in three steps:

i) first exploration of the whole space to discover {g(y) : y ∈ X};
ii) comparison by pairs x,y and successive elimination of x or y to select x∗;

iii) finally, the bundle of goods x∗ is consumed.



GENERAL DESCENT METHOD USING W-DISTANCE 295

4.2.3. Local and sequential improving processes. Instead of considering a global optimization
approach done in only one step, we will consider, using the variational rationality approach
of human dynamics (Soubeyran [24, 25, 26, 27, 28, 29]), a local and sequential improving
process driven by motivation and resistance to move. The individual will make a sequential
exploration instead of a simultaneous ex ante exploration of the whole space. In this setting,
each step, exploration must be local. These “local action” aspects are left for future research.
This individual will try to improve step by step his utility, in a bounded rationality framework
(limited resources, no way to know the utility function in one step, . . .). The agent will not
move from x0 to a known and given optimal x∗, but will make a succession of bounded rational
moves (no optimization, only local improvements) : he will improve enough in a given sense.
The question is to know where this process ends (in a non optimal habit, which can be a trap or
not, an inefficient or an optimal end). As Mazar and Wood [17, page 8] said “many habits begin
with goal pursuit”. In this paper we will consider, as a rather vague goal, the desire to improve
utility, starting from an undesirable initial situation.

4.2.4. A variational rationality dynamic driven by motivation and resistance to move. Let con-
sider an individual who chooses to perform, in the current period, a bundle of situated activities
y = (y1,...,ym) ∈ X , where each situated activity y j = (a j,e j) ∈ A×E is defined by an activity
a j and the environment e j where it is executed. This means that, each period, this individual
chooses, both, the list of activities a = (a1, ...am) ∈ A he wants to do and the different envi-
ronments (contexts) e = (e1, ...em) ∈ E where he plans to perform each activity. Following a
succession of periods k = 0,1, . . . :

• This individual starts to do an initial bundle of situated activities x0 ∈ X .
• If this bundle represents a bundle of bad habits, this individual will try to change grad-

ually his initial behavior x0, moving from doing x0 in the first period to doing x1 in the
second period, . . ., up to moving from doing the bundle of situated activities xk in the
previous period k to doing the same or a different bundle of situated activities y= xk+1 in
the current period k+1, . . .. Each period, the individual can change some activities and
some contexts (environments), or both, stopping, continuing, and starting to do some
activities and stopping, continuing and starting to use some context. This individual
will change his bundle of situated activities if y 6= x (change) or will perform the same
bundle (as previously) if y = x (stay). A stay can start or prolong an habit.
• In this way, following a succession of periods 0,1, . . . ,k,k+ 1, . . . and a succession of

moves x0 y x1 y . . . xk y xk+1 . . ., he can hope to improve gradually his utility from
g(x0) to g(xk+1)≥ g(xk)≥ . . .≥ g(x1)≥ g(x0) until he reachs a better bundle of habits.
Notice that his utility function g : X → R defines the utility of performing a bundle of
situated activities (a list of activities and their environments).
• Then, in the current period k+1, if he chooses to move, he can benefit from advantages

to move (change rather than stay) A(xk,y) = g(y)−g(xk),
• These advantages to move will give him some motivation to move M(xk,y)=U

[
A(xk,y)

]
,

where the mapping U [·] : A ∈ R+ 7−→U [A] ∈ R+ is a not decreasing value function.
• But moving (change or stay) being costly, this individual will bear costs of moving.

These costs include, first, costs of changing C(xk,y) ∈ R++ if y 6= xk, and costs of
staying C(xk,xk) ∈ R++ if y = xk. Costs of moving (change or stay) are the sum of two
different costs: capability costs (learning, maintenance and training costs), i.e., costs to
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be able to do y (or xk), and execution/exploitation costs, that is, costs to do y (or xk).
Each of these costs is strictly positive. Capability costs (costs to change capabilities)
include three kinds of costs : costs to be able to stop, continue and start using resources,
that is, costs to delete, conserve and acquire physiological, physical, cognitive, affective,
social, and financial resources. Costs of moving can also include some fixed costs, like
consideration costs of moving E(xk) > 0 which represent exploration and evaluation
costs of moving. These consideration costs are chosen and spend in advance, before
choosing to move and, then, move in order to be able to choose between change or stay.
All these costs model inertia. See Soubeyran [28, 29] for a long list of examples for
each of these different costs. A major example of costs of moving are costs to break,
prolong and build repetitive and automatic situated activities like habits (costs to change
the habit loop including costs to change environments, activities and rewards).
• Inconveniences to move (change rather than stay) are I(xk,y) = T (xk,y)+E(xk), where

T (xk,y) = C(xk,y)−C(xk,xk) ≥ 0 represent transition costs of moving (change rather
than stay), i.e., the excess (if non negative) of costs to change with respect to costs to
stay.
• These inconveniences to move lead to some resistance to move R(xk,y) = D

[
I(xk,y)

]
,

where D [·] : I ∈ R+ 7−→ D [I] ∈ R+ is a not decreasing disutility function.

4.2.5. Worthwhile moves. Each period k+1 an individual balances between change or stay (the
question is: should I stay or should I go?) and must choose to change or to stay. The balance
between motivation and resistance to move (change rather than stay) is

Bξ (x
k,y) = M(xk,y)−ξ R(xk,y),

where ξ > 0 is a weight which bears upon resistance to move. If this balance is non negative,
the move xk y y = xk+1 defines, in the current period k + 1, a worthwhile move such that
motivation to move is high enough with respect to resistance to move when ξ is high enough.
This individual can choose to move each time a move is worthwhile enough.

Then, if an individual starts from a bad habit x0, he can hope to reach a better one x∗ after
a succession of worthwhile moves, i.e., a worthwhile transition which modelizes a gradually
improving process driven by motivation and resistance to move.

4.3. The case of a linear quadratic variational rationality structure. This paper assumes
that M =U [A] = A and R = D [I] = I2 for all A, I ∈ R+. Then,

M(xk,y) = A(xk,y) = g(y)−g(xk)

and

R(xk,y) = D
[
I(xk,y)

]
= D

[
C(xk,y)−C(xk,xk)+E(xk)

]
= I(xk,y)2.

In this linear quadratic context, the balance between motivation and resistance to move
(change rather than stay) is Bξ (xk,y) = A(xk,y)−ξ I(xk,y)2.

Costs of moving and hence inconveniences and resistances to move are very complex dy-
namic concepts because they have a lot of different aspects. See Soubeyran [24, 25, 26, 27, 28,
29], Moreno, Oliveira and Soubeyran [18], Bento, Bitar and Cruz Neto [8], Bao, Cobzaş and
Soubeyran [3] and Bao, Khanh and Soubeyran [4] for further discussions. In this paper where
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resistance to move is weak enough, resistance to move is the square of inconveniences to move,
while motivation to move is identical to advantages to move.

It is worth to mention that w-distances (Taka, Suzuki and Takahashi [16], Suzuki [31] and
Suzuki and Takahashi [32]) can model a lot of different aspects of costs of moving and incon-
veniences to move. More specifically, consider the case of inconveniences to move

I(x,y) = T (x,y)+E(x), where T (x,y) =C(x,y)−C(x,x). (4.1)

We will assume (see Soubeyran [28, 29] for more details) that transition costs (change rather
than stay) T : X×X → R+ is a pseudo quasi distance; see [5]. This means that, for all x,y ∈ X ,

i) T (y,x) can be different from T (x,y), that is, transition costs are asymmetric;
ii) If x = y, then T (x,y) = 0, i.e., transition costs are zero for a stay.

Additionally, we will assume the following assumptions:
H1. T (x,y) =C(x,y)−C(x,x)≥ 0 for all x,y ∈ X ;
H2. T (x,z)≤ T (x,y)+T (y,z) for all x,y,z ∈ X ;
H3. The mapping E : X → R+ is lower semicontinuous.

Remark 4.1. H1 means that costs to change C(x,y), with y 6= x, are not lower than costs to
stay C(x,x). H2 means that, when moving from x to z, transition costs of making a detour
via the intermediate point y, i.e., T (x,y) + T (y,z) are higher than transition costs T (x,z) of
directly moving from x to z. Finally, H3 is a regularity condition and from (4.1) one has that
I(x,y) = T (x,y)+E(x)≥ T (x,y), for every x,y ∈ X .

Next, we show that inconveniences to move is a w-distance under some mild assumptions.

Proposition 4.1. Under the previous hypothesis H1, H2 and H3, inconveniences to move I :
X×X → R+ is a w-distance.

Proof. A slight extension of Suzuki and Takahashi [32, Lemma 1] shows that if (X ,T (·, ·)) is
a pseudo quasi-metric space (instead of a metric space), then, if H1, H2 and H3 hold, I(·, ·)
satisfies the three conditions

(1) I(x,z)≤ I(x,y)+ I(y,z) for all x,y,z ∈ X ;
(2) For all x ∈ X , I(x, ·) : y ∈ X 7−→ I(x,y) ∈ R+ is lower semicontinuous;
(3) I(x,y)≥ T (x,y) for every x,y ∈ X ;

then, I(·, ·) is a w-distance. In our case, T (·, ·) is a pseudo quasi-metric, because T (x,x) = 0.
But T (x,y) = 0 does not imply y = x. �

4.4. The gradual emergence of habits. In this linear quadratic context, the balance be-
tween motivation and resistance to move (change rather than stay) is Bξ (xk,y) = A(xk,y)−
ξ I(xk,y)2. Then, a succession of worthwhile moves is such that Bξ (xk,xk+1) = A(xk,xk+1)−
ξ I(xk,xk+1)2 ≥ 0, k = 0,1, . . ..

Let advantages to move be A(xk,xk+1) = g(xk+1)−g(xk) = f (xk)− f (xk+1) and let inconve-
niences to move be I(xk,xk+1) = p(xk,xk+1) for k = 0,1, . . .. Then a succession of worthwhile
moves xk y xk+1 verifies the condition, for k = 0,1, . . .,

g(xk+1)−g(xk) = f (xk)− f (xk+1)≥ ξ p(xk,xk+1)2 ≥ 0

which refers to a sufficient descent condition (C1) for each k = 0,1, . . . where a = ξ > 0.
In this context,
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i) This succession of worthwhile moves is an improving process such that utilities do
not decrease and dissatisfactions do not increase, because g(xk+1)− g(xk) = f (xk)−
f (xk+1)≥ 0 for k = 0,1, . . .;

ii) Advantages and inconveniences to move go to zero along this human dynamic driven
by motivation and resistance to move;

iii) Bounded from above utilities and non negative dissatisfactions converge to a limiting
utility and limiting dissatisfactions g∗ and f ∗;

iv) Given the definition of a w-distance in a metric space (X ,d), bundles of activities be-
come closer and closer in term of the w-distance p, hence in term of the distance d.
The proof is easy. Suzuki [31, Lemma 3]) tells us the following: let (X ,d) be a metric
space, p be a w-distance and

{
xk} ,{yk} ,{zk} be three sequences in X . Then, point

(iii) of this lemma shows that limk→+∞ p(xk,yk) = 0 and limk→+∞ p(xk,zk) = 0 imply
limk→+∞ d(yk,zk)= 0. Taking yk = xk and zk = xk+1 shows that limk→+∞ d(xk,xk+1)= 0.
This means that the distance between successive bundles of activities and environments
xk,xk+1 goes to zero. As a consequence, the individual repeats more and more simi-
lar habits loops, that is, more and more similar bundles of activities, environments and
utilities (rewards). A habit forms gradually.

v) the habit formation process ends when the relative error condition (C2) is satisfied, that
is, when p(xk,xk+1) ≥ (1/b)

∥∥wk+1
∥∥ , for some wk+1 ∈ ∂ f (xk+1), for each k = 0,1, ...

This means that inconveniences to move p(xk,xk+1) become higher enough (up to 1/b)
with respect to the norm

∥∥wk+1
∥∥ of the marginal unsatisfaction wk+1. This implies that

f (xk)− f (xk+1)≥ ξ p(xk,xk+1)2 ≥ (ξ/b2)
∥∥wk+1

∥∥2
, for some wk+1 ∈ ∂ f (xk+1). Then,

the norm of the subgradient goes to zero with advantages to move. Suppose that the
individual stops to be motivated to change as soon as his marginal advantage to move
wk+1 ∈ ∂ f (xk+1) have a norm

∥∥wk+1
∥∥< ε lower than some given threshold level ε > 0.

In this case there exists a period k∗ where this individual will choose to stop moving. In
all the periods following k+1 a robust habit x∗= xk+1 = xh,h > k+1 is formed because
the succession of worthwhile moves stops to be rewarding enough. The individual will
choose automatically the same bundle of activities coupled with their environment and
will benefit of the same reward.
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